
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[VIRTUALIZATION]

Computer Science
Colorado State University

L26.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.2

Topics covered in this lecture

¨ Techniques for efficient virtualization
¤ Virtualizing the unvirtualizable

¨ Cost of virtualization
¨ Memory virtualization
¨ Virtual Appliances
¨ Clouds

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

TECHNIQUES FOR EFFICIENT
VIRTUALIZATION

L26.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.4

Type-1 hypervisors

¨ Virtual machine runs as a user-process in user mode
¤ Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

¨ But the virtual machine runs a Guest OS that thinks it is in kernel mode
(although, of course, it is not)
¤ Virtual kernel mode

¨ The virtual machine also runs user processes, which think they are in the
user mode
¤ And really are in user mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.5

Modes

Hardware

Type 1 hypervisor Trap on privileged instruction

Guest Operating System

User processes

Kernel Mode

User mode

Virtual kernel mode

Virtual user mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.6

Execution of kernel model instructions

¨ What if the Guest OS executes an instruction that is allowed only when
the CPU is really in kernel mode?
¤ On CPUs without VT (Intel: Virtualization Technology)?

n Instruction fails and the OS crashes

¨ On CPUs with VT?
¤ A trap to the hypervisor does occur

n Hypervisor can inspect instruction to see if it was issued:
n By Guest OS: Arrange for the instruction to be carried out
n By user-process in that VM: Emulate what hardware would do when confronted with sensitive

instruction executed in user-mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUALIZING THE UNVIRTUALIZABLE
L26.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.8

Virtualizing the x86 before VT (and AMD SVM)

¨ Virtualizing is straightforward when VT is available

¨ When it is not available?
¤ Make clever use of:
① Binary translation
② Hardware features that did exist on the x86

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.9

Protection rings

¨ The x86 supported 4 protection modes (or rings)

¨ Ring 3 is the least privileged
¤ This is where normal processes execute
¤ You cannot execute privileged instructions

¨ Ring 0 is the most privileged
¤ Allows execution of any instruction
¤ In normal operation, the kernel runs here

¨ Other rings were never used by operating systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.10

x86 privilege level architecture without virtualization

OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.11

In other words, hypervisors had some room to play
with

¨ Many solutions kept the hypervisor in kernel mode (ring 0)

¨ Applications in user mode (ring 3)

¨ Guest OS in a layer of intermediate privilege
¤ Ring 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.12

How this allows virtualization …

¨ Kernel is privileged relative to user processes
¤ Any attempt to access kernel memory from a user program leads to an

access violation

¨ Guest OS’ privileged instructions trap to the hypervisor
¤ Hypervisor performs sanity checks and then performs instructions on the

guest’s behalf

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.13

Using the x86 rings prior to VT/SVM

Hardware

Type 1 hypervisor

Guest Operating System
(Rewrite binary prior to execution +

emulate)

Virtual
Machine

Ring 3

Ring 2

Ring 1

Ring 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.14

But what about sensitive instructions in the guest OS’
kernel code?

¨ The hypervisor makes sure that they no longer exist
¤ Hypervisor rewrites code one basic block at a time

¨ Basic block
¤ Short, straight-line sequences that end with a branch
¤ Contain no jump, call, trap, return or other instructions that alter flow of

control
n Except for the very last instruction which does precisely that

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.15

Executing basic blocks

¨ Prior to executing a basic block, hypervisor scans it to see if there are
sensitive instructions
¤ If so, replace with call to hypervisor procedure that handles them

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.16

Dynamic translation and emulation sound very
expensive

¨ But typically are not

¨ Translated blocks are cached
¤ So no translation is needed in the future

¨ After basic block has completed executing, control is returned to
hypervisor
¤ Which locates block’s successor
¤ If successor has already been translated, it can be executed immediately

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.17

Binary translations

¨ Common to perform binary translation on all the guest OS code
running in ring 1

¨ Replace even the privileged, sensitive instructions that could be made
to trap
¤ Traps can be expensive and binary translation leads to better performance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.18

What about Type 2 hypervisors?

¨ Though type 2 hypervisors are conceptually different from type 1
¤ They use, by and large, the same techniques
¤ For e.g., VMware ESX Server (type 1, 2001) used exactly the same binary

translation as the first VMware Workstation (type 2, 1999)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.19

For faithful virtualization

¨ Guest OS should also be tricked into thinking it is the true and only
king of the mountain
¤ Full control of all machine’s resources
¤ Access to entire address space (4GB on 32-bit machines)

¨ When the king finds another king squatting in its address space?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.20

Let’s look at this 2 kings problem

¨ In Linux, a user process has access to just 3 GB of the 4 GB address
space [32-bit addressing]
¤ 1 GB is reserved for the kernel
¤ Any access to kernel memory leads to a trap

¨ We could take the trap and emulate appropriate actions
¤ Expensive!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.21

Type 2 hypervisors have a kernel module operating
in ring 0

¨ Allows manipulation of hardware with privileged instructions
¤ Allows the guest to have the full address space

¨ This is all well and good, but …
¤ At some point hypervisor needs to clean up and restore original processor

context

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.22

What if the guest is running and an interrupt
arrives from an external device?

¨ Type 2 hypervisor depends on host’s device drivers to handle to the
interrupt

¨ So, the hypervisor reconfigures hardware to to run the host OS
system code
¤ When the device driver runs, it finds everything just as it expected it to be

¨ Hypervisor behaves just like teenagers throwing a party when parents
are away
¤ It’s OK to rearrange furniture completely, as long as they put it back as they

found it before parents get home

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.23

World switch

¨ Going from a hardware configuration for the host kernel to a
configuration for the guest OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.24

Why do hypervisors work even on unvirtualizable
hardware?

¨ Sensitive instructions in the guest kernel replaced by calls to
procedures that emulate these instructions

¨ No sensitive instructions issued by the guest OS are ever executed
directly by true hardware
¤ Turned into calls to the hypervisor, which emulates them

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COST OF VIRTUALIZATION
L26.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.26

Cost of virtualization

¨ We expect CPUs with VT would greatly outperform software
techniques

¨ Trap-and-emulate approach used by VT hardware generates a lot of
traps … and these are expensive
¤ Ruin CPU caches, TLBs, and branch predictions

¨ In contrast, when sensitive instructions are replaced by calls to
hypervisor procedures
¤ None of this context-switching overhead is incurred

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.27

Cost of virtualization

¨ Still … with modern VT hardware, usually the hardware beats the
software

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.28

True virtualization & paravirtualization

Hardware

Type 1 hypervisor Microkernel

Unmodified Windows Modified Linux

Trap due
to sensitive
instruction

Trap due to
hypervisor
call

True virtualization Paravirtualization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

TO SUMMARIZE
L26.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.30

x86 privilege level architecture without virtualization

OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.31

Full Virtualization: Binary translation approach to
x86 virtualization

VMM

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

Binary Translation
of OS Requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.32

Paravirtualization approach to x86 virtualization

Paravirtualized Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

“Hypercalls” to the
Virtualization Layer
replace non-virtualizable
OS instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.33

Hardware assisted virtualization

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

OS Requests trap to VMM
without Binary Translation
or Paravirtualization

Root Mode
Privilege Levels

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.34

Contrasting the virtualization approaches

Full virtualization
with Binary
Translation

Hardware Assisted
Virtualization

OS Assisted
Virtualization/Para
virtualization

Technique Binary Translation
and Direct Execution

Exit to Root Mode
on privileged
instructions

Hypercalls

Guest
Modification/
Compatibility

Unmodified Guest
OS

Excellent
compatibility

Unmodified Guest
OS

Excellent
compatibility

GuestOS codified
to issue Hypercalls
so it can’t run on
native hardware.

Compatibility is
lacking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY VIRTUALIZATION
L26.35

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.36

All modern OS support virtual memory

¨ Basically mapping of virtual address space onto pages of physical
memory

¨ Defined by (multilevel) page tables

¨ Mapping is set in motion by having the OS set a control register that
points to the top-level page table

¨ Virtualization greatly complicates memory management

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.37

Scenario

¨ Guest OS decides to map its virtual pages 7, 4, and 3 onto physical
pages 10, 11, and 12 respectively

¨ Builds page tables and sets hardware register to point to top level
page table
¤ Sensitive instruction that traps on a VT CPU

¨ We will look at type 1 but the problem is the same in type 2 and
paravirtualization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.38

What should the hypervisor do?

¨ Allocate physical pages 10, 11, and 12 to the VM
¤ Setup page tables to map VM’s virtual pages 7, 4, 3

¨ What if a second VM starts up and maps its virtual pages 4, 5, and 6
to physical pages 10, 11 and 12?
¤ This VM loads a control register to point to its page tables
¤ Hypervisor catches this trap

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.39

Choices for the hypervisor

¨ Cannot use the mapping from the 2nd VM because physical pages 10,
11, and 12 are already in use

¨ Find free pages, say 20, 21, and 22 and use them
¤ But first, create new page tables mapping virtual pages 4, 5, and 6 of VM-

2 onto 20, 21, and 22

¨ In general for each VM, the hypervisor needs to create a shadow
page table
¤ Map virtual pages used by VM onto actual physical pages that the

hypervisor gave it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.40

Also …

¨ Every time the Guest OS changes its page tables?
¤ The hypervisor must change the shadow page tables as well

¨ If the guest OS remaps virtual page 7 onto what it sees as physical page
200
¤ The hypervisor has to know about this change

¨ Trouble is that the guest OS can change its page tables by just writing into
memory
¤ No sensitive operations are required, so the hypervisor does not even know about

the change
n Certainly cannot update shadow page tables used by actual hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.41

Options

¨ Keep track of the top-level page table
¤ There is a trap when the guest OS attempts to load register
¤ Map the page tables it points to as read-only

n If the guest OS tries to modify it, will cause a fault and give control to the
hypervisor

n Figure out what the guest OS is trying to do and update shadow tables accordingly

¨ Allow guest to add new mappings at will
¤ Nothing changes in the shadow tables
¤ When a new page is accessed, fault occurs and control reverts to hypervisor

(can then add entries)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.42

Hardware support for nested page tables

¨ Took AMD and Intel a few years to produce hardware to virtualize memory
efficiently

¨ Support for nested page tables (AMD)
¤ Intel calls this extended page tables (EPT)

¨ With EPT
¤ Hypervisor still has the shadow page table, but CPU is able to handle

intermediate levels in hardware
¤ Hardware walks the EPT to to translate guest virtual address to guest physical

address
n Also, walks the EPT to find the host physical address without software intervention

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.43

Other issues

¨ Overcommitment of physical memory
¤ 1 physical machine with 32 GB of memory will run 3 VMs each of which

thinks there is 16 GB of memory

¨ Deduplication
¤ Allow sharing of pages with the same content

n E.g. Linux kernel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.44

How can we take away memory pages safely from
VMs?

¨ There is a trick known as ballooning

¨ Small balloon module loaded into each VM as a psuedo device driver
that talks to hypervisor

¨ Balloon inflates at hypervisor’s request by allocating more and more
pinned pages
¤ And deflates by deallocating these pages

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.45

How ballooning helps

¨ As balloon inflates
¤ Memory scarcity in the guest increases
¤ The guest OS responds by paging out what it believes are the least

valuable pages
n This is exactly what we need!

¨ As balloon deflates
¤ More memory available for the guest to allocate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.46

In other words

¨ Hypervisor tricks the guest OS into making tough decisions for it

¨ In politics this is known as passing the buck

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL APPLIANCES
L26.47

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.48

Installing application software

¨ VMs offer a solution to a problem that has long plagued users
(especially open source)
¤ How to install application programs

¨ Applications are dependent on numerous other applications and
libraries
¤ Which themselves depend on a host of software packages

¨ Plus there are dependencies on particular versions of compilers,
scripting languages, OS etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.49

With VMs …

¨ Developer can carefully construct a virtual machine
¤ Load it with required OS, compiler, libraries, and application code
¤ Freeze the entire unit … ready to run

¨ Only the software developer has to understand the dependencies

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.50

What about customers?

¨ Customers get a complete package that actually works
¤ Completely independent of which OS they are running and which other

software, packages, and libraries they have

¨ These are “shrink-wrapped” virtual machines
¤ Virtual appliances

¨ Amazon’s EC2 cloud offers many pre-packaged virtual appliances
¤ Software as a service

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LICENSING ISSUES
L26.51

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.52

Licensing Issues

¨ Some software is licensed on a per-CPU basis
¤ Especially, software for companies
¤ When they buy a program they have the right to run it on just one CPU

n What is a CPU anyway?
n Can we run multiple VMs all running on the same physical hardware?

¨ Problem is even worse, when companies have licenses for N machines
running the software
¤ VMs come and go on demand

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CLOUDS
L26.53

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.54

Clouds

¨ Virtualization played a critical role in the dizzying rise of cloud
computing

¨ Clouds
¤ Public or private or federated

¨ Clouds offer different things
¤ Bare metal
¤ VMs of different sizes and capabilities
¤ Appliances with software that is ready to use

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.55

5 characteristics of clouds: NIST

¨ On-demand self-service
¤ No human interaction needed

¨ Broad network access
¤ Resources available over the network

¨ Resource pooling
¤ Resources pooled among multiple users

¨ Rapid elasticity
¤ Acquire and release resources rapidly

¨ Measured service
¤ Meters resource usage

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26.56

The contents of this slide-set are based on the
following references
¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.

Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 7]

¨ VMWare: Understanding Full Virtualization, Paravirtualization, and Hardware Assist.

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9, 16]

