CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Virtual Memory
Demand Paging
Performance of Demand Paging

Page Replacement

CS370: Operating Systems L23.2
Dept. Of Computer Science, Colorado State University

How we got here ...
B

CS370: Operating Systems L23.3
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORY

Logical view of a process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}

Low {Program code}

CS370: Operating Systems L23.5
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory

L EEEEE——————,
max

Requures actual physical space
ONLY IF heap or stack grows

low

CS370: Operating Systems L23.6
Dept. Of Computer Science, Colorado State University

Sparse address spaces

Virtual address spaces with holes

Harnessed by
Heap or stack segments

Dynamically linked libraries

CS370: Operating Systems L23.7
Dept. Of Computer Science, Colorado State University

DEMAND PAGING

Loading an executable program into memory

What if we load the entire program?

We may not need the entire program

Load pages only when they are needed

Demand Paging

CS370: Operating Systems L23.9
Dept. Of Computer Science, Colorado State University

Differences between the swapper and pager
—

0 Swapper

Swaps the entire program into memory

0 Pager
Lazy swapper

Never swap a page into memory unless it is actually

needed

CS370: Operating Systems L23.10
Dept. Of Computer Science, Colorado State University

Swapping: Temporarily moving a process out
of memory into a backing store

_] *

Operating

System \\/
Swap out -

Swap in -
User space \/

CS370: Operating Systems L23.11
Dept. Of Computer Science, Colorado State University

Pager swapping pages in and out of physical

memor
I

0 1 2 3
Program A Swap OU1 1 5 6 .
8 9 10 11

12 13 14 15

Program B swapIN 16[| 17] 18[] 19

20 21 22 23

N~

CS370: Operating Systems L23.12
Dept. Of Computer Science, Colorado State University

Demand Paging: Basic concepts

Guess pages to be utilized by process

Before the process will be swapped out

Avoid reading unused pages

Better physical memory utilization
Reduced I/O

Lower swap times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.13

Distinguishing between pages in memory and those
on disk

Valid-Invalid bits

Associated with entries in the page table

Valid

Page is both legal and in memory

Invalid

(1) Page is not in logical address space of process

OR
(2) Valid BUT currently on disk

CS370: Operating Systems L23.14
Dept. Of Computer Science, Colorado State University

Distinguishing between pages in memory
and those on disk o

oW N RO

1
Physical2
A Memory
B 3 Backing Store
4 A
¢ 0 4 v 5
D 1 I 6 C
E 2 6 \'4 v A B
F
a 3 - 8 c D[| E
4 I 9 F
H
. 5 9 |v 10 FL €
6 |
Logical - 11
Memory 7 1 12
Page Table 13 |
CS3]7§: ems L23.15

Dept. Of Computer Science, Colorado State University

Handling Valid-invalid entries in the page table

If process never attempts to access an invalid page?

No problems

If process accesses page that is not memory resident?

Page fault

CS370: Operating Systems L23.16
Dept. Of Computer Science, Colorado State University

Handling page faults
—

@ Locate page on backing store

<
@ Trap to the OS
OPERATIN Reference

SYSTEM @
I
" Free
5 Frame €
PAGE
load M @
mapLe R€Set page v
t+able Bring in
Restart missing
instruction page
PHYSICAL
MEMORY
BACKING
CS370: Operating Systems STORE L23.17

Dept. Of Computer Science, Colorado State University

Pure demand paging
Never bring a page into memory unless it is required

Execute process with no pages in memory

First instruction of process will fault for the page

Page fault to load page into memory and execute

CS370: Operating Systems L23.18
Dept. Of Computer Science, Colorado State University

Potential problems with pure demand paging

Multiple page faults per instruction execution
One fault for instruction

Many faults for data

Multiple page faults per instruction are rare

Locality of reference

CS370: Operating Systems L23.19
Dept. Of Computer Science, Colorado State University

Hardware requirements to support demand paging

I
o Page Table

1 Secondary memory

01 Section of disk known as swap space is used

CS370: Operating Systems L23.20
Dept. Of Computer Science, Colorado State University

Restarting instructions after a page fault
Page faults occur at memory reference
Use PCB to save state of the interrupted process

Restart process in exactly the same place

Desired page is now in memory and accessible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.21

Restarting processes after a page fault has been
serviced

If fault occurred during an instruction fetch

During restart, refetch the instruction

If fault occurred while fetching operands
(1) Fetch and decode instruction

(2) Fetch the operand

CS370: Operating Systems L23.22
Dept. Of Computer Science, Colorado State University

Worst case example

Add operands A and B

Place sum in C

If we fault while storing C
Service page fault
Update page table

Restart instruction

Decode, fetch operand and perform addition

CS370: Operating Systems L23.23
Dept. Of Computer Science, Colorado State University

Problems when operations modify several different
memory locations
E.g. Move a block from one memory location to another

{C1} Either block straddles page-boundary
{C2} Page fault occurs

Move might be partially done
Uh-oh ...

CS370: Operating Systems L23.24
Dept. Of Computer Science, Colorado State University

Approaches to fault-proofing block transfers

(1) Compute and access both ends of the block

If a page fault were to happen: it will at this point
Nothing has been partially modified

After fault servicing, block transfer completes

(2) Use temporary registers

Track overwritten values

CS370: Operating Systems L23.25
Dept. Of Computer Science, Colorado State University

Can on-demand paging be applied anywhere
without modifications?

Paging is between CPU and physical memory

Transparent to user process

Non-demand paging can be applied to any system

Not so for demand paging

Fault processing of special instructions non-trivial

CS370: Operating Systems L23.26
Dept. Of Computer Science, Colorado State University

PERFORMANCE OF DEMAND PAGING

Effective access times

Without page faults, effective access times are equal to memory
access times

200 nanoseconds approximately

With page faults
Account for fault servicing with disk 1/0O

CS370: Operating Systems L23.28
Dept. Of Computer Science, Colorado State University

Calculating the effective access times with demand
paging

N
p :probability of a page fault

ma : memory access time

Effective access time =

(1-p) x ma + p x page-fault-time

CS370: Operating Systems L23.29
Dept. Of Computer Science, Colorado State University

Components of page-fault servicing

Service
interrupt

1~100 uS

Read in Restart
the page process
Latency : 3 mS 1~100 pS

Seek :5mS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.30

Effective access times

Effective access time =
(1-p) x ma + p x page-fault-time
= (1-p) x 200ns + p x (8mS)
= (1-p) x 200 + p x (8,000,000)

= 200 + 7,999,800 x p

Effective access time directly
proportional to page-fault rate

CS370: Operating Systems L23.31
Dept. Of Computer Science, Colorado State University

If performance degradation is to be less than 10%

220 > 200 + 7,999,800 x p
20 > 7,999,800 x p
p < 0.0000025

Fewer than 1 memory access out
of 399,990 can page-fault

CS370: Operating Systems L23.32
Dept. Of Computer Science, Colorado State University

OTHER ISSUES IN DEMAND PAGING

Allocation of physical memory to | /O and programs
is a challenge

Memory used for holding program pages

/O buffers also consume a big chunk of memory

Solutions:
Fixed percentage set aside for 1/O buffers

Processes and the 1/O subsystem compete

CS370: Operating Systems L23.34
Dept. Of Computer Science, Colorado State University

Demand paging and the limits of logical memory

Without demand paging
All pages of process must be in physical memory

Logical memory limited to size of physical memory

With demand paging
All pages of process need not be in physical memory

Size of logical address space is no longer constrained by physical memory

CS370: Operating Systems L23.35
Dept. Of Computer Science, Colorado State University

Demand paging is the OS’ attempt to improve CPU utilization and
system throughput

Load pages into memory when they are referenced

Increases degree of multiprogramming

Example
40 pages of physical memory

6 processes each of which is 10 pages in size

Each process only needs 5 pages as of now

Run 6 processes with 10 pages to spare

CS370: Operating Systems L23.36
Dept. Of Computer Science, Colorado State University

Increasing the degree of multiprogramming can be tricky

Essentially we are over-allocating physical memory

Example
Physical memory = 40 pages
6 processes each of which is of size 10 pages
But are using 5 pages each as of now

What happens if each process needs all 10 pages?
60 physical frames needed

CS370: Operating Systems L23.37
Dept. Of Computer Science, Colorado State University

Coping with over-allocation of memory

Terminate a user process

But paging should be transparent to the user

Swap out a process

Reduces the degree of multiprogramming

Page replacement

CS370: Operating Systems L23.38
Dept. Of Computer Science, Colorado State University

The two core problems in demand paging

Frame allocation

How many frames to allocate to a process

Page replacement

Select the frame(s) for replacement

Caveat:

Disk 1/O is expensive so inefficient solutions can weigh things down

CS370: Operating Systems L23.39
Dept. Of Computer Science, Colorado State University

PAGE REPLACEMENT

Page replacement
N

1 If no frame is free

o1 Find one that is not currently being used

m Use it

CS370: Operating Systems L23.41
Dept. Of Computer Science, Colorado State University

Freeing a physical memory frame

Write frame contents to swap space

Change page table of process

To reflect that page is no longer in memory

Freed frame can now hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.42

Servicing a page fault

Retrieve page
from disk

}

Free frame available?

YES

Use it

Done using a

page replacement
l NO / algorithm

Select victim frame J’

Write victim frame
to disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.43

Page replacement is central to demand paging
—

@ Locate page on backing store

< :
@ Trap to the OS
OPERATING Reference

SYSTEM @

<

Frame

load M| ¢ ° FAcE > @ .
TaBLE Reset page

Bring in
Restart table missing
instruction page
PHYSICAL
MEMORY
BACKING
STORE
CS370: Operating Systems L23.44

Dept. Of Computer Science, Colorado State University

Overheads for page replacement

If no frames are free: 2 page transfers needed
Victim page out

New page in

No free frames?
Doubles page-fault service time

Increases effective access time

CS370: Operating Systems L23.45
Dept. Of Computer Science, Colorado State University

Using the modify bit to reduce page replacement
overheads

Each page/frame has a modify bit
Set by hardware when page is written into

Indicates if page was modified

Since the last time it was read from disk

During page replacement

If victim page not modified, no need to write it to disk
Reduces |/O time by one-half

CS370: Operating Systems L23.46
Dept. Of Computer Science, Colorado State University

PAGE REPLACEMENT ALGORITHMS

Page replacement algorithms:

What are we looking for?

Low page-fault rates

How do we evaluate them?

Run algorithm on a string of memory references

Reference string

Compute number of page faults

CS370: Operating Systems L23.48
Dept. Of Computer Science, Colorado State University

The reference string:
Snapshot memory references

We track page numbers

Not the entire address

If we have a reference to a memory-resident page p

Any references to p that follow will not page fault

Page is already in memory

CS370: Operating Systems L23.49
Dept. Of Computer Science, Colorado State University

The reference string: Example
Page size =100 bytes
|

i
[| I |
0100 0432 0101 0612 0102 0103 0104 0101 0611 0102 0103

0104 0101 0610 0102 0103 0104 0101 0609 0102 0105

\ J \ J \ J
l | l

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

CS370: Operating Systems L23.50
Dept. Of Computer Science, Colorado State University

Factors involved in determining page faults

Reference string of executing process
Page replacement algorithm

Number of physical memory frames available

Intuitively:

Page faults reduce as the number of page frames
increase

CS370: Operating Systems L23.51
Dept. Of Computer Science, Colorado State University

FIFO PAGE REPLACEMENT ALGORITHM

FIFO page replacement algorithm:
Out with the old; in with the new

When a page must be replaced

Replace the oldest one

OS maintains list of all pages currently in memory
Page at head of the list: Oldest one

Page at the tail: Recent arrival

During a page fault
Page at the head is removed

New page added to the tdil

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L23.53

FIFO example: 3 memory frames
N

- Reference String

Youngest 7 0 1 22 3 0 4 2300012 221701

70 112304233301 11272¢0
Oldest 7 0012 3042223000127

~ No page fault

CS370: Operating Systems L23.54
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L23.55
Dept. Of Computer Science, Colorado State University

