CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA



Topics covered in this lecture

FIFO Page Replacement Algorithm
Belady’s Anomaly

Stack Algorithms

Page Buffering

Frame Allocations

CS370: Operating Systems L24.2
Dept. Of Computer Science, Colorado State University



How we got here ...
—

CS370: Operating Systems L24.3
Dept. Of Computer Science, Colorado State University



Factors involved in determining page faults

Reference string of executing process
Page replacement algorithm

Number of physical memory frames available

Intuitively:

Page faults reduce as the number of available frames increase

CS370: Operating Systems L24.4
Dept. Of Computer Science, Colorado State University



FIFO PAGE REPLACEMENT ALGORITHM



FIFO page replacement algorithm:
Out with the old; in with the new

When a page must be replaced

Replace the oldest one

OS maintains list of all pages currently in memory
Page at head of the list: Oldest one

Page at the tail: Recent arrival

During a page fault
Page at the head is removed

New page added to the tdil

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.6



FIFO example: 3 memory frames
N

- Reference String

Youngest 7 0 1 22 3 0 4 2300012 221701

70 112304233301 11272¢0
Oldest 7 0012 3042223000127

~ No page fault

CS370: Operating Systems L24.7
Dept. Of Computer Science, Colorado State University



BELADY’S ANOMALY



Intuitively the greater the number of memory frames,
the lower the faults

Surprisingly this is not always the case

In 1969 Belady, Nelson and Shedler discovered counter example™ in
FIFO

FIFO caused more faults with 4 frames than 3

This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging
machine. Belady, Nelson and Shedler.

CS370: Operating Systems L24.9
Dept. Of Computer Science, Colorado State University



Belady’s anomaly: FIFO

Same reference string, different frames

O1 2301401 23
No page fault

4
Youngesst O 1 2 3 0O 1 4 4 4 2 3 3

9 page faults
O1 230111 42 2 with 3 frames
4

Oldest O1 23 00O0T1 4
0O1 2301401 2 3 4
Youngest O 1 2 3 3 3 4 01 2 3 4
10 page faults
R e R R with 4 frames
O1 1T 1 3 3 401 2

Oldest O 001 2 3 4 0 1

WU/ Ve \JTIITITTY u]olc‘ms

Dept. Of Computer Science, Colorado State University

Numbers in this color:

L24.10



Belady’s anomaly
N

7 Led to a whole theory on paging algorithms and properties

o Stack algorithms

CS370: Operating Systems L24.11
Dept. Of Computer Science, Colorado State University



The Model

There is an array M

Keeps track of the state of memory

M has as many elements as pages of virtual memory

Divided into two parts
Top part: m entries {Pages currently in memory}

Bottom part: n-m entries

Pages that were referenced BUT paged out

CS370: Operating Systems L24.12
Dept. Of Computer Science, Colorado State University



The model

Reference
String
v)
R
| -
=
o "
£ =
£
Q
Page fault c
Tracking the state of the array M over time
CS370: Operating Systems L24.13

Dept. Of Computer Science, Colorado State University



Properties of the model

When a page is referenced

Move to the top entry of M

If the referenced page is already in M
All pages above it moved down one position

Pages below it are not moved

Transition from within box to outside of it

Page eviction from main memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.14



The model

021 35463 7 47 3355311172341
0 2 1354 6 3 747 7 3 35 33 3117 23 4
0 2 7 35 4 6 33 447 7755531723
0 21 35 4666 6 4 44737 7531732
0 21 1 55 55 5 6 6 6 4 4 4 45517
02 2 11 11 1 1116 6 664 45?5
0 0 2 2 22 2 22222 226666
00 00 O 0OOUOT OTUOUOOO OGO OO
CS370: Operating Systems 124.15

Dept. Of Computer Science, Colorado State University



Properties of the model

S =
o M(m,r)
o1 The set of pages in the top part of M
o m page frames

o1 ¥ memory references

CS370: Operating Systems L24.16
Dept. Of Computer Science, Colorado State University



A property that has some interesting implications
M(m, r) subset of M(m+1, r)

Set of pages in the top part of M with m frames
Also included in M with (m+1) frames

CS370: Operating Systems L2417
Dept. Of Computer Science, Colorado State University



What the subset relationship means

Execute a process with a set of memory frames

If we increase memory size by one frame and re-execute at every
point of execution

All pages in the first execution are present in the second run

Does not suffer from Belady’s anomaly

Stack algorithms

CS370: Operating Systems L24.18
Dept. Of Computer Science, Colorado State University



THE OPTIMAL PAGE REPLACEMENT
ALGORITHM



The optimal page replacement algorithm

The best possible algorithm

Easy to describe but impossible to implement

Crux:
Put off unpleasant stuff for as long as possible

ldea: evict “Furthest-in-the-future”

CS370: Operating Systems L24.20
Dept. Of Computer Science, Colorado State University



The optimal page replacement algorithm description

When a page fault occurs some set of pages are in memory

One of these pages will be referenced next

Other pages may be not be referenced until 10, 100 or 1000 instructions
later

Label each page with the number of instructions to be executed before
it will be referenced

Page with the highest label should be removed

CS370: Operating Systems L24.21
Dept. Of Computer Science, Colorado State University



Problem with the optimal page replacement

lgorith
___ algorithm

7 It is unrealizable

- During a page fault, OS has no way of knowing when
each of the pages will be referenced next

CS370: Operating Systems L24.22
Dept. Of Computer Science, Colorado State University



So why are we looking at it?

Run a program

Track all page references

Implement optimal page replacement on the second run

Based on reference information from the first run

Compare performance of realizable algorithms with the best possible
one

CS370: Operating Systems L24.23
Dept. Of Computer Science, Colorado State University



LRU PAGE REPLACEMENTS



The Least Recently Used (LRU) page replacement
algorithm

Approximation of the optimal algorithm

Observation

Pages used heavily in the last few instructions

Probably will be used heavily in the next few

Pages that have not been used

Will probably remain unused for a long time

When a page fault occurs?

Throw out page that has been unused the longest

CS370: Operating Systems L24.25
Dept. Of Computer Science, Colorado State University



LRU example: 3 memory frames
—

Reference String

Recent 7 01 20 3042303212 01701
7 0 120304230321 2017020

Least 7 01 223 0422033120117
Used

CS370: Operating Systems L24.26
Dept. Of Computer Science, Colorado State University



Implementing LRU
N

0 Logical clock

1 Stacks

CS370: Operating Systems L24.27
Dept. Of Computer Science, Colorado State University



Using Logical clocks to implement LRU

Each page table entry has a time-of-use field

Entry updated when page is referenced

Contents of clock register are copied

Replace the page with the smallest value

Time increases monotonically

Overflows must be accounted for

Requires search of page table to find LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.28



Stack based approach

Keep stack of page numbers

When page is referenced

Move to the top of the stack
Implemented as a doubly linked list

No search done for replacement

Bottom of the stack is the LRU page

CS370: Operating Systems L24.29
Dept. Of Computer Science, Colorado State University



Problems with clock /stack based approaches to LRU
replacements

Inconceivable without hardware support

Few systems provide requisite support for true LRU implementations
Updates of clock fields or stack needed at every memory reference

If we use interrupts and do software updates of data structures things
would be very slow

Would slow down every memory reference

At least 10 times slower

CS370: Operating Systems L24.30
Dept. Of Computer Science, Colorado State University



LRU APPROXIMATION PAGE
REPLACEMENTS



LRU Approximation:
Reference bit

Reference bit associated with page table entries

Reference bit is set by hardware when page is referenced

Read /write access of the page

Determine which page has been used and which has not

No way of knowing the order of references though

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.32



LRU Approximation:
Additional reference bits

Maintain 8-bit byte for each page in memory

OS shifts the reference bit for page into the highest order bit of the
8-bit byte
Operation performed at regular intervals

The reference bit is then cleared

CS370: Operating Systems L24.33
Dept. Of Computer Science, Colorado State University



LRU approximation:
Reference bits

Shift Reference bit Shift Register after the
Register for the page OS timer interrupt
00000000 1 10000000
10010001 1 11001000
01100011 0 00110001
CS370: Operating Systems L24.34

Dept. Of Computer Science, Colorado State University



LRU Approximation:
Interpreting the reference bits

Interpret 8-bit bytes as unsigned integers

Page with the lowest number is the LRU page

00000000 : Not used in last 8 periods
01100101 : Used 4 times in the last 8 periods

11000100 used more recently than 01110111

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.35



The Second Chance Algorithm

Simple modification of FIFO
Avoids throwing out a heavily used page

Inspect the reference bit of a page

If it is O: Page is old and unused

Evict

If it is 1: Page is given a second chance

Move page to the end of the list

CS370: Operating Systems L24.36
Dept. Of Computer Science, Colorado State University



The Operation of second chance

Page Loaded Most recently
first loaded page
0 3 7 8 12 14 15 18

A—B—C—D—E—F—G—H

Page fault occurs at time 20 AND page A's reference bit was set

3 7 8 12 14 15 18 20

B—C—D—E—F—G—H—A

A is treated as a
newly loaded page

CS370: Operating Systems L24.37
Dept. Of Computer Science, Colorado State University



Second chance

Reasonable algorithm, but unnecessarily inefficient

Constantly moving pages around on its list

Better to keep pages in a circular list

In the form of a clock ...

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L24.38



Clock Page Replacement

Keep all frames on a circular list in the form of a clock

Hand points to the oldest page

When a page fault occurs, page being pointed to by the hand is
inspected

If its R bit is O: the page is evicted

New page is inserted into the clock in its place

Hand is advanced one position

If its R bit is 1

It is cleared and advanced one position until a page is found with R =0

CS370: Operating Systems L24.39
Dept. Of Computer Science, Colorado State University



Counting based page replacements

Most Freﬁuen’rlz Used ‘MFU:
R

0 Argument:
Page with the smallest count was probably just brought in

CS370: Operating Systems L24.40
Dept. Of Computer Science, Colorado State University



Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic
LRU (Least Recently Used) Excellent, but difficult to implement
NFU (Not Frequently Used) Fairly crude approximate to LRU
Aging Efficient algorithm that approximates LRU well
CS370: Operating Systems 124.41

Dept. Of Computer Science, Colorado State University



PAGE BUFFERING ALGORITHMS



Page Buffering

(1) Maintain a buffer of free frames

(2) When a page-fault occurs

Victim frame chosen as before

Desired page read into free-frame from buffer

Before victim frame is written out

Process that page-faulted can restart much faster

CS370: Operating Systems L24.43
Dept. Of Computer Science, Colorado State University



Page Buffering:
Being proactive

Maintain a list of modified pages

When the paging device is idle
Write modified pages to disk

Implications

If a page is selected for replacement increase likelihood of that page being
clean

CS370: Operating Systems L24.44
Dept. Of Computer Science, Colorado State University



Page Buffering: Reuse what you can

Keep pool of free frames as before

BUT remember which pages they held
Frame contents are not modified when page is written to disk

If page needs to come back in?

Reuse the same frame if it was not used to hold some other page

CS370: Operating Systems L24.45
Dept. Of Computer Science, Colorado State University



Buffering and applications

Applications often understand their memory /disk usage better than

the OS

Provide their own buffering schemes

If both the OS and the application were to buffer
Twice the 1/O is being utilized for a given 1/O

CS370: Operating Systems L24.46
Dept. Of Computer Science, Colorado State University



ALLOCATION OF FRAMES



Frame allocation: How do you divvy up free memory

among processes?
Frame size = 1 MB; Total Size = 128 MB

35 MB for the OS
—~— 128 MB
93 MB for others
2 processes at Ty
How are frames allocated?

With demand paging all 93 frames would be in the free frame pool

CS370: Operating Systems L24.48
Dept. Of Computer Science, Colorado State University



Constraints on frame allocation

Max: Total number of frames in the system

Available physical memory

Min: Need to allocate at least a minimum number of frames

Defined by the architecture of the underlying system

CS370: Operating Systems L24.49
Dept. Of Computer Science, Colorado State University



Minimum number of frames

As you decrease the number of frames for a process
Page fault increases

Execution time increases too

Defined by the architecture

In some cases instructions and operands (indirect references) straddle page
boundaries

With 2 operands at least 6 frames needed

CS370: Operating Systems L24.50
Dept. Of Computer Science, Colorado State University



FRAME ALLOCATION POLICIES



Global vs Local Allocation

Global replacement

One process can take a memory frame from another process

Local replacement

Process can only choose from the set of frames that was allocated to it

CS370: Operating Systems L24.52
Dept. Of Computer Science, Colorado State University



Local vs Global replacement:
Based on how often a page is referenced

Usage
Pages Count Pages Pages
Al 10 Al Al
A2 7 A2 A2 Process A has
A3 5 A3 A3 page faulted
and needs
3 A5 A4 bn' TR e
ring in a page

Bl Q B1 Bl
B2 4 B2 B2

2 B3 A5
B4 o) B4 B4
Cl 3 Cl C1
C2 5 C2 C2
C3 6 C3 C3

Processes A, Band C Local Replacement Global Replacement
CS370: Operating Systems L24.53

Dept. Of Computer Science, Colorado State University



Global vs Local Replacement

Local Global

Number of frames
S ° ° II
allocated to process Fixed Varies dynamically

Can process control its

own fault rate? YES NO
Can it use free frames NO YES
that are available?

I

ncreases system NO VES
throughput?

CS370: Operating Systems L24.54

Dept. Of Computer Science, Colorado State University



WORKING SETS & THRASHING



Locality of References

During any phase of execution a process references a relatively small
fraction of its pages

Set of pages that a process is currently using

Working set

Working set evolves during process execution

CS370: Operating Systems L24.56
Dept. Of Computer Science, Colorado State University



Implications of the working set

If the entire working set is in memory

Process will execute without causing many faults

Until it moves to another phase of execution

If the available memory is too small to hold the working set?
(1) Process will cause many faults

(2) Run very slowly

CS370: Operating Systems L24.57
Dept. Of Computer Science, Colorado State University



A program causing page faults every few
instructions is said to be thrashing

System throughput plunges

Processes spend all their time paging

Increasing the degree of multiprogramming can cause this

New process may steal frames from another process {Global Replacement}

Overall page-faults in the system increases

CS370: Operating Systems L24.58
Dept. Of Computer Science, Colorado State University



Characterizing the affect of multiprogramming on

thrashi
__ fhras mgﬁ

Thrashing
—

CPU Utilization

Degree of Multiprogramming

CS370: Operating Systems L24.59
Dept. Of Computer Science, Colorado State University



Mitigating the effects of thrashing

Using a local page replacement algorithm

One process thrashing does not cause cascading thrashing among other
processes

BUT if a process is thrashing

Average service time for a page fault increases

Best approach
(1) Track a process’ working set

(2) Make sure the working set is in memory before you let it run

CS370: Operating Systems L24.60
Dept. Of Computer Science, Colorado State University



The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L24.61
Dept. Of Computer Science, Colorado State University



