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Topics covered in this lecture

¨ FIFO Page Replacement Algorithm
¨ Belady’s Anomaly
¨ Stack Algorithms
¨ Page Buffering
¨ Frame Allocations
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Factors involved in determining page faults

¨ Reference string of executing process

¨ Page replacement algorithm

¨ Number of physical memory frames available

¨ Intuitively:
¤ Page faults reduce as the number of available frames increase
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FIFO page replacement algorithm:
Out with the old; in with the new

¨ When a page must be replaced
¤ Replace the oldest one

¨ OS maintains list of all pages currently in memory
¤ Page at head of the list:    Oldest one
¤ Page at the tail:                Recent arrival

¨ During a page fault
¤ Page at the head is removed
¤ New page added to the tail
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FIFO example: 3 memory frames
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Intuitively the greater the number of memory frames, 
the lower the faults

¨ Surprisingly this is not always the case

¨ In 1969 Belady, Nelson and Shedler discovered counter example* in 
FIFO
¤ FIFO caused more faults with 4 frames than 3

¨ This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging 
machine. Belady, Nelson and Shedler.



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L24.10

Belady’s anomaly: FIFO
Same reference string, different frames
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Belady’s anomaly

¨ Led to a whole theory on paging algorithms and properties

¨ Stack algorithms
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The Model

¨ There is an array M
¤ Keeps track of the state of memory

¨ M has as many elements as pages of virtual memory

¨ Divided into two parts
¤ Top part: m entries {Pages currently in memory}
¤ Bottom part: n-m entries

n Pages that were referenced BUT paged out 
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The model
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Properties of the model

¨ When a page is referenced
¤ Move to the top entry of M

¨ If the referenced page is already in M
¤ All pages above it moved down one position
¤ Pages below it are not moved

¨ Transition from within box to outside of it
¤ Page eviction from main memory
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The model
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Properties of the model

¨ M(m,r)
¤ The set of pages in the top part of M
¤m page frames
¤ r memory references
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A property that has some interesting implications 

¨ M(m, r) subset of M(m+1, r)

¨ Set of pages in the top part of M with m frames
¤ Also included in M with (m+1) frames
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What the subset relationship means 

¨ Execute a process with a set of memory frames

¨ If we increase memory size by one frame and re-execute at every 
point of execution
¤ All pages in the first execution are present in the second run

¨ Does not suffer from Belady’s anomaly
¤ Stack algorithms 
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The optimal page replacement algorithm

¨ The best possible algorithm

¨ Easy to describe but impossible to implement

¨ Crux: 
Put off unpleasant stuff for as long as possible

¨ Idea: evict “Furthest-in-the-future” 
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The optimal page replacement algorithm description

¨ When a page fault occurs some set of pages are in memory

¨ One of these pages will be referenced next
¤ Other pages may be not be referenced until 10, 100 or 1000 instructions 

later

¨ Label each page with the number of instructions to be executed before 
it will be referenced
¤ Page with the highest label should be removed 
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Problem with the optimal page replacement 
algorithm

¨ It is unrealizable

¨ During a page fault, OS has no way of knowing when 
each of the pages will be referenced next
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So why are we looking at it?

¨ Run a program
¤ Track all page references

¨ Implement optimal page replacement on the second run 
¤ Based on reference information from the first run

¨ Compare performance of realizable algorithms with the best possible 
one
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The Least Recently Used (LRU) page replacement 
algorithm

¨ Approximation of the optimal algorithm

¨ Observation
¤ Pages used heavily in the last few instructions

n Probably will be used heavily in the next few

¤ Pages that have not been used
n Will probably remain unused for a long time

¨ When a page fault occurs?
¤ Throw out page that has been unused the longest
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LRU example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Recent

Least
Used

0

7 0

7

1

1

0

2

2

1

0

0

2

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

0

2

3

3

0

2

2

3

1

1

3

2

2

1

0

0

2

1

1

0

7

7

1

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L24.27

Implementing LRU

¨ Logical clock
¨ Stacks
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Using Logical clocks to implement LRU

¨ Each page table entry has a time-of-use field
¤ Entry updated when page is referenced

n Contents of clock register are copied

¨ Replace the page with the smallest value
¤ Time increases monotonically

n Overflows must be accounted for

¨ Requires search of page table to find LRU page
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Stack based approach

¨ Keep stack of page numbers

¨ When page is referenced
¤ Move to the top of the stack

¨ Implemented as a doubly linked list

¨ No search done for replacement
¤ Bottom of the stack is the LRU page
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Problems with clock/stack based approaches to LRU 
replacements

¨ Inconceivable without hardware support
¤ Few systems provide requisite support for true LRU implementations

¨ Updates of clock fields or stack needed at every memory reference

¨ If we use interrupts and do software updates of data structures things 
would be very slow
¤ Would slow down every memory reference

n At least 10 times slower
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LRU Approximation:
Reference bit

¨ Reference bit associated with page table entries 

¨ Reference bit is set by hardware when page is referenced
¤ Read/write access of the page

¨ Determine which page has been used and which has not
¤ No way of knowing the order of references though
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LRU Approximation:
Additional reference bits

¨ Maintain 8-bit byte for each page in memory

¨ OS shifts the reference bit for page into the highest order bit of the 
8-bit byte
¤ Operation performed at regular intervals
¤ The reference bit is then cleared
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LRU approximation:
Reference bits 

Shift 
Register

Reference bit 
for the page

Shift Register after the 
OS timer interrupt

00000000 1 10000000

10010001 1 11001000

01100011 0 00110001
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LRU Approximation:
Interpreting the reference bits

¨ Interpret 8-bit bytes as unsigned integers

¨ Page with the lowest number is the LRU page

¨ 00000000 : Not used in last 8 periods

¨ 01100101 : Used 4 times in the last 8 periods

¨ 11000100 used more recently than 01110111
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The Second Chance Algorithm 

¨ Simple modification of FIFO

¨ Avoids throwing out a heavily used page

¨ Inspect the reference bit of a page
¤ If it is 0: Page is old and unused

n Evict

¤ If it is 1: Page is given a second chance
n Move page to the end of the list
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The Operation of second chance
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Second chance

¨ Reasonable algorithm, but unnecessarily inefficient
¤ Constantly moving pages around on its list

¨ Better to keep pages in a circular list
¤ In the form of a clock …
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Clock Page Replacement 

¨ Keep all frames on a circular list in the form of a clock
¤ Hand points to the oldest page

¨ When a page fault occurs, page being pointed to by the hand is 
inspected
¤ If its R bit is 0:   the page is evicted

n New page is inserted into the clock in its place
n Hand is advanced one position

¤ If its R bit is 1
n It is cleared and advanced one position until a page is found with R =0
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Counting based page replacements
Most Frequently Used (MFU)

¨ Argument:
Page with the smallest count was probably just brought in
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Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude approximation of LRU

FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging Efficient algorithm that approximates LRU well
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Page Buffering

①  Maintain a buffer of free frames

②  When a page-fault occurs
¤ Victim frame chosen as before

¤ Desired page read into free-frame from buffer
n Before victim frame is written out

¤ Process that page-faulted can restart much faster
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Page Buffering:
Being proactive 

¨ Maintain a list of modified pages

¨ When the paging device is idle
¤ Write modified pages to disk

¨ Implications
¤ If a page is selected for replacement increase likelihood of that page being 

clean
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Page Buffering: Reuse what you can

¨ Keep pool of free frames as before
¤ BUT remember which pages they held

¨ Frame contents are not modified when page is written to disk

¨ If page needs to come back in?
¤ Reuse the same frame if it was not used to hold some other page
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Buffering and applications

¨ Applications often understand their memory/disk usage better than 
the OS
¤ Provide their own buffering schemes

¨ If both the OS and the application were to buffer
¤ Twice the I/O is being utilized for a given I/O
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Frame allocation: How do you divvy up free memory 
among processes?

35 MB for the OS

93 MB for others

With demand paging all 93 frames would be in the free frame pool

Frame size = 1 MB; Total Size = 128 MB

2 processes at T0
   How are frames allocated?

128 MB
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Constraints on frame allocation

¨ Max: Total number of frames in the system
¤ Available physical memory

¨ Min: Need to allocate at least a minimum number of frames
¤ Defined by the architecture of the underlying system
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Minimum number of frames

¨ As you decrease the number of frames for a process
¤ Page fault increases
¤ Execution time increases too

¨ Defined by the architecture
¤ In some cases instructions and operands (indirect references) straddle page 

boundaries
n With 2 operands at least 6 frames needed
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Global vs Local Allocation

¨ Global replacement
¤ One process can take a memory frame from another process

¨ Local replacement
¤ Process can only choose from the set of frames that was allocated to it
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Local vs Global replacement:
Based on how often a page is referenced
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Global vs Local Replacement 

Local Global

Number of frames
allocated to process Fixed Varies dynamically

Can process control its
own fault rate? YES NO

Can it use free frames 
that are available?

NO YES

Increases system
 throughput?

NO YES
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Locality of References

¨ During any phase of execution a process references a relatively small 
fraction of its pages

¨ Set of pages that a process is currently using
¤ Working set

¨ Working set evolves during process execution
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Implications of the working set

¨ If the entire working set is in memory
¤ Process will execute without causing many faults

n Until it moves to another phase of execution

¨ If the available memory is too small to hold the working set?
①  Process will cause many faults
②  Run very slowly
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A program causing page faults every few 
instructions is said to be thrashing

¨ System throughput plunges
¤ Processes spend all their time paging

¨ Increasing the degree of multiprogramming can cause this
¤ New process may steal frames from another process {Global Replacement}

n Overall page-faults in the system increases
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Characterizing the affect of multiprogramming on 
thrashing
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Mitigating the effects of thrashing

¨ Using a local page replacement algorithm
¤ One process thrashing does not cause cascading thrashing among other 

processes

¤ BUT if a process is thrashing
n Average service time for a page fault increases

¨ Best approach
① Track a process’ working set
② Make sure the working set is in memory before you let it run



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L24.61

The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th  Edition, 2014. 
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]


