
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Computer Science
Colorado State University

L23.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.2

Topics covered in this lecture

¨ Virtual Memory
¨ Demand Paging
¨ Performance of Demand Paging
¨ Page Replacement

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.3

How we got here …

Contiguous
Memory

Virtual
Memory

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Single
Address
space

Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORY
L23.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.5

Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.6

Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.7

Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by
¤ Heap or stack segments
¤ Dynamically linked libraries

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEMAND PAGING
L23.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.9

Loading an executable program into memory

¨ What if we load the entire program?
¤ We may not need the entire program

¨ Load pages only when they are needed
¤ Demand Paging

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.10

Differences between the swapper and pager

¨ Swapper
¤ Swaps the entire program into memory

¨ Pager
¤ Lazy swapper
¤ Never swap a page into memory unless it is actually

needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.11

Swapping: Temporarily moving a process out
of memory into a backing store

Process
P1

Process
P2

Operating
System

User space

Swap out

Swap in

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.12

Pager swapping pages in and out of physical
memory

Program A

Program B

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Swap OUT

Swap IN

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.13

Demand Paging: Basic concepts

¨ Guess pages to be utilized by process
¤ Before the process will be swapped out

¨ Avoid reading unused pages
¤ Better physical memory utilization
¤ Reduced I/O

n Lower swap times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.14

Distinguishing between pages in memory and those
on disk

¨ Valid-Invalid bits
¤ Associated with entries in the page table

¨ Valid
¤ Page is both legal and in memory

¨ Invalid
① Page is not in logical address space of process

 OR
② Valid BUT currently on disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.15

Distinguishing between pages in memory
and those on disk

A
B
C

E
D

F
G
H

0
1
2

3
4

5
6

7

0
1
2

3

4

5

6

7

Page Table

6 v

4 v

9 v

I

I

I

I

I

A

C

F

0
1

2

3

4

5
6

7
8
9
10

11

12

13
14

15

A B

C D E

F G H

Logical
Memory

Backing Store

Physical
Memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.16

Handling Valid-invalid entries in the page table

¨ If process never attempts to access an invalid page?
¤ No problems

¨ If process accesses page that is not memory resident?
¤ Page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.17

PHYSICAL
MEMORY

BACKING
STORE

PAGE
TABLE

Handling page faults

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.18

Pure demand paging

¨ Never bring a page into memory unless it is required

¨ Execute process with no pages in memory
¤ First instruction of process will fault for the page

¨ Page fault to load page into memory and execute

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.19

Potential problems with pure demand paging

¨ Multiple page faults per instruction execution
¤ One fault for instruction
¤ Many faults for data

¨ Multiple page faults per instruction are rare
¤ Locality of reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.20

Hardware requirements to support demand paging

¨ Page Table

¨ Secondary memory
¤ Section of disk known as swap space is used

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.21

Restarting instructions after a page fault

¨ Page faults occur at memory reference

¨ Use PCB to save state of the interrupted process

¨ Restart process in exactly the same place
¤ Desired page is now in memory and accessible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.22

Restarting processes after a page fault has been
serviced

¨ If fault occurred during an instruction fetch
¤ During restart, refetch the instruction

¨ If fault occurred while fetching operands
① Fetch and decode instruction

② Fetch the operand

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.23

Worst case example

¨ Add operands A and B
¤ Place sum in C

¨ If we fault while storing C
¤ Service page fault
¤ Update page table
¤ Restart instruction

n Decode, fetch operand and perform addition

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.24

Problems when operations modify several different
memory locations

¨ E.g. Move a block from one memory location to another
¨ {C1} Either block straddles page-boundary
¨ {C2} Page fault occurs

¨ Move might be partially done
¤ Uh-oh …

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.25

Approaches to fault-proofing block transfers

① Compute and access both ends of the block
¤ If a page fault were to happen: it will at this point

n Nothing has been partially modified

¤ After fault servicing, block transfer completes

② Use temporary registers
¤ Track overwritten values

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.26

Can on-demand paging be applied anywhere
without modifications?

¨ Paging is between CPU and physical memory
¤ Transparent to user process

¨ Non-demand paging can be applied to any system

¨ Not so for demand paging
¤ Fault processing of special instructions non-trivial

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PERFORMANCE OF DEMAND PAGING
L23.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.28

Effective access times

¨ Without page faults, effective access times are equal to memory
access times
¤ 200 nanoseconds approximately

¨ With page faults
¤ Account for fault servicing with disk I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.29

Calculating the effective access times with demand
paging

p : probability of a page fault
 ma : memory access time

 Effective access time =
 (1-p) x ma + p x page-fault-time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.30

Components of page-fault servicing

Service
interrupt

Read in
 the page

Restart
process

1~100 µS 1~100 µSLatency : 3 mS
Seek : 5 mS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.31

Effective access times

¨ Effective access time =
 (1-p) x ma + p x page-fault-time

 = (1-p) x 200ns + p x (8mS)

 = (1-p) x 200 + p x (8,000,000)

 = 200 + 7,999,800 x p

Effective access time directly
proportional to page-fault rate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.32

If performance degradation is to be less than 10%

220 > 200 + 7,999,800 x p

 20 > 7,999,800 x p

 p < 0.0000025

Fewer than 1 memory access out
of 399,990 can page-fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

OTHER ISSUES IN DEMAND PAGING
L23.33

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.34

Allocation of physical memory to I/O and programs
is a challenge

¨ Memory used for holding program pages

¨ I/O buffers also consume a big chunk of memory

¨ Solutions:
¤ Fixed percentage set aside for I/O buffers
¤ Processes and the I/O subsystem compete

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.35

Demand paging and the limits of logical memory

¨ Without demand paging
¤ All pages of process must be in physical memory
¤ Logical memory limited to size of physical memory

¨ With demand paging
¤ All pages of process need not be in physical memory
¤ Size of logical address space is no longer constrained by physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.36

Demand paging is the OS’ attempt to improve CPU utilization and
system throughput

¨ Load pages into memory when they are referenced
¤ Increases degree of multiprogramming

¨ Example
¤ 40 pages of physical memory
¤ 6 processes each of which is 10 pages in size

n Each process only needs 5 pages as of now

¤ Run 6 processes with 10 pages to spare

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.37

Increasing the degree of multiprogramming can be tricky

¨ Essentially we are over-allocating physical memory

¨ Example
¤ Physical memory = 40 pages
¤ 6 processes each of which is of size 10 pages

n But are using 5 pages each as of now

¤ What happens if each process needs all 10 pages?
n 60 physical frames needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.38

Coping with over-allocation of memory

¨ Terminate a user process
¤ But paging should be transparent to the user

¨ Swap out a process
¤ Reduces the degree of multiprogramming

¨ Page replacement

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.39

The two core problems in demand paging

¨ Frame allocation
¤ How many frames to allocate to a process

¨ Page replacement
¤ Select the frame(s) for replacement

¨ Caveat:
¤ Disk I/O is expensive so inefficient solutions can weigh things down

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGE REPLACEMENT
L23.40

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.41

Page replacement

¨ If no frame is free
¤ Find one that is not currently being used

n Use it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.42

Freeing a physical memory frame

¨ Write frame contents to swap space

¨ Change page table of process
¤ To reflect that page is no longer in memory

¨ Freed frame can now hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.43

Servicing a page fault

Retrieve page
from disk

Free frame available?

Use it

Select victim frame

Write victim frame
 to disk

YES
Done using a
page replacement
algorithmNO

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.44

PHYSICAL
MEMORY

BACKING
STORE

PAGE
TABLE

Page replacement is central to demand paging

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.45

Overheads for page replacement

¨ If no frames are free: 2 page transfers needed
¤ Victim page out
¤ New page in

¨ No free frames?
¤ Doubles page-fault service time
¤ Increases effective access time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.46

Using the modify bit to reduce page replacement
overheads

¨ Each page/frame has a modify bit
¤ Set by hardware when page is written into
¤ Indicates if page was modified

n Since the last time it was read from disk

¨ During page replacement
¤ If victim page not modified, no need to write it to disk

n Reduces I/O time by one-half

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGE REPLACEMENT ALGORITHMS
L23.47

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.48

Page replacement algorithms:

¨ What are we looking for?
¤ Low page-fault rates

¨ How do we evaluate them?
¤ Run algorithm on a string of memory references

n Reference string

¤ Compute number of page faults

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.49

The reference string:
Snapshot memory references

¨ We track page numbers
¤ Not the entire address

¨ If we have a reference to a memory-resident page p
¤ Any references to p that follow will not page fault

n Page is already in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.50

The reference string: Example
Page size =100 bytes

0100 0432 0101 0612 0102 0103 0104 0101 0611 0102 0103

0610 0102 0103 0104 0101 0609 0102 01050104 0101

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.51

Factors involved in determining page faults

¨ Reference string of executing process

¨ Page replacement algorithm

¨ Number of physical memory frames available

¨ Intuitively:
¤ Page faults reduce as the number of page frames

increase

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FIFO PAGE REPLACEMENT ALGORITHM
L23.52

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.53

FIFO page replacement algorithm:
Out with the old; in with the new

¨ When a page must be replaced
¤ Replace the oldest one

¨ OS maintains list of all pages currently in memory
¤ Page at head of the list: Oldest one
¤ Page at the tail: Recent arrival

¨ During a page fault
¤ Page at the head is removed
¤ New page added to the tail

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.54

FIFO example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Youngest

Oldest

0

7 0

7

1

1

0

2

1

0

2

2

1

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

3

2

0

3

2

0

0

3

1

1

0

2

1

0

2

1

0

2

2

1

7

7

2

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

No page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.55

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

