CS 370: OPERATING SYSTEMS
[VIRTUALIZATION]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Techniques for efficient virtualization

Virtualizing the unvirtualizable
Cost of virtualization
Memory virtualization

Virtual Appliances
Clouds

CS370: Operating Systems L26.2
Dept. Of Computer Science, Colorado State University

TECHNIQUES FOR EFFICIENT
VIRTUALIZATION

Type-1 hypervisors

Virtual machine runs as a user-process in user mode

Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

But the virtual machine runs a Guest OS that thinks it is in kernel mode
(although, of course, it is not)

Virtual kernel mode

The virtual machine also runs user processes, which think they are in the
user mode

And really are in user mode

CS370: Operating Systems L26.4
Dept. Of Computer Science, Colorado State University

Modes

User processes

‘ ‘ Virtual user mode

Guest Operating Systenmy”™ Virtual kernel mode

- User mode

Type 1 hypervisor Trap on privileged instruction Kernel Mode

Hardware

CS370: Operating Systems L26.5
Dept. Of Computer Science, Colorado State University

Execution of kernel model instructions

What if the Guest OS executes an instruction that is allowed only when
the CPU is really in kernel mode?
On CPUs without VT (Intel: Virtualization Technology)?

Instruction fails and the OS crashes

On CPUs with VT2

A trap to the hypervisor does occur

Hypervisor can inspect instruction to see if it was issued:
By Guest OS: Arrange for the instruction to be carried out

By user-process in that VM: Emulate what hardware would do when confronted with sensitive
instruction executed in user-mode

CS370: Operating Systems L26.6
Dept. Of Computer Science, Colorado State University

VIRTUALIZING THE UNVIRTUALIZABLE

Virtualizing the x86 before VT (and AMD SVYM)

Virtualizing is straightforward when VT is available

When it is not available?

Make clever use of:

(1) Binary translation
(2) Hardware features that did exist on the x86

CS370: Operating Systems L26.8
Dept. Of Computer Science, Colorado State University

Protection rings

The x86 supported 4 protection modes (or rings)

Ring 3 is the least privileged
This is where normal processes execute

You cannot execute privileged instructions

Ring O is the most privileged
Allows execution of any instruction

In normal operation, the kernel runs here

Other rings were never used by operating systems

CS370: Operating Systems L26.9
Dept. Of Computer Science, Colorado State University

x86 privilege level architecture without virtualization

I
Ring 3 User Apps
Ring 2
__________ Direct execution of
Ring 1 User and OS Requests

Ring O oS r\

Host Computer System Hardware

CS370: Operating Systems L26.10
Dept. Of Computer Science, Colorado State University

In other words, hypervisors had some room to play
with

Many solutions kept the hypervisor in kernel mode (ring O)

Applications in user mode (ring 3)

Guest OS in a layer of intermediate privilege

Ring 1

CS370: Operating Systems L26.11
Dept. Of Computer Science, Colorado State University

How this allows virtualization ...

Kernel is privileged relative to user processes

Any attempt to access kernel memory from a user program leads to an
access violation

Guest OS’ privileged instructions trap to the hypervisor

Hypervisor performs sanity checks and then performs instructions on the
guest’s behalf

CS370: Operating Systems L26.12
Dept. Of Computer Science, Colorado State University

Using the x86 rings prior to VT/SVM

Virtual
Machine

—— o —

Guest Operating System
(Rewrite binary prior to execution +
emulate)

Type 1 hypervisor

Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.13

But what about sensitive instructions in the guest OS’
kernel code?

The hypervisor makes sure that they no longer exist

Hypervisor rewrites code one basic block at a time

Basic block

Short, straight-line sequences that end with a branch

Contain no jump, call, trap, return or other instructions that alter flow of
control

Except for the very last instruction which does precisely that

CS370: Operating Systems L26.14
Dept. Of Computer Science, Colorado State University

Executing basic blocks

Prior to executing a basic block, hypervisor scans it to see if there are
sensitive instructions

If so, replace with call to hypervisor procedure that handles them

CS370: Operating Systems L26.15
Dept. Of Computer Science, Colorado State University

Dynamic translation and emulation sound very

expensive

But typically are not

Translated blocks are cached

So no translation is needed in the future

After basic block has completed executing, control is returned to

hypervisor

Which locates block’s successor

If successor has already been translated, it can be executed immediately

CS370: Operating Systems L26.16
Dept. Of Computer Science, Colorado State University

Binary translations

Common to perform binary translation on all the guest OS code
running in ring 1

Replace even the privileged, sensitive instructions that could be made
fo frap

Traps can be expensive and binary translation leads to better performance

CS370: Operating Systems L26.17
Dept. Of Computer Science, Colorado State University

What about Type 2 hypervisors?

Though type 2 hypervisors are conceptually different from type 1
They use, by and large, the same techniques

For e.g., VMware ESX Server (type 1, 2001) used exactly the same binary
translation as the first VMware Workstation (type 2, 1999)

CS370: Operating Systems L26.18
Dept. Of Computer Science, Colorado State University

For faithful virtualization

Guest OS should also be tricked into thinking it is the true and only
king of the mountain

Full control of all machine’s resources

Access to entire address space (4GB on 32-bit machines)

When the king finds another king squatting in its address space?

CS370: Operating Systems L26.19
Dept. Of Computer Science, Colorado State University

Let’s look at this 2 kings problem

In Linux, a user process has access to just 3 GB of the 4 GB address
space [32-bit addressing]

1 GB is reserved for the kernel

Any access to kernel memory leads to a trap

We could take the trap and emulate appropriate actions

Expensive!

CS370: Operating Systems L26.20
Dept. Of Computer Science, Colorado State University

Type 2 hypervisors have a kernel module operating
in ring O

Allows manipulation of hardware with privileged instructions

Allows the guest to have the full address space

This is all well and good, but ...

At some point hypervisor needs to clean up and restore original processor
context

CS370: Operating Systems L26.21
Dept. Of Computer Science, Colorado State University

What if the guest is running and an interrupt
arrives from an external device?

Type 2 hypervisor depends on host’s device drivers to handle to the
interrupt

So, the hypervisor reconfigures hardware to to run the host OS
system code

When the device driver runs, it finds everything just as it expected it to be

Hypervisor behaves just like teenagers throwing a party when parents
are away

It's OK to rearrange furniture completely, as long as they put it back as they
found it before parents get home

CS370: Operating Systems L26.22
Dept. Of Computer Science, Colorado State University

World switch

Going from a hardware configuration for the host kernel to a
configuration for the guest OS

CS370: Operating Systems L26.23
Dept. Of Computer Science, Colorado State University

Why do hypervisors work even on unvirtualizable
hardware?

Sensitive instructions in the guest kernel replaced by calls to
procedures that emulate these instructions

No sensitive instructions issued by the guest OS are ever executed
directly by true hardware

Turned into calls to the hypervisor, which emulates them

CS370: Operating Systems L26.24
Dept. Of Computer Science, Colorado State University

CosT OF VIRTUALIZATION

Cost of virtualization

We expect CPUs with VT would greatly outperform software
techniques

Trap-and-emulate approach used by VT hardware generates a lot of
traps ... and these are expensive

Ruin CPU caches, TLBs, and branch predictions

In contrast, when sensitive instructions are replaced by calls to
hypervisor procedures

None of this context-switching overhead is incurred

CS370: Operating Systems L26.26
Dept. Of Computer Science, Colorado State University

Cost of virtualization
S 5

o Still ... with modern VT hardware, usually the hardware beats the
software

CS370: Operating Systems L26.27
Dept. Of Computer Science, Colorado State University

True virtualization & paravirtualization
N

True virtualization Paravirtualization
(\ (|
Trap due
Unmodified Wind to sensitive Modified Li Trap due to
nmoditie inaows / instruction odimed Linux / hypervisor
I —— call
l
Type 1 hypervisor : Microkernel
I
Hardware
CS370: Operating Systems L26.28

Dept. Of Computer Science, Colorado State University

TO SUMMARIZE

x86 privilege level architecture without virtualization

I
Ring 3 User Apps
Ring 2
__________ Direct execution of
Ring 1 User and OS Requests

Ring O oS r\

Host Computer System Hardware

CS370: Operating Systems L26.30
Dept. Of Computer Science, Colorado State University

Full Virtualization: Binary translation approach to

x86 virtualization

User Apps

Guest OS

VMM

Host Computer System Hardware

CS370: Operating Systems

Direct execution of
User and OS Requests

Binary Translation
of OS Requests

Dept. Of Computer Science, Colorado State University

L26.31

Paravirtualization approach to x86 virtualization

Ring 3 User Apps
Ring 2

Direct execution of
Ring 1 User and OS Requests

“Hypercalls” to the

Ring O Paravirtualized Guest OS Virtualization Layer
replace non-virtualizable
OS instructions

Virtualization Layer

Host Computer System Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.32

Hardware assisted virtualization

Ring 3 User Apps
Ring 2
Direct execution of
Ring 1 User and OS Requests
| OS Requests trap to VMM

Ring O Guest OS without Binary Translation
___________ or Paravirtualization
Root Mode

Privilege Levels

Host Computer System Hardware

CS37 0T Uperaring Systems
Dept. Of Computer Science, Colorado State University

L26.33

Contrasting the virtualization approaches

Technique Binary Translation Exit to Root Mode Hypercalls
and Direct Execution on privileged
instructions
Guest Unmodified Guest Unmodified Guest GuestOS codified
Modification/ oS oS to issue Hypercalls
Compatibility so it can’t run on
Excellent Excellent native hardware.
compatibility compatibility
Compatibility is
lacking
CS370: Operating Systems L26.34

Dept. Of Computer Science, Colorado State University

MEMORY VIRTUALIZATION

All modern OS support virtual memory

Basically mapping of virtual address space onto pages of physical

memory

Defined by (multilevel) page tables

Mapping is set in motion by having the OS set a control register that
points to the top-level page table

Virtualization greatly complicates memory management

CS370: Operating Systems L26.36
Dept. Of Computer Science, Colorado State University

Scenario

Guest OS decides to map its virtual pages 7, 4, and 3 onto physical
pages 10, 11, and 12 respectively

Builds page tables and sets hardware register to point to top level
page table

Sensitive instruction that traps on a VT CPU

We will look at type 1 but the problem is the same in type 2 and
paravirtualization

CS370: Operating Systems L26.37
Dept. Of Computer Science, Colorado State University

What should the hypervisor do?

Allocate physical pages 10, 11, and 12 to the VM
Setup page tables to map VM’s virtual pages 7, 4, 3

What if a second VM starts up and maps its virtual pages 4, 5, and 6
to physical pages 10, 11 and 12¢
This VM loads a control register to point to its page tables

Hypervisor catches this trap

CS370: Operating Systems L26.38
Dept. Of Computer Science, Colorado State University

Choices for the hypervisor

Cannot use the mapping from the 2" VM because physical pages 10,
11, and 12 are already in use

Find free pages, say 20, 21, and 22 and use them

But first, create new page tables mapping virtual pages 4, 5, and 6 of VM-
2 onto 20, 21, and 22

In general for each VM, the hypervisor needs to create a shadow
page table

Map virtual pages used by VM onto actual physical pages that the
hypervisor gave it

CS370: Operating Systems L26.39
Dept. Of Computer Science, Colorado State University

Also ...

Every time the Guest OS changes its page tables?

The hypervisor must change the shadow page tables as well

If the guest OS remaps virtual page 7 onto what it sees as physical page
200

The hypervisor has to know about this change

Trouble is that the guest OS can change its page tables by just writing into
memory

No sensitive operations are required, so the hypervisor does not even know about
the change

Certainly cannot update shadow page tables used by actual hardware

CS370: Operating Systems L26.40
Dept. Of Computer Science, Colorado State University

Options

Keep track of the top-level page table
There is a trap when the guest OS attempts to load register

Map the page tables it points to as read-only

If the guest OS ftries to modify it, will cause a fault and give control to the
hypervisor
Figure out what the guest OS is trying to do and update shadow tables accordingly

Allow guest to add new mappings at will
Nothing changes in the shadow tables

When a new page is accessed, fault occurs and control reverts to hypervisor
(can then add entries)

CS370: Operating Systems L26.41
Dept. Of Computer Science, Colorado State University

Hardware support for nested page tables

Took AMD and Intel a few years to produce hardware to virtualize memory
efficiently

Support for nested page tables (AMD)
Intel calls this extended page tables (EPT)

With EPT

Hypervisor still has the shadow page table, but CPU is able to handle
intermediate levels in hardware

Hardware walks the EPT to to translate guest virtual address to guest physical
address

Also, walks the EPT to find the host physical address without software intervention

CS370: Operating Systems L26.42
Dept. Of Computer Science, Colorado State University

Other issues

Overcommitment of physical memory

1 physical machine with 32 GB of memory will run 3 VMs each of which
thinks there is 16 GB of memory

Deduplication

Allow sharing of pages with the same content

E.g. Linux kernel

CS370: Operating Systems L26.43
Dept. Of Computer Science, Colorado State University

How can we take away memory pages safely from

VMse

There is a trick known as ballooning

Small balloon module loaded into each VM as a psuedo device driver
that talks to hypervisor

Balloon inflates at hypervisor’s request by allocating more and more
pinned pages
And deflates by deallocating these pages

CS370: Operating Systems L26.44
Dept. Of Computer Science, Colorado State University

How ballooning helps

As balloon inflates
Memory scarcity in the guest increases

The guest OS responds by paging out what it believes are the least
valuable pages

This is exactly what we need!

As balloon deflates

More memory available for the guest to allocate

CS370: Operating Systems L26.45
Dept. Of Computer Science, Colorado State University

In other words

Hypervisor tricks the guest OS into making tough decisions for it

In politics this is known as passing the buck

CS370: Operating Systems L26.46
Dept. Of Computer Science, Colorado State University

VIRTUAL APPLIANCES

Installing application software

VMs offer a solution to a problem that has long plagued users
(especially open source)

How to install application programs

Applications are dependent on numerous other applications and
libraries

Which themselves depend on a host of software packages
Plus there are dependencies on particular versions of compilers,

scripting languages, OS etc.

CS370: Operating Systems L26.48
Dept. Of Computer Science, Colorado State University

With VMs ...

Developer can carefully construct a virtual machine
Load it with required OS, compiler, libraries, and application code

Freeze the entire unit ... ready to run

Only the software developer has to understand the dependencies

CS370: Operating Systems L26.49
Dept. Of Computer Science, Colorado State University

What about customers?e

Customers get a complete package that actually works

Completely independent of which OS they are running and which other
software, packages, and libraries they have

These are “shrink-wrapped” virtual machines

Virtual appliances

Amazon’s EC2 cloud offers many pre-packaged virtual appliances

Software as a service

CS370: Operating Systems L26.50
Dept. Of Computer Science, Colorado State University

LICENSING ISSUES

Licensing Issues

Some software is licensed on a per-CPU basis
Especially, software for companies

When they buy a program they have the right to run it on just one CPU
What is a CPU anyway?

Can we run multiple VMs all running on the same physical hardware?

Problem is even worse, when companies have licenses for N machines
running the software

VMs come and go on demand

CS370: Operating Systems L26.52
Dept. Of Computer Science, Colorado State University

CLOUDS

Clouds

Virtualization played a critical role in the dizzying rise of cloud
computing

Clouds

Public or private or federated

Clouds offer different things
Bare metal
VMs of different sizes and capabilities

Appliances with software that is ready to use

CS370: Operating Systems L26.54
Dept. Of Computer Science, Colorado State University

5 characteristics of clouds: NIST

On-demand self-service
No human interaction needed

Broad network access
Resources available over the network

Resource pooling

Resources pooled among multiple users

Rapid elasticity
Acquire and release resources rapidly

Measured service
Me’rers resource USCIge

CS370: Operating Systems L26.55
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 7]

VMWare: Understanding Full Virtualization, Paravirtualization, and Hardware Assist.

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9, 16]

CS370: Operating Systems L26.56
Dept. Of Computer Science, Colorado State University

