
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

Computer Science
Colorado State University

L28.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.2

Topics covered in this lecture

¨ Block Allocations
¤ Contiguous allocations
¤ Linked allocations
¤ Indexed allocations

n iNodes

¨ Free space management
¨ Memory mapped files

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.3

Allocation methods:
Objective and approaches

¨ How to allocate space for files such that:
¤ Disk space is utilized effectively
¤ File is accessed quickly

¨ Major Methods
¤ Contiguous
¤ Linked
¤ Indexed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTIGUOUS ALLOCATIONS
L28.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.5

Contiguous Allocation

¨ Each file occupies a set of contiguous blocks on the disk
¤ If file is of size n blocks and starts at location b

n Occupies blocks b, b+1, …, b+n-1

¨ Disk head movements
¤ None for moving from block b to (b+1)
¤ Only when moving to a different track

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.6

Sequential and direct access in contiguous
allocations

¨ Sequential accesses
¤ Remember disk address of the last referenced block
¤ When needed, read the next block

¨ Direct access to block i of file that starts at block b
 b + i

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.7

Contiguous allocations suffer from external
fragmentation

¨ Free space is broken up into chunks
¤ Space is fragmented into holes

¨ Largest continuous chunk may be insufficient for meeting request

¨ Compaction is very slow on large disks
¤ Needs several hours

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.8

Determining how much space is needed for a file is
another problem

¨ Preallocate if eventual size of file is known?
¤ Inefficient if file grows very slowly

n Much of the allocated space is unused for a long time

¨ Modified contiguous allocation scheme
¤ Allocate space in a continuous chunk initially
¤ When space runs out allocate another set of chunks (extent)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LINKED ALLOCATIONS
L28.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.10

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

Linked Allocation: Each file is a linked list of disk
blocks

Physical
block

File
block
0

4

File A

File
block
3

14

File
block
2

11

File
block
1

3Physical
block

File
block
0

6

File B

Pointer to next block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.11

Linked List Allocations:
Advantages

¨ Every disk block can be used
¤ No space is lost in external fragmentation

¨ Sufficient for directory entry to merely store disk address of first block
¤ Rest can be found starting there

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.12

Linked List Allocation:
Disadvantages

¨ Used effectively only for sequential accesses
¤ Extremely slow random access

¨ Space in each block set aside for pointers
¤ Each file requires slightly more space

¨ Reliability
¤ What if a pointer is lost or damaged?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.13

Linked List Allocations: Reading and writing files is
much less efficient

¨ Amount of data storage in block is no longer a power of two
¤ Pointer takes up some space

¨ Peculiar size is less efficient
¤ Programs read/write in blocks that is a power of two

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.14

Linked list allocation: Take pointers from disk block
and put in table

10

11

7

3

2

12

14

0
1

2

3

4
5

6

7
8

9

10
11

12
13

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

File
block
0

4

EOF
Table tracks EVERY disk block in the system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.15

Linked list allocation using an index

¨ Entire disk block is available for data

¨ Random access is much easier
¤ Chain must still be followed

n But this chain could be cached in memory

¨ MS-DOS and OS/2 operating systems
¤ Use such a file allocation table (FAT)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.16

Linked list allocation using an index:
Disadvantages

¨ Table must be cached in memory for efficient access

¨ A large disk will have a large number of data blocks
¤ Table consumes a large amount of physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INDEXED ALLOCATIONS
L28.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.18

Indexed allocations

¨ Bring all pointers together into one location
¤ index block

¨ Each file has its own index block
¤ ith entry points to ith block of the file
¤ Directory contains address of the index block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.19

Indexed allocation supports direct access without
external fragmentation

¨ Every disk block can be utilized
¤ No external fragmentation

¨ Space wasted by pointers is generally higher than linked listed
allocations
¤ Example: File has two blocks

n Linked listed allocations: 2 pointers are utilized
n Indexed allocations: Entire index block must be allocated

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

iNODES
L28.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.21

inode

¨ Fixed-length data structure
¤ One per file

¨ Contains information about
¤ File attributes

n Size, owner, creation/modification time etc.

¤ Disk addresses
n File blocks that comprise file

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.22

inode

¨ The inode is used to encapsulate information about a large number of
file blocks.

¨ For e.g.
¤ Block size = 8 KB, and file size = 8 GB
¤ There would be a million file-blocks

n inode will store info about the pointers to these blocks

¤ inode allows us to access info for all these blocks
n Storing pointers to these file blocks also takes up storage

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.23

Managing information about data blocks in the
inode

¨ First few data blocks of the file stored in the inode

¨ If the file is large: Indirect pointer
¤ To a block of pointers that point to additional data blocks

¨ If the file is larger: Double indirect pointer
¤ Pointer to a block of indirect pointers

¨ If the file is huge: Triple indirect pointer
¤ Pointer to a block of double-indirect pointers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.24

Schematic structure of the inode

File Attributes:
Size (bytes)
Owner UID/GID
Relevant times
Link and Block counts
Permissions

Direct pointers to first
few file blocks

Single indirect pointer

Double indirect
pointer

Triple indirect pointer

Pointers
to next

file blocks
Address of
disk block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.25

i-Node: How the pointers to the file blocks are
organized

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node
Attributes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.26

Disk Layout in traditional UNIX systems

Boot
Block

Super
Block

i-Nodes

. . .

Data Blocks

An integral number of inodes fit in a single data block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.27

Super Block describes the state of the file system

¨ Total size of partition
¨ Block size and number of disk blocks
¨ Number of inodes
¨ List of free blocks
¨ inode number of the root directory

¨ Destruction of super block?
¤ Will render file system unreadable

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.28

A linear array of inodes follows the data block

¨ inodes are numbered from 1 to some max

¨ Each inode is identified by its inode number
¤ inode number contains info needed to locate

inode on the disk
¤ Users think of files as filenames
¤ UNIX thinks of files in terms of inodes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.29

UNIX directory structure

¨ Contains only file names and the corresponding inode
numbers

¨ Use ls –i to retrieve inode numbers of the files in the
directory

i-node
Number

File name

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.30

Directory entry, inode and data block for a simple
file

12345

i-node
Number

name1

File name

1

23567

.
.

.
.

Fragment of the
text in the file

Block 23567
inode 12345

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.31

Looking up path names in UNIX
Example: /usr/tom/mbox

1 .

1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

Root directory

Looking up usr
yields i-node 6

Mode, size
.. attributes

132

i-node 6
is for /usr

i-node 6 says
that /usr is in
block 132

6 .

1 ..

19 dick

30 eve

51 jim

26 tom

45 zac

Block 132 is
/usr directory

/usr/tom is in
 i-node 26

Mode, size
.. attributes

406

i-node 26
is /usr/tom

i-node 26 says
that /usr/tom
is in block 406

26 .

6 ..

64 grants

92 dev

60 mbox

81 docs

17 src

Block 406 is
/usr/tom dir

/usr/tom/mbox
 is in i-node 60

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.32

Advantages of directory entries that have name and
inode information

¨ Changing filename only requires changing the directory entry

¨ Only 1 physical copy of file needs to be on disk
¤ File may have several names (or the same name) in different directories

¨ Directory entries are small
¤ Most file info is kept in the inode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.33

Two hard links to the same file

name112345

i-node File name

1

23567

.
.

.
.

Directory entry
in /dirA

Fragment of the
text in the file

Block 23567

inode 12345

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.34

Two hard links to the same file

12345 name1

i-node File name

2

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

12345 name2

i-node File name

Directory entry
in /dirB

Block 23567

inode 12345

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.35

File with a symbolic link

12345 name1

i-node File name

1

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

13579 name2

i-node File name

Directory entry
in /dirB

1

15213

.
.

.
.

Block 23567

“/dirA/name1”

Block 15213

inode 12345

inode 13579

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.36

Maximum size of your hard disk
(8 KB blocks and 32-bit pointers)

¨ 32-bit pointers can address 232 blocks

¨ At 8 KB per-block
¤ Hard disk can be 213 x 232 = 245 bytes (32 TB)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.37

The case for larger block sizes

¨ Larger partitions for a fixed pointer size

¨ Retrieval is more efficient
¤ Better system throughput

¨ Problem
¤ Internal fragmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.38

Limitations of a file system based on inodes

¨ File must fit in a single disk partition

¨ Partition size and number of files are fixed when system is set up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.39

inode preallocation and distribution

¨ inodes are preallocated on a volume
¤ Even on empty disks % of space lost to inodes

¨ Preallocating inodes and spreading them
¤ Improves performance

¨ Keep file’s data block close to its inode
¤ Reduce seek times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.40

Checking up on the iNodes:
The df –i command (disk free)

¨ inode statistics for a given set of file systems
¤ Total, free and used inodes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FREE SPACE MANAGEMENT
L28.41

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.42

Free space management

¨ Disk space is limited
¤ Reuse space from deleted files

¨ Keep track of free disk space
¤ Maintain free-space list

¤ Record all free disk blocks

¨ Metadata I/O can impact performance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.43

Free space management using the free-space list

¨ Creating a new file
¤ Search free-space list for requisite space
¤ Allocate that to the file

¨ Deletion of a file
¤ Add file blocks of deleted file to the free-space list

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.44

Using bit vectors to implement the free-space list

¨ Each file block is represented with a bit
¤ Block is free: bit is 1
¤ Block is allocated: bit is 0

¨ A HDD with n blocks requires an n-bit vector

1 2 3 4 5 6 7 8 9 10 1
1

12 13 14 15 16 17 18 19 …

Free

Bit Vector: 011110011111100110…

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.45

Advantages of using the bit-vector

¨ Simplicity

¨ Efficiency in finding first free block
¤ Or n consecutive free blocks

¨ Most CPUs have bit manipulation operators
¤ Allows us to compute free blocks fairly fast

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.46

Finding free blocks using the bit vector

¨ A 0 valued word represents allocated blocks

¨ First non-0 word is scanned for first 1-bit
¤ This is the location of the first free block

¨ Free Block number
 BitsPer-Word x Num0-value words + OffsetFirst 1-bit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.47

Problems with the bit vector approach

¨ For efficiency purposes, bit vector must be memory-resident
¤ Difficult for larger disks
¤ 1 TB hard disk with 4 KB blocks

n Bit Vector = 32 MB

¤ 1 PB disk = 32 GB bit vector

¨ Freeing 1GB of data on a 1 TB disk
¤ Thousands of blocks of bit maps need to be updated

n Blocks could be scattered all over disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.48

Linked list approach to free space management

¨ Link free-blocks

¨ Pointer to first free block
¤ Stored in a special location on disk
¤ Cached in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.49

Tracking free space using the linked list approach

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.50

Problems with this approach

¨ To traverse list we must read each block
¤ Substantial I/O

¨ Finding large number of free blocks is expensive

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.51

Grouping to augment the linked list approach

¨ Set aside one block for tracking portion of chain
¤ First n-1 entries are free blocks
¤ Last entry points to another set of free blocks

¨ If tracker-block has 512 entries
¤ After linked list block is loaded in memory

n Next 510 blocks do not need I/O operations

¤ 512th entry points to another tracker-block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.52

Free space management using Counting

¨ Several contiguous blocks are free or allocated simultaneously

¨ Keep address of first free block AND
¤ Number of contiguous blocks that follow it

1 2 3 4 5 6 7 8 9 10 1
1

12 13 14 15 16 17 18 19 …

Free

{2, 3} {8, 5} {17, 1} ….

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.53

Space Maps used in ZFS (Zettabyte File System)

¨ 1 ZB = 270 bytes

¨ Controls size of I/O data structures
¤ Minimize I/O needed to manage them

¨ Metaslabs divide space on disk into chunks
¤ A volume has 100s of metaslabs

¨ A metaslab has a space-map
¤ Counting algorithm to store info on space maps

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.54

ZFS free space management

¨ Does not write I/O metadata directly to disk
¤ Free-space list updated on disk using transactional techniques

¨ When space is (de)allocated from metaslab
¤ Corresponding space map is loaded into memory

n B-Tree structure indexed by block offsets

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MAPPED FILES
L28.55

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.56

Memory mapped files

¨ open(), read(), write()
¤ Requires system calls and disk access

¨ Allow part of the virtual address space to be logically associated with
the file
¤ Memory mapping

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.57

Memory-mapping maps a disk block to a page (or
pages) in memory

¨ Manipulate files through memory
¤ Multiple processes may map file concurrently

n Enables data sharing

¤ Since JVM 1.4, Java supports memory-mapped files
n FileChannel

¨ Writes to files in memory are not necessarily
immediate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.58

Memory mapped files: Things to watch for

¨ Make sure that two processes do not see inconsistent
views of the same file

¨ File may be larger than the entire virtual address
space!
¤ Map portions of the file

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PERFORMANCE
L28.59

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.60

Improving reads from the disk

¨ Disk controllers have onboard cache that can store multiple tracks

¨ When a seek is performed
¤ Track is read into the disk cache
¤ Starting at the sector under disk head

n Reduces latency time

¨ Controller then transfers sectors to the OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.61

Buffering data read from disks since they may be
used again

¨ Maintain a separate section of memory for the buffer cache

¨ Cache file data using a page cache
¤ Use virtual memory techniques
¤ Cache as pages rather than file blocks
¤ Access interfaces with virtual memory

n Not the file system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.62

I/O without a unified buffer cache:
Double caching

Memory-mapped
I/O

File system

Page cache

I/O using read()
and write()

Buffer cache Double Caching:
Wastes memory and CPU cycles

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.63

Unified buffer cache

¨ Memory mapping and read()/write() system calls use the same
page cache

¨ Allows virtual memory to manage the file system data

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.64

I/O using a unified buffer cache

Memory-mapped
I/O

I/O using read()
and write()

Buffer cache

File system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.65

Need to make a distinction between pages allocated to processes
and page cache, else …

¨ Processes performing I/O will use most of the memory set aside for
caching pages

¨ Pages may be reclaimed from processes

¨ Solution: Fixed limit for process pages and the file-system page cache
¤ Prevent one from forcing out the other
¤ Solaris 8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.66

Synchronous writes

¨ Writes are not buffered

¨ Occurs in the order that the disk receives them

¨ Calling routine waits for data to reach disk
¤ Blocking call

¨ Metadata writes tend to be synchronous
¨ Databases use this for atomic transactions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.67

Asynchronous writes

¨ Data stored in the cache

¨ Control returns to the caller immediately

¨ Done majority of the time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.68

Page cache, disk drivers and asynchronous disk
writes

¨ When data is written to disk
¤ Pages are buffered in the cache

¨ Disk driver sorts its output queue based on disk
addresses
¤ Minimize disk head seeks
¤ Write at times optimized for disk rotations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.69

Page cache and page replacement algorithms

¨ Replacement algo depends on file access type

¨ File being read/written sequentially
¤ Pages should not be replaced in LRU order

n Most recently used page may never be used again

¨ Free-behind
¤ Remove page from buffer when next one requested

¨ Read-ahead
¤ Requested page and subsequent pages are cached

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L28.70

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 11]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 4]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 4]

