CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Block Allocations
Contiguous allocations
Linked allocations

Indexed allocations
iNodes

Free spdace mandgemen’r

Memory mapped files

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.2

Allocation methods:
Obijective and approaches

How to allocate space for files such that:
Disk space is utilized effectively

File is accessed quickly

Major Methods
Contiguous
Linked

Indexed

CS370: Operating Systems L28.3
Dept. Of Computer Science, Colorado State University

CONTIGUOUS ALLOCATIONS

Contiguous Allocation

Each file occupies a set of contiguous blocks on the disk

If file is of size n blocks and starts at location b
Occupies blocks b, b+1, ..., b+n-1

Disk head movements
None for moving from block b to (b+1)

Only when moving to a different track

CS370: Operating Systems L28.5
Dept. Of Computer Science, Colorado State University

Sequential and direct access in contiguous
allocations

Sequential accesses
Remember disk address of the last referenced block

When needed, read the next block

Direct access to block 1 of file that starts at block b
b+1i

CS370: Operating Systems L28.6
Dept. Of Computer Science, Colorado State University

Contiguous allocations suffer from external
fragmentation

Free space is broken up into chunks

Space is fragmented into holes
Largest continuous chunk may be insufficient for meeting request

Compaction is very slow on large disks

Needs several hours

CS370: Operating Systems L28.7
Dept. Of Computer Science, Colorado State University

Determining how much space is needed for a file is

another problem

Preallocate if eventual size of file is known?

Inefficient if file grows very slowly

Much of the allocated space is unused for a long time

Modified contiguous allocation scheme
Allocate space in a continuous chunk initially

When space runs out allocate another set of chunks (extent)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.8

LINKED ALLOCATIONS

Linked Allocation: Each file is a linked list of disk

blocks
I

Pointer to next block File A
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block
File B
CS370: Operating Systems L28.10

Dept. Of Computer Science, Colorado State University

Linked List Allocations:
Advantages

Every disk block can be used

No space is lost in external fragmentation

Sufficient for directory entry to merely store disk address of first block

Rest can be found starting there

CS370: Operating Systems L28.11
Dept. Of Computer Science, Colorado State University

Linked List Allocation:
Disadvantages

Used effectively only for sequential accesses

Extremely slow random access

Space in each block set aside for pointers

Each file requires slightly more space

Reliability
What if a pointer is lost or damaged?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.12

Linked List Allocations: Reading and writing files is
much less efficient

Amount of data storage in block is no longer a power of two

Pointer takes up some space

Peculiar size is less efficient

Programs read /write in blocks that is a power of two

CS370: Operating Systems L28.13
Dept. Of Computer Science, Colorado State University

Linked list allocation: Take pointers from disk block

_— and Eu’r in table

1

2 10 _6

3 11

4 7 File File File File File
5 block block block block block
s 3 0 1 2 3 4

7 2 <« 4 7 2 10 12
8

9

o, 12 _

11 14

12l o Table tracks EVERY disk block in the system

13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.14

Linked list allocation using an index

Entire disk block is available for data

Random access is much easier

Chain must still be followed

But this chain could be cached in memory

MS-DOS and OS/2 operating systems
Use such a file allocation table (FAT)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.15

Linked list allocation using an index:
Disadvantages

Table must be cached in memory for efficient access

A large disk will have a large number of data blocks

Table consumes a large amount of physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.16

INDEXED ALLOCATIONS

Indexed allocations

Bring all pointers together into one location

index block

Each file has its own index block
i'" entry points to i block of the file

Directory contains address of the index block

CS370: Operating Systems L28.18
Dept. Of Computer Science, Colorado State University

Indexed allocation supports direct access without
external fragmentation

Every disk block can be utilized

No external fragmentation

Space wasted by pointers is generally higher than linked listed
allocations

Example: File has two blocks

Linked listed allocations: 2 pointers are utilized

Indexed allocations: Entire index block must be allocated

CS370: Operating Systems L28.19
Dept. Of Computer Science, Colorado State University

INODES

inode

Fixed-length data structure

One per file

Contains information about
File attributes

Size, owner, creation/modification time etc.

Disk addresses

File blocks that comprise file

CS370: Operating Systems L28.21
Dept. Of Computer Science, Colorado State University

inode

The inode is used to encapsulate information about a large number of
file blocks.

For e.g.
Block size = 8 KB, and file size = 8 GB

There would be a million file-blocks
inode will store info about the pointers to these blocks

inode allows us to access info for all these blocks

Storing pointers to these file blocks also takes up storage

CS370: Operating Systems L28.22
Dept. Of Computer Science, Colorado State University

Managing information about data blocks in the
inode

First few data blocks of the file stored in the inode

If the file is large: Indirect pointer

To a block of pointers that point to additional data blocks

If the file is larger: Double indirect pointer

Pointer to a block of indirect pointers

If the file is huge: Triple indirect pointer

Pointer to a block of double-indirect pointers

CS370: Operating Systems L28.23
Dept. Of Computer Science, Colorado State University

Schematic structure of the inode

Address of
disk block

File Attributes:

Size (bytes)

Owner UID/GID
Relevant times

Link and Block counts
Permissions

Direct pointers to first

few file blocks
Pointers
Single indirect pointer —> to next

file blocks

Double indirect
pointer

Triple indirect pointer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.24

i-Node: How the pointers to the file blocks are
rganized

O

Single indirect
block

Double indirect

Triple indirect E
block CS370: Operating Systems L28.25

Dept. Of Computer Science, Colorado State University

Disk Layout in traditional UNIX systems

i1-Nodes Data Blocks

Boot Super
Block Block

An integral number of inodes fit in a single data block

CS370: Operating Systems L28.26
Dept. Of Computer Science, Colorado State University

Super Block describes the state of the file system

Total size of partition

Block size and number of disk blocks
Number of inodes

List of free blocks

inode number of the root directory

Destruction of super block?

Will render file system unreadable

CS370: Operating Systems L28.27
Dept. Of Computer Science, Colorado State University

A linear array of inodes follows the data block

inodes are numbered from 1 to some max

Each inode is identified by its inode number

inode number contains info needed to locate
inode on the disk

Users think of files as filenames

UNIX thinks of files in terms of inodes

CS370: Operating Systems L28.28
Dept. Of Computer Science, Colorado State University

UNIX directory structure

Contains only file names and the corresponding inode
numbers

i-node

Fil
N er ile name

Use 1s -1 to retrieve inode numbers of the files in the
directory

CS370: Operating Systems L28.29
Dept. Of Computer Science, Colorado State University

Directory entry, inode and data block for a simple
file

] :
i-node
Nu:mber Fi 1e name
12345 namel

inode 12345
Block 23567

Fragment of the

23567 _/—) text in the file

CS370: Operating Systems L28.30
Dept. Of Computer Science, Colorado State University

Looking up path names in UNIX

Example: /usr/tom/mbox

Root directory Block 132 is
/usr directory Block 406 is
1]
i-node 6 /usr/tom dir
1 is for fusr & - i-node 26
4 bin Mode, size 1. is /usr/tom 26
dev .. attributes 19 dick Mode, size 6
14 Tib 132 30 eve .. attributes 64 grants
etc 51 | fim 406 92 dev
60 mbox
usr i-node 6 says | 26 tom
tmp that /usrisin | 45 | zac i-node 26 says S el
block 132 that /usr/tom 17 src
Looking up usr /usr/tom is in isinblock 406 @ /tom/mbox
yields i-node 6 i-node 26 is in i-node 60
CS370: Operating Systems L28.31

Dept. Of Computer Science, Colorado State University

Advantages of directory entries that have name and
inode information

Changing filename only requires changing the directory entry

Only 1 physical copy of file needs to be on disk

File may have several names (or the same name) in different directories

Directory entries are small

Most file info is kept in the inode

CS370: Operating Systems L28.32
Dept. Of Computer Science, Colorado State University

Two hard links to the same file

Directory entry

in /dirA
i-node File name

12345 namel

Block 23567

23567 o~

Fragment of the
text in the file

inode 12345

Dept. Of Computer Science, Colorado State University

CS370: Operating Systems

L28.33

Two hard links to the same file

Directory entry

Directory entry
in /dirB
i-node

12345

Block 23567

in /dirA
i-node File name
12345 namel
2

23567 o~

Fragment of the
text in the file

inode 12345

Dept. Of Computer Science, Colorado State University

CS370: Operating Systems

File name

name?2

L28.34

File with a symbolic link

Directory entry Directory entry
in /dirA in /dirB
i-node File name i-node File name
12345 namel 13579 name2
Block 23567 J
1 .
Fragment of the 1 “/dirA /name1”
23567 f text in the file

15213 /Block 15213

inode 12345

inode 13579

CS370: Operating Systems L28.35
Dept. Of Computer Science, Colorado State University

Maximum size of your hard disk

(8 KB blocks and 32-bit pointers)
—

11 32-bit pointers can address 232 blocks

1 At 8 KB per-block
Hard disk can be 2'3 x 232 = 245 bytes (32 TB)

CS370: Operating Systems L28.36
Dept. Of Computer Science, Colorado State University

The case for larger block sizes

Larger partitions for a fixed pointer size
Retrieval is more efficient
Better system throughput

Problem

Internal fragmentation

CS370: Operating Systems L28.37
Dept. Of Computer Science, Colorado State University

Limitations of a file system based on inodes
—

o File must fit in a single disk partition

o Partition size and number of files are fixed when system is set up

CS370: Operating Systems L28.38
Dept. Of Computer Science, Colorado State University

inode preallocation and distribution

inodes are preallocated on a volume

Even on empty disks % of space lost to inodes

Preallocating inodes and spreading them

Improves performance

Keep file’s data block close to its inode

Reduce seek times

CS370: Operating Systems L28.39
Dept. Of Computer Science, Colorado State University

Checking up on the iNodes:
The df —i command (disk free)

inode statistics for a given set of file systems

Total, free and used inodes

df -i /s/bach/*

Filesystem Inodes I|Used IFree IUse%
/dev/cciss/cOd1p1 12746752 948362 11798390 8%
/dev/cciss/c0d2p1 10240000 150436 10089564 2%
/dev/cciss/c0d3p1 10240000 812727 9427273 8%
/dev/cciss/cO0d4p1 10240000 930080 9309920 10%
/dev/cciss/c0d5p1 10240000 496744 9743256 5%
/dev/cciss/c0d6p1 10240000 167900 10072100 2%
/dev/cciss/c0d7p1 10240000 748709 9491291 8%
/dev/cciss/c0d8p1 12681216 760002 11921214 6%
/dev/cciss/c0d9p1 12681216 394165 12287051 4%

CS370: Operating Systems L28.40
Dept. Of Computer Science, Colorado State University

FREE SPACE MANAGEMENT

Free space management

Disk space is limited

Reuse space from deleted files

Keep track of free disk space

Maintain free-space list

Record all free disk blocks

Metadata | /O can impact performance

CS370: Operating Systems L28.42
Dept. Of Computer Science, Colorado State University

Free space management using the free-space list

Creating a new file
Search free-space list for requisite space

Allocate that to the file

Deletion of a file
Add file blocks of deleted file to the free-space list

CS370: Operating Systems L28.43
Dept. Of Computer Science, Colorado State University

Using bit vectors to implement the free-space list

Each file block is represented with a bit
Block is free: bit is 1
Block is allocated: bitis O

A HDD with n blocks requires an n-bit vector

A Free

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 ...

1

Bit Vector: O11110011111100110...

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.44

Advantages of using the bit-vector

Simplicity

Efficiency in finding first free block

Or n consecutive free blocks

Most CPUs have bit manipulation operators

Allows us to compute free blocks fairly fast

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.45

Finding free blocks using the bit vector

A 0 valued word represents allocated blocks

First non-0 word is scanned for first 1-bit

This is the location of the first free block

Free Block number

BI.l.SPer-Word X NUrnO-vcllue words + O'F'Fsel'.Firs’r 1-bit

CS370: Operating Systems L28.46
Dept. Of Computer Science, Colorado State University

Problems with the bit vector approach

For efficiency purposes, bit vector must be memory-resident

Difficult for larger disks

1 TB hard disk with 4 KB blocks
Bit Vector = 32 MB

1 PB disk = 32 GB bit vector

Freeing 1GB of data on a 1 TB disk
Thousands of blocks of bit maps need to be updated

Blocks could be scattered all over disk

CS370: Operating Systems L28.47
Dept. Of Computer Science, Colorado State University

Linked list approach to free space management

o
1 Link free-blocks

01 Pointer to first free block
Stored in a special location on disk

Cached in memory

CS370: Operating Systems L28.48
Dept. Of Computer Science, Colorado State University

Tracking free space using the linked list approach

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.49

Problems with this approach

To traverse list we must read each block
Substantial 1/O

Finding large number of free blocks is expensive

CS370: Operating Systems L28.50
Dept. Of Computer Science, Colorado State University

Grouping to augment the linked list approach

Set aside one block for tracking portion of chain
First n-1 entries are free blocks

Last entry points to another set of free blocks

If tracker-block has 512 entries

After linked list block is loaded in memory
Next 510 blocks do not need 1/O operations

512™ entry points to another tracker-block

CS370: Operating Systems L28.51
Dept. Of Computer Science, Colorado State University

Free space management using Counting

Several contiguous blocks are free or allocated simultaneously

Keep address of first free block AND

Number of contiguous blocks that follow it

A Free

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 ...
1

(2,3} {8, 5} {17, 1}

CS370: Operating Systems L28.52
Dept. Of Computer Science, Colorado State University

Space Maps used in ZFS (Zettabyte File System)

1 ZB = 279 bytes

Controls size of 1/O data structures

Minimize 1/O needed to manage them

Metaslabs divide space on disk into chunks

A volume has 100s of metaslabs

A metaslab has a space-map

Counting algorithm to store info on space maps

CS370: Operating Systems L28.53
Dept. Of Computer Science, Colorado State University

LFS free space management

Does not write | /O metadata directly to disk

Free-space list updated on disk using transactional techniques

When space is (de)allocated from metaslab

Corresponding space map is loaded into memory

B-Tree structure indexed by block offsets

CS370: Operating Systems L28.54
Dept. Of Computer Science, Colorado State University

MEMORY MAPPED FILES

Memory mapped files

open (), read(),write ()

Requires system calls and disk access

Allow part of the virtual address space to be logically associated with
the file

Memory mapping

CS370: Operating Systems L28.56
Dept. Of Computer Science, Colorado State University

Memory-mapping maps a disk block to a page (or

pages) in memory

Manipulate files through memory
Multiple processes may map file concurrently

Enables data sharing

Since JVM 1.4, Java supports memory-mapped files
FileChannel

Writes to files in memory are not necessarily
immediate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.57

Memory mapped files: Things to watch for

Make sure that two processes do not see inconsistent
views of the same file

File may be larger than the entire virtual address
spacel!

Map portions of the file

CS370: Operating Systems L28.58
Dept. Of Computer Science, Colorado State University

PERFORMANCE

Improving reads from the disk

Disk controllers have onboard cache that can store multiple tracks

When a seek is performed
Track is read into the disk cache

Starting at the sector under disk head

Reduces latency time

Controller then transfers sectors to the OS

CS370: Operating Systems L28.60
Dept. Of Computer Science, Colorado State University

Buffering data read from disks since they may be
used again

Maintain a separate section of memory for the buffer cache

Cache file data using a page cache
Use virtual memory techniques
Cache as pages rather than file blocks

Access interfaces with virtual memory

Not the file system

CS370: Operating Systems L28.61
Dept. Of Computer Science, Colorado State University

| /O without a unified buffer cache:
Double caching

Memory-mapped /O using read ()
1/0 and write ()

\

Page cache

™~

Buffer cache

Double Caching:
i Wastes memory and CPU cycles

File system

CS370: Operating Systems L28.62
Dept. Of Computer Science, Colorado State University

Unified buffer cache

Memory mapping and read () /write () system calls use the same
page cache

Allows virtual memory to manage the file system data

CS370: Operating Systems L28.63
Dept. Of Computer Science, Colorado State University

| /O using a unified buffer cache
—

Memory-mapped /O using read ()
1/0 and write ()

Buffer cache

|

File system

CS370: Operating Systems L28.64
Dept. Of Computer Science, Colorado State University

Need to make a distinction between pages allocated to processes

and page cache, else ...
Processes performing 1/O will use most of the memory set aside for
caching pages
Pages may be reclaimed from processes

Solution: Fixed limit for process pages and the file-system page cache

Prevent one from forcing out the other

Solaris 8

CS370: Operating Systems L28.65
Dept. Of Computer Science, Colorado State University

Synchronous writes

Writes are not buffered
Occurs in the order that the disk receives them

Calling routine waits for data to reach disk

Blocking call

Metadata writes tend to be synchronous

Databases use this for atomic transactions

CS370: Operating Systems L28.66
Dept. Of Computer Science, Colorado State University

Asynchronous writes

Data stored in the cache
Control returns to the caller immediately

Done majority of the time

CS370: Operating Systems L28.67
Dept. Of Computer Science, Colorado State University

Page cache, disk drivers and asynchronous disk
writes

When data is written to disk

Pages are buffered in the cache

Disk driver sorts its output queue based on disk
addresses

Minimize disk head seeks

Write at times optimized for disk rotations

CS370: Operating Systems L28.68
Dept. Of Computer Science, Colorado State University

Page cache and page replacement algorithms

Replacement algo depends on file access type

File being read /written sequentially

Pages should not be replaced in LRU order

Most recently used page may never be used again

Free-behind

Remove page from buffer when next one requested

Read-ahead

Requested page and subsequent pages are cached

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.69

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 11]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 4]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 4]

CS370: Operating Systems L28.70
Dept. Of Computer Science, Colorado State University

