
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[VIRTUAL MEMORY]

Computer Science
Colorado State University

L24.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.2

Topics covered in this lecture

¨ FIFO Page Replacement Algorithm
¨ Belady’s Anomaly
¨ Stack Algorithms
¨ Page Buffering
¨ Frame Allocations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.3

How we got here …

Contiguous
Memory

Demand
Paging

Page
Faults

Page replacement
algorithms Page Bufferring Frame

Allocation

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Working Sets

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.4

Factors involved in determining page faults

¨ Reference string of executing process

¨ Page replacement algorithm

¨ Number of physical memory frames available

¨ Intuitively:
¤ Page faults reduce as the number of available frames increase

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FIFO PAGE REPLACEMENT ALGORITHM
L24.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.6

FIFO page replacement algorithm:
Out with the old; in with the new

¨ When a page must be replaced
¤ Replace the oldest one

¨ OS maintains list of all pages currently in memory
¤ Page at head of the list: Oldest one
¤ Page at the tail: Recent arrival

¨ During a page fault
¤ Page at the head is removed
¤ New page added to the tail

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.7

FIFO example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Youngest

Oldest

0

7 0

7

1

1

0

2

1

0

2

2

1

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

3

2

0

3

2

0

0

3

1

1

0

2

1

0

2

1

0

2

2

1

7

7

2

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

No page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

BELADY’S ANOMALY
L24.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.9

Intuitively the greater the number of memory frames,
the lower the faults

¨ Surprisingly this is not always the case

¨ In 1969 Belady, Nelson and Shedler discovered counter example* in
FIFO
¤ FIFO caused more faults with 4 frames than 3

¨ This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging
machine. Belady, Nelson and Shedler.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.10

Belady’s anomaly: FIFO
Same reference string, different frames

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

Youngest

Oldest

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 3 3 4 0 1 2

0 0 0 1 2 3 4 0 1

9 page faults
with 3 frames

10 page faults
with 4 frames

Youngest

Oldest

Numbers in this color:
No page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.11

Belady’s anomaly

¨ Led to a whole theory on paging algorithms and properties

¨ Stack algorithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.12

The Model

¨ There is an array M
¤ Keeps track of the state of memory

¨ M has as many elements as pages of virtual memory

¨ Divided into two parts
¤ Top part: m entries {Pages currently in memory}
¤ Bottom part: n-m entries

n Pages that were referenced BUT paged out

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.13

The model

Page fault

Reference
String

n
el

em
en

tsm
 e

nt
ri

es

Tracking the state of the array M over time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.14

Properties of the model

¨ When a page is referenced
¤ Move to the top entry of M

¨ If the referenced page is already in M
¤ All pages above it moved down one position
¤ Pages below it are not moved

¨ Transition from within box to outside of it
¤ Page eviction from main memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.15

The model

0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 2 3 4 1

0 2

0

1

2

0

3

1

2

0

3

1

2

0

5

3

1

2

0

5

4

3

1

2

0

5

4

6

5

4

6

3

1

2

0

5

4

6

3

1

2

0

7

6

3

7

4

5

1

2

0

6

3

7

4

5

1

2

0

7

4

6

3

5

1

2

0

7

4

6

3

5

1

2

0

7

4

6

3

7

4

6

3

5 5

1

2

0

1

2

0

3

5 3

57

4

6

1

2

0

7

4

6

2

0

1

3

5

7

4

6

2

0

1

3

5

7

4

6

2

0

1

3

5

1

4

6

2

0

7

3

5

1

4

6

7

2

0

1

7

2

3

5

4

6
0

1

7

2

3

5

6
0

4

7

2
3

4

5

6
0

1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.16

Properties of the model

¨ M(m,r)
¤ The set of pages in the top part of M
¤m page frames
¤ r memory references

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.17

A property that has some interesting implications

¨ M(m, r) subset of M(m+1, r)

¨ Set of pages in the top part of M with m frames
¤ Also included in M with (m+1) frames

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.18

What the subset relationship means

¨ Execute a process with a set of memory frames

¨ If we increase memory size by one frame and re-execute at every
point of execution
¤ All pages in the first execution are present in the second run

¨ Does not suffer from Belady’s anomaly
¤ Stack algorithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THE OPTIMAL PAGE REPLACEMENT
ALGORITHM

L24.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.20

The optimal page replacement algorithm

¨ The best possible algorithm

¨ Easy to describe but impossible to implement

¨ Crux:
Put off unpleasant stuff for as long as possible

¨ Idea: evict “Furthest-in-the-future”

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.21

The optimal page replacement algorithm description

¨ When a page fault occurs some set of pages are in memory

¨ One of these pages will be referenced next
¤ Other pages may be not be referenced until 10, 100 or 1000 instructions

later

¨ Label each page with the number of instructions to be executed before
it will be referenced
¤ Page with the highest label should be removed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.22

Problem with the optimal page replacement
algorithm

¨ It is unrealizable

¨ During a page fault, OS has no way of knowing when
each of the pages will be referenced next

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.23

So why are we looking at it?

¨ Run a program
¤ Track all page references

¨ Implement optimal page replacement on the second run
¤ Based on reference information from the first run

¨ Compare performance of realizable algorithms with the best possible
one

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LRU PAGE REPLACEMENTS
L24.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.25

The Least Recently Used (LRU) page replacement
algorithm

¨ Approximation of the optimal algorithm

¨ Observation
¤ Pages used heavily in the last few instructions

n Probably will be used heavily in the next few

¤ Pages that have not been used
n Will probably remain unused for a long time

¨ When a page fault occurs?
¤ Throw out page that has been unused the longest

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.26

LRU example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Recent

Least
Used

0

7 0

7

1

1

0

2

2

1

0

0

2

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

0

2

3

3

0

2

2

3

1

1

3

2

2

1

0

0

2

1

1

0

7

7

1

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.27

Implementing LRU

¨ Logical clock
¨ Stacks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.28

Using Logical clocks to implement LRU

¨ Each page table entry has a time-of-use field
¤ Entry updated when page is referenced

n Contents of clock register are copied

¨ Replace the page with the smallest value
¤ Time increases monotonically

n Overflows must be accounted for

¨ Requires search of page table to find LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.29

Stack based approach

¨ Keep stack of page numbers

¨ When page is referenced
¤ Move to the top of the stack

¨ Implemented as a doubly linked list

¨ No search done for replacement
¤ Bottom of the stack is the LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.30

Problems with clock/stack based approaches to LRU
replacements

¨ Inconceivable without hardware support
¤ Few systems provide requisite support for true LRU implementations

¨ Updates of clock fields or stack needed at every memory reference

¨ If we use interrupts and do software updates of data structures things
would be very slow
¤ Would slow down every memory reference

n At least 10 times slower

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LRU APPROXIMATION PAGE
REPLACEMENTS

L24.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.32

LRU Approximation:
Reference bit

¨ Reference bit associated with page table entries

¨ Reference bit is set by hardware when page is referenced
¤ Read/write access of the page

¨ Determine which page has been used and which has not
¤ No way of knowing the order of references though

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.33

LRU Approximation:
Additional reference bits

¨ Maintain 8-bit byte for each page in memory

¨ OS shifts the reference bit for page into the highest order bit of the
8-bit byte
¤ Operation performed at regular intervals
¤ The reference bit is then cleared

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.34

LRU approximation:
Reference bits

Shift
Register

Reference bit
for the page

Shift Register after the
OS timer interrupt

00000000 1 10000000

10010001 1 11001000

01100011 0 00110001

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.35

LRU Approximation:
Interpreting the reference bits

¨ Interpret 8-bit bytes as unsigned integers

¨ Page with the lowest number is the LRU page

¨ 00000000 : Not used in last 8 periods

¨ 01100101 : Used 4 times in the last 8 periods

¨ 11000100 used more recently than 01110111

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.36

The Second Chance Algorithm

¨ Simple modification of FIFO

¨ Avoids throwing out a heavily used page

¨ Inspect the reference bit of a page
¤ If it is 0: Page is old and unused

n Evict

¤ If it is 1: Page is given a second chance
n Move page to the end of the list

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.37

The Operation of second chance

A

0

B

3

C

7

D
8

E
12

F
14

G
15

H
18

Page Loaded
first

Most recently
loaded page

A

203 7 8

B C D E F G H
12 14 15 18

A is treated as a
newly loaded page

Page fault occurs at time 20 AND page A’s reference bit was set

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.38

Second chance

¨ Reasonable algorithm, but unnecessarily inefficient
¤ Constantly moving pages around on its list

¨ Better to keep pages in a circular list
¤ In the form of a clock …

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.39

Clock Page Replacement

¨ Keep all frames on a circular list in the form of a clock
¤ Hand points to the oldest page

¨ When a page fault occurs, page being pointed to by the hand is
inspected
¤ If its R bit is 0: the page is evicted

n New page is inserted into the clock in its place
n Hand is advanced one position

¤ If its R bit is 1
n It is cleared and advanced one position until a page is found with R =0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.40

Counting based page replacements
Most Frequently Used (MFU)

¨ Argument:
Page with the smallest count was probably just brought in

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.41

Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude approximation of LRU

FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging Efficient algorithm that approximates LRU well

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGE BUFFERING ALGORITHMS
L24.42

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.43

Page Buffering

① Maintain a buffer of free frames

② When a page-fault occurs
¤ Victim frame chosen as before

¤ Desired page read into free-frame from buffer
n Before victim frame is written out

¤ Process that page-faulted can restart much faster

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.44

Page Buffering:
Being proactive

¨ Maintain a list of modified pages

¨ When the paging device is idle
¤ Write modified pages to disk

¨ Implications
¤ If a page is selected for replacement increase likelihood of that page being

clean

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.45

Page Buffering: Reuse what you can

¨ Keep pool of free frames as before
¤ BUT remember which pages they held

¨ Frame contents are not modified when page is written to disk

¨ If page needs to come back in?
¤ Reuse the same frame if it was not used to hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.46

Buffering and applications

¨ Applications often understand their memory/disk usage better than
the OS
¤ Provide their own buffering schemes

¨ If both the OS and the application were to buffer
¤ Twice the I/O is being utilized for a given I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

ALLOCATION OF FRAMES
L24.47

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.48

Frame allocation: How do you divvy up free memory
among processes?

35 MB for the OS

93 MB for others

With demand paging all 93 frames would be in the free frame pool

Frame size = 1 MB; Total Size = 128 MB

2 processes at T0
 How are frames allocated?

128 MB

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.49

Constraints on frame allocation

¨ Max: Total number of frames in the system
¤ Available physical memory

¨ Min: Need to allocate at least a minimum number of frames
¤ Defined by the architecture of the underlying system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.50

Minimum number of frames

¨ As you decrease the number of frames for a process
¤ Page fault increases
¤ Execution time increases too

¨ Defined by the architecture
¤ In some cases instructions and operands (indirect references) straddle page

boundaries
n With 2 operands at least 6 frames needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FRAME ALLOCATION POLICIES
L24.51

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.52

Global vs Local Allocation

¨ Global replacement
¤ One process can take a memory frame from another process

¨ Local replacement
¤ Process can only choose from the set of frames that was allocated to it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.53

Local vs Global replacement:
Based on how often a page is referenced

Pages

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

Usage
Count

10

7

5

3

9

4

2

6

3

5

6

Pages

A1

A2

A3

A5

B1

B2

B3

B4

C1

C2

C3
Local Replacement

Pages

A1

A2

A3

A4

B1

B2

A5

B4

C1

C2

C3
Global ReplacementProcesses A, B and C

Process A has
page faulted
and needs to
bring in a page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.54

Global vs Local Replacement

Local Global

Number of frames
allocated to process Fixed Varies dynamically

Can process control its
own fault rate? YES NO

Can it use free frames
that are available?

NO YES

Increases system
 throughput?

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

WORKING SETS & THRASHING
L24.55

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.56

Locality of References

¨ During any phase of execution a process references a relatively small
fraction of its pages

¨ Set of pages that a process is currently using
¤ Working set

¨ Working set evolves during process execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.57

Implications of the working set

¨ If the entire working set is in memory
¤ Process will execute without causing many faults

n Until it moves to another phase of execution

¨ If the available memory is too small to hold the working set?
① Process will cause many faults
② Run very slowly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.58

A program causing page faults every few
instructions is said to be thrashing

¨ System throughput plunges
¤ Processes spend all their time paging

¨ Increasing the degree of multiprogramming can cause this
¤ New process may steal frames from another process {Global Replacement}

n Overall page-faults in the system increases

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.59

Characterizing the affect of multiprogramming on
thrashing

C
PU

 U
til

iz
at

io
n

Degree of Multiprogramming

Thrashing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.60

Mitigating the effects of thrashing

¨ Using a local page replacement algorithm
¤ One process thrashing does not cause cascading thrashing among other

processes

¤ BUT if a process is thrashing
n Average service time for a page fault increases

¨ Best approach
① Track a process’ working set
② Make sure the working set is in memory before you let it run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.61

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

