
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[COMPREHENSIVE REVIEW]

Computer Science
Colorado State University

L29.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.2

Topics covered in this lecture

¨ Introduction on Operating Systems
¨ Processes
¨ Inter-Process Communications
¨ Threads
¨ Process Synchronization and Atomic Transactions
¨ CPU scheduling algorithms
¨ Deadlocks
¨ Memory management
¨ Virtual memory
¨ Virtualization
¨ File systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.3

Disclaimer and preparation for the final

¨ This slide set is meant to guide you in your preparation, but it does not mean other
lecture slides omitted here are useless! Return to each lecture as needed to polish
your understanding of concepts

¨ Your final will be 2h duration, taken online via Canvas+respondus, and will close
Monday May 6th at 11:59pm (end time to complete the exam). It will open
Sunday May 5th at 00:01am. Official final date is Monday morning, but I open
for a longer period of time to accommodate people with jobs, etc.

¨ All objectives listed for each module will be evaluated with at least one question,
with a majority of points on checking you have achieved the learning objectives,
and a minority of points on more advanced questions checking your full
understanding of some specific concepts. These advanced questions will only cover
lectures/content taught after the spring break

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.4

Introduction on Operating Systems

Objectives:
¨ Summarize basic operating systems concepts
¨ Highlight key developments in the history of operating systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.5

A modern computer is a complex system

¨ Multiple processors

¨ Main memory and Disks

¨ Keyboard, Mouse and Displays

¨ Network interfaces

¨ I/O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.6

Why do we need Operating Systems?

¨ If every programmer had to understand how all these components
work?
¤ Software development would be arduous

¨ Managing all components and using them optimally is a challenge

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.7

Computers are equipped with a layer of software

¨ Called the Operating System

¨ Functionality:
¤ Provide user programs with a better, simpler, cleaner model of the

computer
¤ Manage resources efficiently

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.8

Where the operating system fits in

User interface Program

Operating System

Bare Hardware

Web browser E-mail reader Music Player

Software

User mode

Kernel mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.9

Where the operating system fits in

¨ The OS runs on bare hardware in kernel mode
¤ Complete access to all hardware
¤ Can execute any instruction that the machine is capable of executing

¨ Provides the base for all software
¤ Rest of the software runs in user-mode

n Only a subset of machine instructions is available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.10

The OS controls hardware and coordinates
its use among various programs

User 1 User NUser 3User 2

Compiler Assembler Text editor Database System

System and Application Programs

Operating System

Computer
Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.11

Kernel and user modes

¨ Everything running in kernel mode is part of the OS

¨ But some programs running outside it are part of it or at least closely
associated with it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.12

Operating systems tend to be huge, complex and
long-lived

¨ Source code of an OS like Linux or Windows?
¤ Order of 5 million lines of code (for kernel)

n 50 lines page, 1000 pages/volume = 100 volumes

¨ Application programs such as GUI, libraries and application software?
¤ 10-20 times that

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.13

Why do operating systems live for a long time?

¨ Hard to write and folks are loath to throw it out

¨ Typically evolve over long periods of time
¤ Windows 95/98/Me is one OS
¤ Windows NT/2000/XP/Vista/7/8 is another
¤ System V, Solaris, BSD derived from original UNIX

¤ Linux is a fresh code base
n Closely modeled on UNIX and highly compatible with it

¤ Apple OS X based on XNU (X is not Unix) which is based on the Mach
microkernel and BSD’s POSIX API

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.14

An operating system performs two unrelated
functions

¨ Providing application programmers a clean abstract set of resources
¤ Instead of messy hardware ones

¨ Managing hardware resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.15

The OS as an extended machine

¨ The architecture of a computer includes
¤ Instruction set, memory organization, I/O, and bus structure

¨ The architecture of most computers at the machine language level
¤ Primitive and awkward to program especially for I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.16

Main memory is generally the only large
storage device the CPU deals with

¨ To execute a program, it must be mapped to absolute addresses and
loaded into memory

¨ Execution involves accesses to instructions and data from memory
¤ By generating absolute addresses

¨ When program terminates, memory space is reclaimed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.17

Virtual memory allows processes not completely
memory resident to execute

¨ Enables us to run programs that are larger than the actual physical
memory

¨ Separates logical memory as viewed by user from physical memory

¨ Frees programmers from memory storage limitations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.18

Program Construct:
Asynchronous operation

¨ Events happen at unpredictable times AND in
unpredictable order.
¤ Interrupts from peripheral devices
¤ For e.g. keystrokes and printer data

¨ To be correct, a program must work will all possible
timings

¨ Timing errors are very hard to repeat

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.19

Program Construct:
Concurrency

¨ Sharing resources in the same time frame

¨ Interleaved execution

¨ Major task of modern OS is concurrency control

¨ Bugs are hard to reproduce, and produce unexpected side effects

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.20

Concurrency occurs at the hardware level
because devices operate at the same time

¨ Interrupt: Electrical signal generated by a peripheral device to set
hardware flag on CPU

¨ Interrupt detection is part of instruction cycle

¨ If interrupt detected
¤ Save current value of program counter
¤ Load new value that is address of interrupt service routine or interrupt

handler: device drivers
n Drivers use signals (software) to notify processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.21

Signal is the software notification of an event

¨ Often a response of the OS to an interrupt
¤ OS uses signals to notify processes of completed

I/O operations or errors

¨ Signal generated when event that causes signal occurs
¤ For example: keystroke and Ctrl-C

¨ A process catches a signal by executing handlers for the signal

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.22

Concurrency constructs: I/O operations

¨ Coordinate resources so that CPU is not idle

¨ Blocking I/O blocks the progress of a process

¨ Asynchronous I/O (dedicated) threads circumvent this problem

¨ Ex: Application monitors 2 network channels
¤ If application is blocked waiting for input from one source, it cannot respond

to input on 2nd channel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.23

Concurrency constructs: Processes & threads

¨ User can create multiple processes; fork() in UNIX

¨ Inter process communications
¤ Common ancestor: pipes
¤ No common ancestor: signals, semaphores, shared address spaces, or

messages

¨ Multiple threads within process = concurrency

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.24

Trend: going multi-core for CPUs

¨ Driven by power / physics
¨ Problem: parallelism in
the application?
¨ We merely see 16-core
CPUs as HEDT in 2024

Grabbed from DoE Scidac

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.25

Multiprogramming organizes jobs so that
the CPU always has one to execute

¨ A single program (generally) cannot keep CPU & I/O devices busy at
all times

¨ A user frequently runs multiple programs

¨ When a job needs to wait, the CPU switches to another job.

¨ Utilizes resources (cpu, memory, peripheral devices) effectively.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.26

Time sharing is a logical extension of the
multiprogramming model

¨ CPU switches between jobs frequently, users can
interact with programs

¨ Time shared OS allows many users to use computer
simultaneously

¨ Each action in a time shared OS tends to be short
¤ CPU time needed for each user is small

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.27

Processes

Objectives:
¨ Contrast programs and processes
¨ Explain the memory layout of processes
¨ Describe Process Control Blocks
¨ Explain the notion of Interrupts and Context Switches
¨ Describe process groups

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.28

A process is just an instance of an executing program

¨ Conceptually each process has its own virtual CPU

¨ In reality, the CPU switches back-and-forth from process to process

¨ Processes are not affected by the multiprogramming
¤ Or relative speeds of different processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.29

An example scenario: 4 processes

A

B

C

D

A

B C

D

Four Program Counters

4 processes in
memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.30

Example scenario: 4 processes

Pr
oc

es
se

s

A

B

C

D

Time

• At any instant only one process executes
• Viewed over a long time, all processes have made

progress

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.31

Programs and processes

¨ Programs are passive, processes are active

¨ The difference between a program and a process is subtle, but crucial

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.32

Key concepts

¨ Process is an activity of some kind; it has a
¤ Program
¤ Input and Output
¤ State

¨ Single processor may be shared among several processes
¤ Scheduling algorithm decides when to stop work on one, and start work on

another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.33

Key concepts

¨ Process is an activity of some kind; it has a
¤ Program
¤ Input and Output
¤ State

¨ Single processor may be shared among several processes
¤ Scheduling algorithm decides when to stop work on one, and start work on

another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.34

How a program becomes a process

¨ When a program is executed, the OS copies the program image into
main memory

¨ Allocation of memory is not enough to make a program into a process

¨ Must have a process ID

¨ OS tracks IDs and process states to orchestrate system resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.35

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.36

Program in memory (I)

¨ Program image appears to occupy contiguous blocks of memory

¨ OS maps programs into non-contiguous blocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.37

Program in memory (II)

¨ Mapping divides the program into equal-sized pieces: pages

¨ OS loads pages into memory

¨ When processor references memory on page
¤ OS looks up page in table, and loads into memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.38

Advantages of the mapping process

¨ Allows large logical address space for stack and heap
¤ No physical memory used unless actually needed

¨ OS hides the mapping process
¤ Programmer views program image as logically contiguous

¤ Some pages may not reside in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.39

Finite State Machine

¨ An initial state

¨ A set of possible input events

¨ A finite number of states

¨ Transitions between these states

¨ Actions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.40

Process state transition diagram: When a process
executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.41

Each process is represented by a process control
block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any
information that varies from
process to process.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.42

An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.43

Scheduling Queues

¨ Job Queue: Contains all processes
¤ A newly created process enters here first

¨ Ready Queue
¤ Processes residing in main memory
¤ Ready and waiting to execute
¤ Typically a linked list

¨ Device Queue
¤ Processes waiting for a particular I/O device

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.44

Process scheduling

CPUReady
queue

I/O QueueI/O
I/O
request

Time slice
expired

Fork a
child

Wait for an
interrupt

interrupt
occurs

child
executes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.45

Interrupts and Contexts

¨ Interrupt causes the OS to change CPU from its
current task to run a kernel routine

¨ Save current context so that suspend and resume are
possible

¨ Context is represented in the PCB
¤ Value of CPU registers
¤ Process state
¤ Memory management information

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.46

Context switch refers to switching from one process
to another

① Save state of current process

② Restore state of a different process

¨ Context switch time is pure overhead
¤ No useful work done while switching

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.47

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.48

Processes in UNIX

¨ init : Root parent process for all user processes

¨ Get a listing of processes with ps command
§ ps: List of all processes associated with user
§ ps –a : List of all processes associated with terminals
§ ps –A : List of all active processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.49

Resource sharing between a process and its
subprocess

¨ Child process may obtain resources directly from OS

¨ Child may be constrained to a subset of parent’s resources
¤ Prevents any process from overloading system

¨ Parent process also passes along initialization data to the child
¤ Physical and logical resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.50

Parent/Child processes:
Execution possibilities

¨ Parent executes concurrently with children

¨ Parent waits until some or all of its children terminate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.51

Parent/Child processes:
Address space possibilities

¨ Child is a duplicate of the parent
¤ Same program and data as parent

¨ Child has a new program loaded into it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.52

Process creation in UNIX

¨ Process created using fork()
¤ fork() copies parent’s memory image

¤ Includes copy of parent’s address space

¨ Parent and child continue execution at instruction after
fork()
¤ Child: Return code for fork() is 0
¤ Parent: Return code for fork() is the non-ZERO process-ID

of new child

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.53

fork() results in the creation of 2 distinct programs

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will
execute
from here

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.54

A parent can move itself from off the
ready queue and await child’s termination

¨ Done using the wait() system call.
¨ When child process completes, parent process

resumes

fork()

wait()

exec(
)

exit()

resumes
parent

child

Return value = Non-ZERO
 child PID

Return value=ZERO

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.55

wait/waitpid allows caller to suspend
execution till a child’s status is available

¨ Process status availability
¤ Most commonly after termination
¤ Also available if process is stopped

¨ waitpid(pid, *stat_loc, options)
§ pid== -1 : any child
§ pid > 0 : specific child
§ pid == 0 : any child in the same process group
§ pid < -1 :any child in process group abs(pid)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.56

Process groups

¨ Process group is a collection of processes

¨ Each process has a process group ID

¨ Process group leader?
¤ Process with pid==pgid

¨ kill treats negative pid as pgid
¤ Sends signal to all constituent processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.57

Process Group IDs:
When a child is created with fork()

① Inherits parent’s process group ID

② Parent can change group ID of child by using
setpgid

③ Child can give itself new process group ID
¤ Set process group ID = its process ID

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.58

Process groups

¨ It can contain processes which are:
① Parent (and further ancestors)

② Siblings

③ Children (and further descendants)

¨ A process can only send signals to members of its process group

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.59

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.60

Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤ When a process is created, parent is given a special token (called handle)

n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.61

Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤ When a process is created, parent is given a special token (called handle)

n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.62

Process terminations

¨ Normal exit (voluntary)
¤ E.g. successful compilation of a program

¨ Error exit (voluntary)
¤ E.g. trying to compile a file that does not exist

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.63

Process terminations

¨ Fatal error (involuntary)
¤ Program bug

n Referencing non-existing memory, dividing by zero, etc

¨ Killed by another process (involuntary)
¤ Execute system call telling OS to kill some other process
¤ Killer must be authorized to do the killing of the killee
¤ Unix: kill Win32: TerminateProcess

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.64

Process terminations:
This can be either normal or abnormal

¨ OS deallocates the process resources
¤ Cancel pending timers and signals
¤ Release virtual memory resources and locks
¤ Close any open files

¨ Updates statistics
¤ Process status and resource usage

¨ Notifies parent in response to a wait()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.65

On termination a UNIX process DOES NOT fully release resources
until a parent execute a wait() for it

¨ When the parent is not waiting when the child terminates?
¤ The process becomes a zombie

¨ Zombie is an inactive process
¤ Still has an entry in the process table
¤ But is already dead, so cannot be killed easily!! J

¨ Zombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still
active, etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.66

Zombies and termination

¨ When a process terminates, its orphaned children and
are adopted by a special process
¤ This special system process is init

¨ Some more about the special process init
① Has a pid of 1

② Periodically executes wait() for children

③ Children without a parent are adopted by init
n Zombie processes are adopted by init after killing their

parent, then cleaned by the periodic wait()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.67

Normal termination of processes

¨ Return from main

¨ Implicit return from main
¤ Function falls off the end

¨ Call to exit, _Exit or _exit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.68

Protection and Security

¨ Control access to system resources
¤ Improve reliability

¨ Defend against use (misuse) by unauthorized or
incompetent users

¨ Examples
¤ Ensure process executes within its own space
¤ Force processes to relinquish control of CPU
¤ Device-control registers accessible only to the OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.69

Inter-Process Communications

Objectives:
¨ Explain inter-process communications based on Shared Memory
¨ Explain inter-process communications based on Pipes
¨ Explain inter-process communications based on message passing
¨ Contrast inter-process communications based on shared memory, pipes,

and message passing
¨ Design programs that implement inter-process communications

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.70

Independent and Cooperating processes

¨ Independent: CANNOT affect or be affected by other processes

¨ Cooperating: CAN affect or be affected by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.71

Why have cooperating processes?

¨ Information sharing: shared files

¨ Computational speedup
¤ Sub tasks for concurrency

¨ Modularity

¨ Convenience: Do multiple things in parallel
¨ Privilege separation
¨ Etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.72

Cooperating processes need IPC to exchange data
and information

¨ Shared memory
¤ Establish memory region to be shared
¤ Read and write to the shared region

¨ Message passing
¤ Communications through message exchange

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.73

Contrasting the two IPC approaches

process A

process B

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement
Best for small amounts of data
Kernel intervention for communications

Maximum speed
System calls to establish shared memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.74

Shared memory systems

¨ Shared memory resides in the address space of process creating it

¨ Other processes must attach segment to their address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.75

IPC: Use of the created shared memory

¨ Once shared memory is attached to the process’s
address space

¤ Routine memory accesses using * from shmat()
n Write to it

n sprintf(shared_memory, “Hello”);
n Print string from memory

n printf(“*%\n”, shared_memory);

¨ RULE: First attach, and then access

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.76

IPC Shared Memory:
What to do when you are done

① Detach from the address space.
§ shmdt() :SHared Memory DeTtach
§ shmdt(shared_memory)

② To remove a shared memory segment
§ shmctl() : SHared Memory ConTroL operation

n Specify the segment ID to be removed
n Specify operation to be performed: IPC_RMID
n Pointer to the shared memory region

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.77

Message Passing: Communicate and synchronize actions
without sharing the same address space

¨ Useful in distributed environments (e.g., Message Passing Interface)

¨ Two main operations
¤ send(message)
¤ receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤ Variable: Little more effort

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.78

Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤ Shared memory
¤ Hardware bus
¤ Network

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.79

Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering

¤ Automatic or explicit buffering

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.80

Naming allows processes to refer to each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤ Direct
¤ Indirect

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.81

Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.82

Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process definitions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.83

Indirect communications: Message sent and received
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner
¤ POSIX message queues use integers to identify

mailboxes

¨ Processes communicate only if they have shared
mailbox
¤ send(A, message)
¤ receive(A, message)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.84

Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤ P1 sends a message to A
¤ P2, P3 execute a receive() from A

¨ Possibilities? Allow …
① Link to be associated with at most 2 processes

② At most 1 process to execute receive() at a time

③ System to arbitrarily select who gets message

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.85

Mailbox ownership: Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤ Not attached to any process

¨ OS must allow processes to
¤ Create mailbox
¤ Send and receive through the mailbox
¤ Delete mailbox

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.86

Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.87

Communicate and synchronize actions
without sharing the same address space

¨ Useful in distributed environments (e.g., Message Passing Interface)

¨ Two main operations
¤ send(message)
¤ receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤ Variable: Little more effort

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.88

Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤ Shared memory
¤ Hardware bus
¤ Network

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.89

Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering

¤ Automatic or explicit buffering

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.90

Naming allows processes to refer to each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤ Direct
¤ Indirect

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.91

Direct communications

¨ Explicitly name recipient or sender

¨ Link is established automatically
¤ Exactly one link between the 2 processes

¨ Addressing
¤ Symmetric
¤ Asymmetric

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.92

Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.93

Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process definitions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.94

Indirect communications: Message sent and received
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner
¤ POSIX message queues use integers to identify

mailboxes

¨ Processes communicate only if they have shared
mailbox
¤ send(A, message)
¤ receive(A, message)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.95

Indirect communications: Link properties

¨ Link established only if both members share mailbox

¨ Link may be associated with more than two processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.96

Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤ P1 sends a message to A
¤ P2, P3 execute a receive() from A

¨ Possibilities? Allow …
① Link to be associated with at most 2 processes

② At most 1 process to execute receive() at a time

③ System to arbitrarily select who gets message

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.97

Mailbox ownership: Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤ Not attached to any process

¨ OS must allow processes to
¤ Create mailbox
¤ Send and receive through the mailbox
¤ Delete mailbox

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.98

Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.99

Threads

Objectives:
¨ Explain differences between processes and threads
¨ Compare multithreading models
¨ Contrast differences between user and kernel threads
¨ Relate dominant threading libraries: POSIX, Win32, and Java
¨ Design threaded programs that can synchronize their actions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.100

What are threads?

¨ Miniprocesses or lightweight processes

¨ Why would anyone want to have a kind of process within a process?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.101

The main reason for using threads

¨ In many applications multiple activities are going on at once
¤ Some of these may block from time to time

¨ Decompose application into multiple sequential threads
¤ Running in quasi-parallel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.102

Isn’t this precisely the argument for processes?

¨ Yes, but there is a new dimension …

¨ Threads have the ability to share the address space (and all of its
data) among themselves

¨ For several applications
¤ Processes (with their separate address spaces) don’t work

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.103

Threads are also lighter weight than processes

¨ Faster to create and destroy than processes

¨ In many systems thread creation is 10-100 times faster

¨ When number of threads needed changes dynamically and rapidly?
¤ Lightweight property is very useful

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.104

Threads:
The performance argument

¨ When all threads are CPU bound all the time?
¤ Additional threads would likely yield no performance gain

¨ But when there is substantial computing and substantial I/O
¤ Having threads allows activities to overlap

¤ Speeds up the application possibly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.105

User-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process
table

Runtime System

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.106

User threads are invisible to the kernel and have low
overhead

¨ Compete among themselves for resources allocated to their
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management

n Before (and possibly after) calling jacketed library function.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.107

User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.108

Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is
thwarted by:
¤ CPU bound threads
¤ Thread that rarely perform library calls …

n Runtime can’t regain control to schedule other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.109

Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.110

Kernel-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.111

Kernel threads

¨ Kernel is aware of kernel-level threads as schedulable entities
¤ Kernel maintains a thread table to keep track of all threads in the system

¨ Compete systemwide for processor resources
¤ Can take advantage of multiple processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.112

Kernel threads:
Management costs

¨ Scheduling is almost as expensive as processes
¤ Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.113

Hybrid thread models

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤ Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping
¤ Implementation dependent

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.114

The Many-to-One threading model

User threads

k Kernel thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.115

Many-to-One Model maps many user level threads
to 1 kernel thread

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.116

Many-to-One Model maps many user level threads
to 1 kernel thread

¨ Only 1 thread can access kernel at a time
¤ Multiple threads unable to run in parallel on multi-processor/core system

¨ E.g.: Solaris Green threads, GNU Portable threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.117

The One-to-One threading model

k k k

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.118

One-to-One Model:
Maps each user thread to a kernel thread

¨ More concurrency
¤ Another thread can continue to run, when a thread invokes a blocking system

call

¨ Threads run in parallel on multiprocessors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.119

One-to-One Model:
Maps each user thread to a kernel thread

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¤ Uses more kernel threads so uses more resources

¨ Supported by:
¤ Linux
¤ Windows family: NT/XP/2000
¤ Solaris 9 and up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.120

Many-to-Many threading Model:
2-level is a variant of this

kk k kk k k

Many-to-Many Two-level

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.121

Many-to-Many model

¨ Multiplex many user-level threads on a smaller number of kernel
threads

¨ Number of kernel threads may be specific to
¤ Particular application
¤ Particular machine

¨ Supported in
¤ IRIX, HP-US, and Solaris (prior to version 9)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.122

A comparison of the three models

Many-to-one One-to-One Many-to-Many

Kernel
Concurrency

During blocking
system call?

Kernel thread
creation

Caveat

NO YES if many
threads

YES

Process Blocks Process DOES NOT
block if other threads

Process DOES NOT
block

Kernel thread
already exists

Kernel thread
creation overhead

Kernel threads
 available

Use system calls
(blocking) with care

Don’t create too
many threads to not
use too much resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.123

Thread libraries provide an API for creating and
managing threads

User level library Kernel level
library

Library code and data
structures

Thread creation requires
a system call?

OS/Kernel support

Reside in
user space

Reside in
kernel space

NO YES

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.124

Dominant thread libraries (1)

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤ Provided as user- or kernel-level library
¤ Solaris, Mac OS X, Linux, …

¨ Win32 thread library
¤ Kernel-level library

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.125

Dominant thread libraries (2)

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.126

Process Synchronizations and Atomic Transactions

Objectives:
¨ Formulate the critical section problem
¨ Dissect a software solution to the critical section problem (case study:

Peterson's solution)
¨ Explain Synchronization hardware and Instruction Set Architecture support

for concurrency primitives.
¨ Assess classic problems in synchronization: bounded buffers, readers-writers,

dining philosophers.
¨ Explain serializability of transactions
¨ Assess locking protocols
¨ Explain checkpointing and rollback recovery in transactional systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.127

A look at the producer consumer problem

while (true) {
 while (counter == BUFFER_SIZE) {
 ; /*do nothing */
 }
 buffer[in] = nextProduced
 in = (in +1)%BUFFER_SIZE;
 counter++;
}

while (true) {
 while (counter == 0) {
 ; /*do nothing */
 }
 nextConsumed = buffer[out]
 out = (out +1)% BUFFER_SIZE;
 counter--;
}

Producer

Consumer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.128

Implementation of ++/-- in machine language

counter++
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter--
 register2 = counter
 register2 = register2 - 1
 counter = register2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.129

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: register1 = register1 + 1

Producer execute: counter = register1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.130

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

The order of statements within each high-level statement is preserved

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.131

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter {register1 = 5}

Producer execute: register1 = register1 + 1 {register1 = 6}

Consumer execute: register2 = counter {register2 = 5}

Consumer execute: register2 = register2 - 1 {register2 = 4}

Producer execute: counter = register1 {counter = 6}

Consumer execute: counter = register2 {counter = 4}

Counter has incorrect state of 4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.132

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 6}

{counter = 4}

Counter has incorrect state of 6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.133

Race condition

¨ Several processes access and manipulate data concurrently

¨ Outcome of execution depends on
¤ Particular order in which accesses takes place

¨ Debugging programs with race conditions?
¤ Painful!
¤ Program runs fine most of the time, but once in a rare while something weird

and unexpected happens

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.134

The kernel is subject to several possible race
conditions

¨ E.g.: Kernel maintains list of all open files
¤ 2 processes open files simultaneously
¤ Separate updates to kernel list may result in a race condition

¨ Other kernel data structures
¤ Memory allocation
¤ Process lists
¤ Interrupt handling

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.135

Critical-Section

¨ System of n processes {P0, P1, …, Pn-1}

¨ Each process has a segment of code (critical section) where it:
¤ Changes common variables, updates a table, etc

¨ No two processes can execute in their critical sections at the same time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.136

The Critical-Section problem

¨ Design a protocol that processes can use to cooperate

¨ Each process must request permission to enter its critical section
¤ The entry section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.137

General structure of a participating process

do {

 critical section

 remainder section

} while (TRUE);

entry section

exit section

Request permission
to enter

Housekeeping to let
other processes enter

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.138

Requirements for a solution to the critical section
problem

① Mutual exclusion

② Progress

③ Bounded wait

¨ PROCESS SPEED

¤ Each process operates at non-zero speed
¤ Make no assumption about the relative speed of the n processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.139

Mutual Exclusion

¨ Only one process can execute in its critical section

¨ When a process executes in its critical section
¤ No other process is allowed to execute in its critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.140

Mutual Exclusion: Depiction

Process A

Process B

A enters
critical section

T1 T2 T3 T4

B attempts to enter
critical section

B enters
critical section

B blocked

A exits
critical section

B exits
critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.141

Progress

¨ {C1} If No process is executing in its critical section, and …
¨ {C2} Some processes wish to enter their critical sections

¨ Decision on who gets to enter the critical section
¤ Is made by processes that are NOT executing in their remainder

section
¤ Selection cannot be postponed indefinitely

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.142

Bounded waiting

¨ After a process has made a request to enter its critical section
¤ AND before this request is granted

¨ Limit number of times other processes are allowed to enter their
critical sections

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.143

Approaches to handling critical sections in the OS

¨ Nonpreemptive kernel
¤ If a process runs in kernel mode: no preemption
¤ Free from race conditions on kernel data structures

¨ Preemptive kernels
¤ Must ensure shared kernel data is free from race conditions
¤ Difficult on SMP (Symmetric Multi Processor) architectures

n 2 processes may run simultaneously on different processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.144

Kernels: Why preempt?

¨ Suitable for real-time
¤ A real-time process may preempt a kernel process

¨ More responsive
¤ Less risk that kernel mode process will run arbitrarily long

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.145

Peterson’s Solution

¨ Software solution to the critical section problem
¤ Restricted to two processes

¨ No guarantees on modern architectures
¤ Machine language instructions such as load and store implemented

differently

¨ Good algorithmic description
¤ Shows how to address the 3 requirements

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.146

Peterson’s Solution: The components

¨ Restricted to two processes in this example (but generalizable to n)

§ Pi and Pj

¨ Share two data items
§ int turn

n Indicates whose turn it is to enter the critical section

§ boolean flag[2]
n Whether process is ready to enter the critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.147

Peterson’s solution: Structure of process Pi

do {

 critical section

 remainder section

} while (TRUE);

flag[0] = TRUE;
turn = 1;
while (flag[0] && turn==1) {;}

flag[0] = FALSE;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.148

Peterson’s solution: Structure of process Pj

do {

 critical section

 remainder section

} while (TRUE);

flag[1] = TRUE;
turn = 0;
while (flag[0] && turn==0) {;}

flag[0] = FALSE;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.149

Peterson’s solution: Mutual exclusion

¨ Pi enters critical section only if
 flag[j] == false OR turn == i

¨ If both processes try to execute in critical section at the
same time
§ flag[0] == flag[1] == true
§ But turn can be 0 or 1, not BOTH

¨ If Pj entered critical section
§ flag[j] == true AND turn == j
§ Will persist as long as Pj is in the critical section

while (flag[j] == true && turn==j) {;}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.150

Peterson’s Solution:
Progress and Bounded wait

¨ Pi can be stuck only if flag[j]==true AND turn==j
¤ If Pj is not ready: flag[j]== false, and Pi can enter
¤ Once Pj exits: it resets flag[j] to false

¨ If Pj resets flag[j] to true
¤ Must set turn = i;

¨ Pi will enter critical section (progress) after at most one entry by Pj
(bounded wait)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.151

Solving the critical section problem using locks

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.152

Possible assists for solving critical section problem
(1/2)

¨ Uniprocessor environment
¤ Prevent interrupts from occurring when shared variable is being modified

n No unexpected modifications!

¨ Multiprocessor environment
¤ Disabling interrupts is time consuming

n Message passed to ALL processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.153

Possible assists for solving critical section problem
(2/2)

¨ Special atomic hardware instructions
¤ Swap content of two words
¤ Modify word

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.154

Swap()

void Swap(boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp;
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.155

Swap: Shared variable LOCK is initialized to false

do {

 critical section

 remainder section

} while (TRUE);

key = TRUE;
while (key == TRUE) {
 Swap(&lock, &key)
}

lock = FALSE;

lock is a SHARED variable
key is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.156

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.157

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.158

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region:
 TSL REGISTER, LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

enter_region:
 MOVE REGISTER, #1
 XCHNG REGISTER,LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.159

Semaphores

¨ Semaphore S is an integer variable

¨ Once initialized, accessed through atomic operations
§ wait()

§ signal()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.160

Defining the semaphore

typedef struct {
 int value;
 struct process *sleeping_list;
} semaphore;

list of processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.161

The wait() operation to eliminate busy waiting

wait(semaphore *S){
 S->value--;

 if (S->value <0) {
 add process to S->sleeping_list;
 block();
 }

} block() suspends the
 process that invokes it

If value < 0
abs(value) is the number
of waiting processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.162

The signal() operation to eliminate busy waiting

signal(semaphore *S) {
 S->value++;

 if (S->value <= 0) {
 remove a process P from S->sleeping_list;
 wakeup(P);
 }

} wakeup(P)resumes the
execution of process P

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.163

Deadlocks and Starvation: Implementation of semaphore
with a waiting queue

wait(S);
wait(Q);

signal(S);
signal(Q);

PROCESS P0

wait(Q);
wait(S);

signal(Q);
signal(S);

PROCESS P1

Say: P0 executes wait(S) and then P1 executes wait(Q)

P0 must wait till P1 executes signal(Q)
Cannot be
executed
so deadlockP1 must wait till P0 executes signal(S)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.164

Semaphores and atomic operations

¨ Once a semaphore action has started
¤ No other process can access the semaphore UNTIL

n Operation has completed or process has blocked

¨ Atomic operations
¤ Group of related operations
¤ Performed without interruptions

n Or not at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.165

The bounded buffer problem

¨ Binary semaphore (mutex)
¤ Provides mutual exclusion for accesses to buffer pool
¤ Initialized to 1

¨ Counting semaphores
¤ empty: Number of empty slots available to produce

n Initialized to n
¤ full: Number of filled slots available to consume

n Initialized to 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.166

Some other things to bear in mind

¨ Producer and consumer must be ready before they attempt to enter
critical section

¨ Producer readiness?
¤ When a slot is available to add produced item

n wait(empty): empty is initialized to n

¨ Consumer readiness?
¤ When a producer has added new item to the buffer

n wait(full) : full initialized to 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.167

The Producer
do {
 produce item nextp

 add nextp to buffer

 remainder section

} while (TRUE);

wait(empty);
wait(mutex);

signal(mutex);
signal(full);

wait till slot available

Only producer OR consumer
can be in critical section

signal consumer
that a slot is available

Allow producer OR consumer
to (re)enter critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.168

The Consumer
do {

 remove item from buffer
 (nextc)

 consume nextc

} while (TRUE);

wait(full);
wait(mutex);

signal(mutex);
signal(empty);

wait till slot available
for consumption

Only producer OR consumer
can be in critical section

signal producer that a
slot is available to add

Allow producer OR consumer
to (re)enter critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.169

The Readers-Writers problem

¨ A database is shared among several concurrent processes

¨ Two types of processes
¤ Readers
¤ Writers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.170

Readers-Writers: Potential for adverse effects

¨ If two readers access shared data simultaneously?
¤ No problems

¨ If a writer and some other reader (or writer) access shared data
simultaneously?
¤ Chaos

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.171

Writers must have exclusive access to shared
database while writing

¨ FIRST readers-writers problem:
¤ No reader should wait for other readers to finish; simply because a writer is

waiting
n Writers may starve

¨ SECOND readers-writers problem:
¤ If a writer is ready it performs its write ASAP

n Readers may starve

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.172

Solution to the FIRST readers-writers problem

¨ Variable int readcount
¤ Tracks how many readers are reading object

¨ Semaphore mutex {1}
¤ Ensure mutual exclusion when readcount is accessed

¨ Semaphore wrt {1}
① Mutual exclusion for the writers
② First (last) reader that enters (exits) critical section

n Not used by readers, when other readers are in their critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.173

The Writer: When a writer signals either
a waiting writer or the readers resume

do {

 writing is performed

} while (TRUE);

wait(wrt);

signal(wrt);

When:
 writer in critical section
 and if n readers waiting

1 reader is queued on wrt
(n-1) readers queued on mutex

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.174

The Reader process
do {

 reading is performed

} while (TRUE);

wait(mutex);
readcount++;
if (readcount ==1) {
 wait(wrt);
}
signal(mutex);

wait(mutex);
readcount--;
if (readcount ==0) {
 signal(wrt);
}
signal(mutex);

When:
 writer in critical section
 and if n readers waiting

1 is queued on wrt
(n-1) queued on mutex

mutex for mutual
exclusion to readcount

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.175

Dining Philosopher’s Problem: the situation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.176

The Problem

① Philosopher tries to pick up two closest {LR} chopsticks

② Pick up only 1 chopstick at a time
¤ Cannot pick up a chopstick being used

③ Eat only when you have both chopsticks

④ When done; put down both the chopsticks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.177

Why is the problem important?

¨ Represents allocation of several resources
¤ AMONG several processes

¨ Can this be done so that it is:
¤ Deadlock free
¤ Starvation free

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.178

Dining philosophers: Simple solution

¨ Each chopstick is a semaphore
¤ Grab by executing wait()
¤ Release by executing signal()

¨ Shared data
¤ semaphore chopstick[5];
¤ All elements are initialized to 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.179

What if all philosophers get hungry and grab the
same {L/R} chopstick?

do {

 //eat

 //think

} while (TRUE);

wait(chopstick[i]);
wait(chopstick[(i+1)%5]);

signal(chopstick[i]);
signal(chopstick[(i+1)%5]);

Deadlock:
 If all processes
access chopstick with
same hand

We will look at solution with monitors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.180

Dining-Philosophers Using Monitors
Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

¨ state[i] = EATING only if
§ state[(i+4)%5] != EATING &&
state[(i+1)%5] != EATING

¨ condition self[5]

¤ Delay self when HUNGRY but unable to get chopsticks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.181

The pickup() and putdown() operations

pickup(int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) {
 self[i].wait();
 }
}

putdown(int i) {
 state[i] = THINKING;
 test((i+4)%5);
 test((i+1)%5);
}

Suspend self if unable
to acquire chopstick

Check to see if person on
left or right can use the
chopstick

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.182

test() to see if philosopher can eat

test(int i) {
 if (state[(i+4)%5] != EATING &&
 state[i] == HUNGRY &&
 state[(i+1)%5 != EATING]) {

 state[i] = EATING;
 self[i].signal();
 }
}

Eat only if HUNGRY and
Person on Left AND Right
are not eating

Signal a process that was
suspended while trying to eat

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.183

Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic execution
¤ As one uninterruptible unit

¨ Also important to ensure, that critical section forms a single logical
unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g. transfer of funds

n Credit one account and debit the other

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.184

Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤ Despite the possibility of failures

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.185

Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored
¤ To what it was before transaction started executing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.186

Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to various
accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort etc

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.187

Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤ Recovery takes longer

n Though no harm done by redoing (idempotency)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.188

Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤ Maintained by executing each transaction within a critical
section
n Too restrictive

¨ Allow transactions to overlap while maintaining
serializability
¤ Concurrency control algorithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.189

Serializability

¨ Serial schedule: Each transaction executes atomically
 n! schedules for n independent transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.190

Non-serial schedule:
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤ Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤ AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.191

Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.192

Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤ By a series of swaps of non-conflicting operations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.193

CPU Scheduling Algorithms

Objectives:
¨ Assess scheduling criteria including fairness and time quanta.
¨ Explain and contrast different approaches to scheduling: preemptive

and non-preemptive
¨ Explain and assess scheduling algorithms: FCFS, shortest jobs, priority,

round-robin, multilevel feedback queues, and the Linux completely fair
scheduler.

¨ Understand how CPU scheduling algorithms function on multiprocessors.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.194

CPU scheduling takes places under the following
circumstances

new

ready running

waiting

terminated

I/O or wait

scheduler dispatch

interrupt

exit

I/O or event
completion 1

4

2

3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.195

Nonpreemptive or cooperative sheduling

¨ Process keeps CPU until it relinquishes it when:
① It terminates
② It switches to the waiting state

¨ Sometimes the only method on certain hardware
platforms
¤ E.g. when they don’t have a hardware timer

¨ Used by initial versions of OS
¤ Windows: Windows 3.x
¤ Mac OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.196

Preemptive scheduling

¨ Pick a process and let it run for a maximum of some fixed time

¨ If it is still running at the end of time interval?
¤ Suspend it ..

¨ Pick another process to run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.197

Preemptive scheduling: Requirements

¨ A clock interrupt at the end of the time interval to give control of CPU
back to the scheduler

¨ If no hardware timer is available?
¤ Nonpremptive scheduling is the only option

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.198

Preemptive scheduling incurs some costs:
Affects the design of the OS

¨ System call processing
¤ Kernel may be changing kernel data structure (I/O queue)

¨ Process preempted in the middle AND
¤ Kernel needs to read/modify same structure?

¨ SOLUTION: Before context switch
¤ Wait for system call to complete OR
¤ I/O blocking to occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.199

Preemptive scheduling incurs some costs:
Interrupt processing

¨ Interrupts can occur at any time
¤ Cannot always be ignored by kernel

n Consequences: Inputs lost or outputs overwritten

¨ Guard code affected by interrupts from simultaneous use:
¤ Disable interrupts during entry
¤ Enable interrupts at exit
¤ CAVEAT: Should not be done often, and critical section must contain few

instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.200

The dispatcher is invoked during every process
switch

¨ Gives control of CPU to process selected by the scheduler

¨ Operations performed:
¤ Switch context
¤ Switch to user mode
¤ Restart program at the right location

¨ Dispatch latency
¤ Time to stop one process and start another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.201

Scheduling Algorithms: Goals

Fairness
Policy Enforcement

BalanceAll Systems

Throughput
Turnaround time
CPU Utilization

Response time
Proportionality

Meeting deadlines
Predictability

Interactive SystemsBatch Systems

Real-time systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.202

CPU Utilization

¨ Difference between elapsed time and idle time

¨ Average over a period of time
¤ Meaningful only within a context

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.203

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

¨ CPU Utilization: Keep CPU as busy as possible? For example:
¤ 40% for lightly loaded system
¤ 90% for heavily loaded system

¨ Throughput: Number of completed processes per time unit? For
example:
¤ Long processes: 1/hour
¤ Short processes: 10/second

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.204

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

¨ Turnaround time
§ tcompletion - tsubmission

¨ Waiting time
§ Total time spent waiting in the ready queue

¨ Response time
§ Time to start responding
§ tfirst_response – tsubmission
§ Generally limited by speed of output device

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.205

Scheduling Algorithms

¨ Decides which process in the ready queue is allocated the CPU

¨ Could be preemptive or nonpreemptive

¨ Optimize measure of interest

¨ We will use Gantt charts to illustrate schedules
¤ Bar chart with start and finish times for processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.206

First-Come, First-Served Scheduling (FCFS)

¨ Process requesting CPU first, gets it first

¨ Managed with a FIFO queue
¤ When process enters ready queue?

n PCB is tacked to the tail of the queue

¤ When CPU is free?
n It is allocated to process at the head of the queue

¨ Simple to write and understand

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.207

Average waiting times in FCFS

Process Burst
Time

P1 24

P2 3

P3 3

24 27 30

P1 P2 P3

0

3 6 30

P2 P1P3

0

Wait time = (0 + 24 + 27)/3 = 17

Wait time = (6 + 0 + 3)/3 = 3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.208

Disadvantages of the FCFS scheme (1)

¨ Once a process gets the CPU, it keeps it
¤ Till it terminates or does I/O
¤ Unsuitable for time-sharing systems

¨ Average waiting time is generally not minimal
¤ Varies substantially if CPU burst times vary greatly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.209

Disadvantages of the FCFS scheme (2)

¨ Poor performance in certain situations
¤ 1 CPU-bound process and many I/O-bound processes
¤ Convoy effect: Smaller processes wait for the one big

process to get off the CPU

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.210

Shortest Job First (SJF) scheduling algorithm

¨ When CPU is available it is assigned to process with smallest CPU
burst

¨ Moving a short process before a long process?
¤ Reduction in waiting time for short process

 GREATER THAN
Increase in waiting time for long process

¨ Gives us minimum average waiting time for a set of processes that
arrived simultaneously
¤ Provably Optimal

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.211

Depiction of SJF in action

Process Burst
Time

P1 6

P2 8

P3 7

P4 3

P4

0 3 9 16 24

P1 P3 P2

Wait time = (3 + 16 + 9 + 0)/4 = 7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.212

SJF is optimal ONLY when ALL the jobs are
available simultaneously

¨ Consider 5 processes A, B, C, D and E
¤ Run times are: 2, 4, 1, 1, 1
¤ Arrival times are: 0,0, 3, 3, 3

¨ SJF will run jobs: A, B, C, D and E
¤ Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8
¤ But if you run B, C, D, E and A ?

n Average wait time: (7 + 0 + 1 + 2 +3)/5 = 2.6!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.213

Preemptive SJF
¨ A new process arrives in the ready queue

¤ If it is shorter than the currently executing process
n Preemptive SJF will preempt the current process

Process Arrival Burst

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1
0 1 5 10 17

P2 P4 P1 P3

26

Wait time =
[(10-1) + (1-1) + (17-2) + (5-3)]/4
= 26/4 = 6.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.214

Use of SJF in long term schedulers

¨ Length of the process time limit
¤ Used as CPU burst estimate

¨ Motivate users to accurately estimate time limit
¤ Lower value will give faster response times
¤ Too low a value?

n Time limit exceeded error
n Requires resubmission!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.215

The SJF algorithm and short term schedulers

¨ No way to know the length of the next CPU burst

¨ So try to predict it

¨ Processes scheduled based on predicted CPU bursts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.216

Priority Scheduling

¨ Priority associated with each process

¨ CPU allocated to process with highest priority

¨ Can be preemptive or nonpreemptive
¤ If preemptive: Preempt CPU from a lower priority process

when a higher one is ready

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.217

Depiction of priority scheduling in action
Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2

0 1 6 16 19

P5 P1 P3

18

P4

Wait time = (6 + 0 + 16 + 18 + 1)/5 = 8.2

Here: Lower number means higher priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.218

How priorities are set

¨ Internally defined priorities based on:
¤ Measured quantities
¤ Time limits, memory requirements, # of open files, ratio (averages) of I/O to

CPU burst

¨ External priorities
¤ Criteria outside the purview of the OS
¤ Importance of process, $ paid for usage, politics, etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.219

Issue with priority scheduling

¨ Can leave lower priority processes waiting indefinitely

¨ Perhaps apocryphal tale:
¤ MIT’s IBM 7094 shutdown (1973) found processes from 1967!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.220

Coping with issues in priority scheduling:
Aging

¨ Gradually increase priority of processes that wait for a long time

¨ Example:
¤ Process with priority of 127 and increments every 15 minutes
¤ Process priority becomes 0 in no more than 32 hours

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.221

Round-Robin Scheduling

¨ Similar to FCFS scheduling
¤ Preemption to enable switch between processes

¨ Ready queue is implemented as FIFO
¤ Process Entry: PCB at tail of queue
¤ Process chosen: From head of the queue

¨ CPU scheduler goes around ready queue
¤ Allocates CPU to each process one after the other

n CPU-bound up to a maximum of 1 quantum

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.222

Round Robin: Choosing the quantum

¨ Context switch is time consuming
¤ Saving and loading registers and memory maps
¤ Updating tables
¤ Flushing and reloading memory cache

¨ What if quantum is 4 ms and context switch overhead is 1 ms?
¤ 20% of CPU time thrown away in administrative overhead

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.223

Round Robin: Improving efficiency by increasing
quantum

¨ Let’s say quantum is 100 ms and context-switch is 1ms
¤ Now wasted time is only 1%

¨ But what if 50 concurrent requests come in?
¤ Each with widely varying CPU requirements
¤ 1st one starts immediately, 2nd one 100 ms later, …
¤ The last one may have to wait for 5 seconds!
¤ A shorter quantum would have given them better service

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.224

If quantum is set longer than mean CPU burst?

¨ Preemption will not happen very often

¨ Most processes will perform a blocking operation before quantum runs
out

¨ Switches happens only when process blocks and cannot continue

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.225

Quantum: Summarizing the possibilities

¨ Too short?
¤ Too many context switches
¤ Lowers CPU efficiency

¨ Too long?
¤ Poor responses to interactive requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.226

Deadlocks

Objectives:
¨ Explain deadlock characterization
¨ Contrast and explain schemes for deadlock prevention
¨ Evaluate approaches to deadlock avoidance
¨ Understand recovery from deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.227

System model

¨ Finite number of resources
¤ Distributed among competing processes

¨ Resources are partitioned into different types
¤ Each type has a number of identical instances
¤ Resource type examples:

n Memory space, files, I/O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.228

A process must utilize resources in a sequence

¨ Request
¤ Requesting resource must wait until it can acquire resource
¤ request(), open(), allocate()

¨ Use
¤ Operate on the resource

¨ Release
¤ release(), close(), free()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.229

For kernel managed resources, the OS maintains a
system resource table

¨ Is the resource free?
¤ Record process that the resource is allocated to

¨ Is the resource allocated?
¤ Add to queue of processes waiting for resource

¨ For resources not managed by the OS
¤ Use wait() and signal() on semaphores

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.230

Preemptable resources

¨ Can be taken away from process owning it with no ill effects

¨ Example: Memory
¤ Process B’s memory can be taken away and given to process A

n Swap B from memory, write contents to backing store, swap A in and let it use the
memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.231

Non-preemptable resources

¨ Cannot be taken away from a process without causing the process to
fail

¨ If a process has started to burn a CD
¤ Taking the CD-recorder away from it and giving it to another process?

n Garbled CD
n CD recorders are not preemptable at an arbitrary moment

¨ In general, deadlocks involve non-preemptable resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.232

Some notes on deadlocks

¨ The OS typically does not provide deadlock
prevention facilities

¨ Programmers are responsible for designing deadlock
free programs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.233

Deadlock: Formal Definition

¨ A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause.

¨ Because all processes are waiting, none of them can cause events to
wake any other member of the set
¤ Processes continue to wait forever

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.234

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources

n Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.235

Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0
¤ Implies hold-and-wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.236

Methods for handling deadlocks

¨ Use protocol to prevent or avoid deadlocks
¤ Ensure system never enters a deadlocked state

¨ Allow system to enter deadlocked state; BUT
¤ Detect it and recover

¨ Ignore problem, pretend that deadlocks never occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.237

When is ignoring the problem viable?

¨ When they occur infrequently (once per year)
¤ Ignoring is the cheaper solution
¤ Prevention, avoidance, detection and recovery

n Need to run constantly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.238

Four strategies for dealing with deadlocks

¨ Ignore the problem
¤ May be if you ignore it, it will ignore you

¨ Detection and Recovery
¤ Let deadlocks occur, detect them, and take action

¨ Deadlock avoidance
¤ By careful resource allocation

¨ Deadlock prevention
¤ By structurally negating one of the four required conditions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.239

Deadlock Prevention

¨ Ensure that one of the necessary conditions for deadlocks cannot occur
① Mutual exclusion

② Hold and wait

③ No preemption

④ Circular wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.240

Mutual exclusion must hold for
non-sharable resources, but …

¨ Sharable resources do not require mutually exclusive access
¤ Cannot be involved in a deadlock

¨ A process never needs to wait for sharable resource
¤ Read-only files

¨ Some resources are intrinsically nonsharable
¤ So denying mutual exclusion often not possible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.241

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 1]

¨ Process must request and be allocated all its resources before
execution
¤ Resource requests must precede other system calls

¨ E.g. copy data from DVD drive, sort file & print
¤ Printer needed only at the end
¤ BUT process will hold printer for the entire execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.242

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 2]

¨ Allow a process to request resources only when it has none
¤ Release all resources, before requesting additional ones

¨ E.g. copy data from DVD drive, sort file & print
¤ First request DVD and disk file

n Copy and release resources

¤ Then request file and printer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.243

Disadvantages of protocols doing hold-and-wait

¨ Low resource utilization
¤ Resources are allocated but unused for long durations

¨ Starvation
¤ If a process needs several popular resources

n Popular resource might always be allocated to some other process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.244

Deadlock Prevention: Eliminate the preemption
constraint [1/2]

¨ {C1} If a process is holding some resources
¨ {C2} Process requests another resource

n Cannot be immediately allocated

¨ All resources currently held by process is preempted
¤ Preempted resources added to list of resources process is waiting for

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.245

Deadlock Prevention: Eliminate the preemption
constraint [2/2]

¨ Process requests resources that are not currently available
¤ If resources allocated to another waiting process

n Preempt resources from the second process and assign it to the first one

¨ Often applied when resource state can be saved and restored
¤ CPU registers and memory space
¤ Unsuitable for tape drives

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.246

Deadlock Prevention: Eliminating Circular wait

¨ Impose total ordering of all resource types
¤ Assign each resource type a unique number
¤ One-to-one function F:RàN
F(tape drive) = 1;
F(printer) = 12

① Request resources in increasing order

② If several instances of a resource type needed?
¤ Single request for all them must be issued

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.247

Deadlock Prevention: Summary

¨ Prevent deadlocks by restraining how requests are made.
¤ Ensure at least 1 of the 4 conditions cannot occur

¨ Side effects:
¤ Low device utilization
¤ Reduced system throughput

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.248

Deadlock avoidance

¨ Require additional information about how resources are to be
requested

¨ Knowledge about sequence of requests and releases for processes
¤ Allows us to decide if resource allocation could cause a future deadlock
¤ Process P: Tape drive, then printer
¤ Process Q: Printer, then tape drive

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.249

Deadlock avoidance:
Handling resource requests

¨ For each resource request:
¤ Decide whether or not process should wait

n To avoid possible future deadlock

¨ Predicated on:
① Currently available resources
② Currently allocated resources
③ Future requests and releases of each process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.250

Avoidance algorithms differ in the
amount and type of information needed

¨ Resource allocation state
¤ Number of available and allocated resources
¤ Maximum demands of processes

¨ Dynamically examine resource allocation state
¤ Ensure circular-wait cannot exist

¨ Simplest model:
¤ Declare maximum number of resources for each type
¤ Use information to avoid deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.251

Safe sequence

¨ Sequence of processes <P1,P2,…,Pn> for the current
allocation state

¨ Resource requests made by Pi can be satisfied by:
¤ Currently available resources
¤ Resources held by Pj where j < i

n If needed resources not available, Pi can wait

¤ In general, when Pi terminates, Pi+1 can obtain its needed
resources

¨ If no such sequence exists: system state is unsafe

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.252

Safe states and deadlocks

¨ A system is safe ONLY IF there is a safe sequence

¨ A safe state is not a deadlocked state
¤ Deadlocked state is an unsafe state
¤ Not all unsafe states are deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.253

Unsafe states

¨ A unsafe state may lead to deadlock

¨ Behavior of processes controls unsafe states

¨ Cannot prevent processes from requesting resources such that
deadlocks occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.254

Banker’s Algorithm

¨ Designed by Dijkstra in 1965

¨ Modeled on a small-town banker
¤ Customers have been extended lines of credit
¤ Not ALL customers will need their maximum credit immediately

¨ Customers make loan requests from time to time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.255

Crux of the Banker’s Algorithm

¨ Consider each request as it occurs
¤ See if granting it is safe

¨ If safe: grant it; If unsafe: postpone

¨ For safety banker checks if he/she has enough to satisfy some
customer
¤ If so, that customer’s loans are assumed to be repaid
¤ Customer closest to limit is checked next
¤ If all loans can be repaid; state is safe: loan approved

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.256

Banker’s Algorithm: Managing the customers.
Banker has only reserved 10 units instead of 22

A 0 6

B 0 5

C 0 4

D 0 7

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Has Max

Free: 10 Free: 2 Free: 1

SAFE SAFE UNSAFE
Delay all requests except C

A customer may not need the
entire credit line. But the banker
cannot count on this behaviorThere is ONLY ONE resource: Credit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.257

Banker’s algorithm: Crux

¨ Declare maximum number of resource instances
needed
¤ Cannot exceed resource thresholds

¨ Determine if resource allocations leave system in a safe
state

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.258

Bankers Algorithm: Resource-request

Requesti≤ Needi

Requesti≤ Available

Available = Available – Requesti
Allocationi = Allocationi + Requesti
Needi = Needi - Requesti

Yes

Yes

NO

NO

Error
Exceeded claim

Wait for
availability

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.259

Bankers Algorithm: Safety
Initialize Work = Available

Find i such that:
Finish[i]==false && Needi≤ Work

Work = Work + Allocationi
Finish[i]=true

for all i
 if (Finish[i] == true)

YES

NO

YES

Safe state

NO
Unsafe state

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.260

Recovery from deadlock

¨ Automated or manual

¨ OPTIONS
¤ Break the circular wait: Abort processes
¤ Preempt resources from deadlocked process(es)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.261

Breaking circular wait:
Process termination

¨ Abort all deadlocked processes

¨ Abort processes one at a time
¤ After each termination, check if deadlock persists

¨ Reclaim all resources allocated to terminated process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.262

Deadlock recovery: Resource preemption

Preempt resources from
some process

Give resources to some
other process

Deadlock broken

DONE

Deadlock persists

For a set of deadlocked processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.263

Resource preemption: Issues

¨ Selecting a victim
¤ Which resource and process
¤ Order of preemption to minimize cost

¨ Starvation
¤ Process can be selected for preemption finite number of

times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.264

Livelocks

¨ Polling (busy waits) used to enter critical section or access a resource
¤ Typically used for a short time when overhead for suspension is considered

greater

¨ In a livelock two processes need each other’s resource
¤ Both run and make no progress, but neither process blocks
¤ Use CPU quantum over and over without making progress

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.265

Livelocks do occur

¨ If fork fails because process table is full
¤ Wait for some time and try again

¨ But there could be a collection of processes each trying to do the same
thing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.266

Memory Management

Objectives:
¨ Understand address binding and address spaces
¨ Explain contiguous memory allocations: including their advantages and

disadvantages
¨ Analyze the key constructs underpinning paging systems including

hardware support, shared pages, and structure of page tables
¨ Explain memory protection in paging environments
¨ Explain segmentation based approaches to memory management

alongside settings in which they are particularly applicable

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.267

Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least
partially) during execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.268

Memory Unit

¨ Sees only a stream of memory addresses

¨ Oblivious to
¤ How these addresses are generated

n Instruction counter, indexing, indirection, etc.

¤ What they are for
n Instructions or data

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.269

Why processes must be memory resident

¨ Storage that the CPU can access directly
① Registers in the processor
② Main memory

¨ Machine instructions take memory addresses as arguments
¤ None operate on disk addresses

¨ Any instructions in execution plus needed data
¤ Must be in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.270

Processes and memory

¨ To execute, a program needs to be placed inside a
process

¨ Process executes
¤ Access instructions and data from memory

¨ Process terminates
¤ Memory reclaimed and declared available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.271

Binding is a mapping from one address space to the
next

¨ Processes can reside in any part of the physical memory
¤ First address of process need not be x0000

¨ Addresses in source program are symbolic

¨ Compiler binds symbolic addresses to relocatable addresses

¨ Loader binds relocatable addresses to absolute addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.272

Binding can be done at … [1/2]

¨ Compile time
¤ Known that the process will reside at location R

n If location changes: recompile

¤ MS-DOS .COM programs were bound this way

¨ Load time
¤ Based on compiler generated relocatable code

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.273

Binding can be done at … [2/2]:
Execution-time

¨ Process can be moved around during execution
¤ Binding delayed until run time
¤ Special hardware needed
¤ Supported by most OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.274

Partitioning of memory

¨ Main memory needs to accommodate the OS and user processes

¨ Divided into two partitions
¤ Resident OS

n Usually low memory

¤ User processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.275

Memory Mapping and Protection

¨ When CPU scheduler selects a process for execution
¤ Relocation and limit registers reloaded as part of context switch

¨ Every address generated by the CPU
¤ Checked against the relocation/limit registers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.276

Memory Mapping and Protection

<
YES

limit
register

relocation
register

memory

CPU

NO

TRAP to OS: Addressing ERROR

+
Logical
address

Physical
address

E.g.: relocation=100040 and limit=74600

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.277

Address spaces

¨ Logical
¤ Addresses generated by the program running on CPU

¨ Physical
¤ Addresses seen by the memory unit

¨ Logical address space
¤ Set of logical addresses generated by program

¨ Physical address space
¤ Set of physical addresses corresponding to the logical address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.278

Generation of physical and logical addresses

¨ Compile-time and load-time
¤ Identical logical and physical addresses

¨ Execution time
¤ Logical addresses differ from physical addresses
¤ Logical address referred to as virtual address

¨ Runtime mapping performed in hardware
¤ Memory management unit (MMU)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.279

Memory management unit

¨ Mapping converts logical to physical addresses

¨ User program never sees real physical address
¤ Create pointer to location
¤ Store in memory, manipulate and compare

¨ When used as a memory address (load/store)
¤ Relocated to physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.280

Dynamic Storage Allocation Problem

¨ Satisfying a request of size n from the set of available spaces
¤ First fit
¤ Best fit
¤ Worst fit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.281

First fit

¨ Scan list of segments until you find a memory-hole that is big enough

¨ Hole is broken up into two pieces
¤ One for the process
¤ The other is unused memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.282

Best Fit

¨ Scan the entire list from beginning to the end

¨ Pick the smallest memory-hole that is adequate to host the process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.283

Comparing Best Fit and First Fit

¨ Best fit is slower than first fit

¨ Surprisingly, it also results in more wasted memory than first fit
¤ Tends to fill up memory with tiny, useless holes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.284

Worst fit

¨ How about going to the other extreme?
¤ Always take the largest available memory-hole
¤ Perhaps, the new memory-hole would be useful

¨ Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.285

Contiguous Memory Allocation: Fragmentation

¨ As processes are loaded/removed from memory
¤ Free memory space is broken into small pieces

¨ External fragmentation
¤ Enough space to satisfy request; BUT
¤ Available spaces are not contiguous

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.286

Fragmentation: Example

P1

P2

P3

P4
P5

Process P5 cannot be loaded because
memory space is fragmented

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.287

Fragmentation can be internal as well

¨ Memory allocated to process may be slightly larger than requested

¨ Internal fragmentation
¤ Unused memory is internal to blocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.288

Compaction: Solution to external fragmentation

¨ Shuffle memory contents
¤ Place free memory into large block

¨ Not possible if relocation is static
¤ Load time

¨ Approach involves moving:
① Processes towards one end
② Gaps towards the other end

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.289

Compaction: Example

P1

P2

P3

P4
P5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.290

Overview of how mapping of logical and physical
addresses is performed

CPU

Memory
Management
Unit (MMU)

Translation
Lookaside

Buffer (TLB)

Physical
Memory

Virtual
address

Physical
address

MMU may access Physical Memory to perform translations
 {PageTable may be stored there}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.291

The Paging memory management scheme

¨ Physical address space of process can be non-contiguous

¨ Solves problem of fitting variable-sized memory chunks to backing
store
¤ Backing store has fragmentation problem

n Compaction is impossible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.292

Basic method for implementing pages

¨ Break memory into fixed-sized blocks
¤ Physical memory: frames

¤ Logical memory: pages

¨ Backing store is also divided the same way

Same size

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.293

Paging Hardware: Paging is a form of dynamic
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.294

Paging: Logical and Physical Memory

Page 0

Page 1

Page 2

Page 3

0

1

2

3

1

4

3

7

0

1

2

3

4

5

6

7

Page 0

Page 2

Page 1

Page 3

Logical Memory

Page Table

Physical Memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.295

m bits

Logical address

Page size

¨ Usually a power of 2
§ 512 bytes – 16 MB

¨ Size of logical address: 2m

¨ Page size: 2n

Page offset

nm - n

Page number

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.296

Paging and Fragmentation

¨ No external fragmentation
¤ Free frame available for allocation to other processes

¨ Internal fragmentation possible
¤ Last frame may not be full
¤ If process size is independent of page size

n Internal fragmentation = ½ page per process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.297

Paging: User program views memory as a single
space

¨ Program is scattered throughout memory

¨ User view and physical memory reconciled by
¤ Address-translation hardware

¨ Process has no way of addressing memory outside of its page table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.298

OS manages the physical memory

¨ Maintains frame-table; one entry per frame
¤ Free or allocated?
¤ If allocated: Which page of which process

¨ Maintains a page table for each process
¤ Used by CPU dispatcher to define hardware page table when process is

CPU-bound
n Paging increases context switching time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.299

The purpose of the page table is to map virtual
pages onto physical frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.300

Two major issues facing page tables

¨ Can be extremely large
¤ With a 4 KB page size, a 32-bit address space has 1 million pages
¤ Also, each process has its own page table

¨ The mapping must be fast
¤ Virtual-to-physical mapping must be done on every memory reference
¤ Page table lookup should not be a bottleneck

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.301

Translation look-aside buffer
Small, fast-lookup hardware cache

¨ Number of TLB entries is small (64 ~ 1024)
¤ Contains few page-table entries

¨ Each entry of the TLB consists of 2 parts
¤ A key and a value

¨ When the associative memory is presented with an item
¤ Item is compared with all keys simultaneously

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.302

The purpose of the page table is to map virtual
pages onto page frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.303

Paging Hardware with a TLB

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

TLB

TLB Miss

TLB hit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.304

Protection bits are associated with each frame

¨ Kept in the page table

¨ Bits can indicate
¤ Read-write, read-only, execute
¤ Illegal accesses can be trapped by the OS

¨ Valid-invalid bit
¤ Indicates if page is in the process’s logical address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.305

0

1

2

3

4

5

6

7

Protection Bits: Page size=2K;
Logical address space = 16K

Page 0

Page 1

Page 2

2

3

4

7

Logical Memory

Page Table

Page 3

Page 4

Page 5

8

9

0

0

v

v

v

v

v

v

i

i

0

1

2
3

4
5

6

Page 0

Page n

Physical Memory

Page 1

Page 2

Page 3

Page 4

Page 5

…

7
8

9

Program restricted to 0 - 10468

10K = 10240

Frame
Number

Valid/
Invalid bit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.306

Reentrant Code [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and
¤ Then safely called again ("re-entered") before its previous invocations

complete execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.307

Reentrant Code [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
① Execute same code at same time
② Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.308

Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.309

Shared Paging
ed 1

ed 2

ed 3

Data 1

Data 3

Page n

Physical Memory

ed 1

ed 2

Data 2

…

0

1

2
3

4
5

6
7
8

9

3

6

1

4

3

6

7

4

Data 1

ed 3Process P1
ed 1

ed 2

ed 3

Data 2

Process P2

ed 1

ed 2

ed 3

Data 3

3

6

2

4

Process P3

Page Tables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.310

Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
① Code must be reentrant
② The OS must enforce read-only nature of the shared

code

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.311

Overheads in paging:
Page table and internal fragmentation

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n se/p: Total page table space

¨ Total Overhead = se/p + p/2

Page table overhead Internal fragmentation loss

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.312

Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.313

Paging Hardware: Paging is a form of dynamic
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.314

Hierarchical Paging

¨ Logical address spaces: 232 ~ 264

¨ Page size: 4KB = 22x 210= 212

¨ Number of page table entries?
§ Logical address space size/page size
§ 232/212 = 220 ≈ 1 million entries

¨ Page table entry = 4 bytes
¤ Page table for process = 220 x 4 = 4 MB

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.315

Issues with large page tables

¨ Cannot allocate page table contiguously in memory

¨ Solution:
¤ Divide the page table into smaller pieces

n Page the page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.316

Two-level Paging

Page offsetPage number

20 12

32-bit logical address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.317

Two-level Paging

Page offset

12

32-bit logical address

Inner
Page

1010

Outer
Page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.318

Physical memory
frame

Page of page table

Outer page
table

Address translation in two-level paging

p1 p2 d

p2

p1

d

Actual Physical address

Track pages
of page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.319

x86-64

¨ Intel: IA-64 Itanium
¤ Not much traction

¨ AMD: x86-64
¤ Intel adopted AMD’s x86-64 architecture

¨ 64-bit address space: 264 (16 exabytes)

¨ Currently x86-64 provides
¤ 48–bit virtual address
¤ Page sizes: 4 KB, 2 MB, and 1 GB
¤ 4-level paging hierarchy

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.320

ARM architectures

¨ iPhone and Android systems use this
¨ 32-bit ARM

¤ 4 KB and 16 KB pages
¤ 1 MB and 16 MB pages

2-level paging

1-level paging

There are two levels for TLBs:
 A separate TLB for data
 Another for instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.321

In our discussions so far …

¨ Virtual memory is one-dimensional
¤ Logical addresses go from 0 to some max value

¨ Many problems can benefit from having two or more separate virtual
address spaces

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.322

One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to
the constant table

Address space
being used

Free

Program has an exceptional
number of variables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.323

One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to
the constant table

Address space
being used

Free

Symbol table has BUMPED INTO
the source text table

Program has an exceptional
number of variables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.324

Segmentation

¨ Logical address space is a collection of segments

¨ Segments have name and length

¨ Addresses specify
¤ Segment name
¤ Offset within the segment

¨ Tuple: <segment-number, offset>

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.325

Segmentation Hardware

s dCPU

s

Logical
Address

Physical
Address

Segment Table

limit base

+

TRAP: Addressing Error

NO

YES
<

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.326

Rationale for Paging and Segmentation

¨ Get a large linear address space without having to
buy more physical memory
¤ PAGING

¨ Allow programs and data to be broken up into
logically independent address spaces
¤ Aids Sharing AND Protection

n Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.327

Comparison of Paging and Segmentation
Consideration Paging Segmentation

How many linear address
spaces are there?

1 Many

Can total address space
exceed physical memory

YESYES

Can procedures and data be
distinguished and protected
separately?

YESNO

Can fluctuating table sizes
be accommodated?

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.328

Comparison of Paging and Segmentation
Consideration Paging Segmentation

Should the programmer be
aware the the technique is
being used?

NO YES

Is sharing of procedures
between users facilitated?

YESNO

Why was this technique
invented?

To allow programs and data
to be broken up into logically
independent address spaces
and to allow sharing and
protection

To get a large linear
address space without
having to buy more
physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.329

Segmentation with Paging

¨ Multics: Each program can have up to 256K independent segments
¤ Each with 64K 36-bit words

¨ Intel Pentium
¤ 16K independent segments
¤ Each segment has 109 32-bit words
¤ Few programs need more than 1000 segments, but many programs need

large segments

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.330

Virtual Memory

Objectives:
¨ Explain demand paging and page faults
¨ Contrast page replacement algorithms and explain Belady's anomaly
¨ Justify the rationale for stack algorithms
¨ Explain frame allocations
¨ Synthesize the concepts of thrashing and working sets

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.331

How we got here …

Contiguous
Memory

Virtual
Memory

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Single
Address
space

Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.332

Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.333

Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.334

Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by
¤ Heap or stack segments
¤ Dynamically linked libraries

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.335

Loading an executable program into memory

¨ What if we load the entire program?
¤ We may not need the entire program

¨ Load pages only when they are needed
¤ Demand Paging

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.336

Differences between the swapper and pager

¨ Swapper
¤ Swaps the entire program into memory

¨ Pager
¤ Lazy swapper
¤ Never swap a page into memory unless it is actually

needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.337

Swapping: Temporarily moving a process out
of memory into a backing store

Process
P1

Process
P2

Operating
System

User space

Swap out

Swap in

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.338

Pager swapping pages in and out of physical
memory

Program A

Program B

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Swap OUT

Swap IN

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.339

Demand Paging: Basic concepts

¨ Guess pages to be utilized by process
¤ Before the process will be swapped out

¨ Avoid reading unused pages
¤ Better physical memory utilization
¤ Reduced I/O

n Lower swap times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.340

Distinguishing between pages in memory and those
on disk

¨ Valid-Invalid bits
¤ Associated with entries in the page table

¨ Valid
¤ Page is both legal and in memory

¨ Invalid
① Page is not in logical address space of process

 OR
② Valid BUT currently on disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.341

Distinguishing between pages in memory
and those on disk

A
B
C

E
D

F
G
H

0
1
2

3
4

5
6

7

0
1
2

3

4

5

6

7

Page Table

6 v

4 v

9 v

I

I

I

I

I

A

C

F

0
1

2

3

4

5
6

7
8
9
10

11

12

13
14

15

A B

C D E

F G H

Logical
Memory

Backing Store

Physical
Memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.342

PHYSICAL
MEMORY

BACKING
STORE

PAGE
TABLE

Handling page faults

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.343

Pure demand paging

¨ Never bring a page into memory unless it is required

¨ Execute process with no pages in memory
¤ First instruction of process will fault for the page

¨ Page fault to load page into memory and execute

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.344

Potential problems with pure demand paging

¨ Multiple page faults per instruction execution
¤ One fault for instruction
¤ Many faults for data

¨ Multiple page faults per instruction are rare
¤ Locality of reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.345

Hardware requirements to support demand paging

¨ Page Table

¨ Secondary memory
¤ Section of disk known as swap space is used

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.346

Restarting instructions after a page fault

¨ Page faults occur at memory reference

¨ Use PCB to save state of the interrupted process

¨ Restart process in exactly the same place
¤ Desired page is now in memory and accessible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.347

Effective access times

¨ Without page faults, effective access times are equal to memory
access times
¤ 200 nanoseconds approximately

¨ With page faults
¤ Account for fault servicing with disk I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.348

Calculating the effective access times with demand
paging

p : probability of a page fault
 ma : memory access time

 Effective access time =
 (1-p) x ma + p x page-fault-time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.349

Components of page-fault servicing

Service
interrupt

Read in
 the page

Restart
process

1~100 µS 1~100 µSLatency : 3 mS
Seek : 5 mS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.350

Page replacement

¨ If no frame is free
¤ Find one that is not currently being used

n Use it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.351

Freeing a physical memory frame

¨ Write frame contents to swap space

¨ Change page table of process
¤ To reflect that page is no longer in memory

¨ Freed frame can now hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.352

Servicing a page fault

Retrieve page
from disk

Free frame available?

Use it

Select victim frame

Write victim frame
 to disk

YES
Done using a
page replacement
algorithmNO

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.353

PHYSICAL
MEMORY

BACKING
STORE

PAGE
TABLE

Page replacement is central to demand paging

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.354

Page replacement algorithms:

¨ What are we looking for?
¤ Low page-fault rates

¨ How do we evaluate them?
¤ Run algorithm on a string of memory references

n Reference string

¤ Compute number of page faults

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.355

FIFO page replacement algorithm:
Out with the old; in with the new

¨ When a page must be replaced
¤ Replace the oldest one

¨ OS maintains list of all pages currently in memory
¤ Page at head of the list: Oldest one
¤ Page at the tail: Recent arrival

¨ During a page fault
¤ Page at the head is removed
¤ New page added to the tail

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.356

FIFO example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Youngest

Oldest

0

7 0

7

1

1

0

2

1

0

2

2

1

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

3

2

0

3

2

0

0

3

1

1

0

2

1

0

2

1

0

2

2

1

7

7

2

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

No page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.357

How we got here …

Contiguous
Memory

Demand
Paging

Page
Faults

Page replacement
algorithms Page Bufferring Frame

Allocation

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Working Sets

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.358

Intuitively the greater the number of memory frames,
the lower the faults

¨ Surprisingly this is not always the case

¨ In 1969 Belady, Nelson and Shedler discovered counter example* in
FIFO
¤ FIFO caused more faults with 4 frames than 3

¨ This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging
machine. Belady, Nelson and Shedler.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.359

Belady’s anomaly: FIFO
Same reference string, different frames

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

Youngest

Oldest

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 3 3 4 0 1 2

0 0 0 1 2 3 4 0 1

9 page faults
with 3 frames

10 page faults
with 4 frames

Youngest

Oldest

Numbers in this color:
No page fault

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.360

Belady’s anomaly

¨ Led to a whole theory on paging algorithms and properties

¨ Stack algorithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.361

The Model

¨ There is an array M
¤ Keeps track of the state of memory

¨ M has as many elements as pages of virtual memory

¨ Divided into two parts
¤ Top part: m entries {Pages currently in memory}
¤ Bottom part: n-m entries

n Pages that were referenced BUT paged out

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.362

The model

Page fault

Reference
String

n
el

em
en

tsm
 e

nt
ri

es

Tracking the state of the array M over time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.363

Properties of the model

¨ When a page is referenced
¤ Move to the top entry of M

¨ If the referenced page is already in M
¤ All pages above it moved down one position
¤ Pages below it are not moved

¨ Transition from within box to outside of it
¤ Page eviction from main memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.364

The model

0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 2 3 4 1

0 2

0

1

2

0

3

1

2

0

3

1

2

0

5

3

1

2

0

5

4

3

1

2

0

5

4

6

5

4

6

3

1

2

0

5

4

6

3

1

2

0

7

6

3

7

4

5

1

2

0

6

3

7

4

5

1

2

0

7

4

6

3

5

1

2

0

7

4

6

3

5

1

2

0

7

4

6

3

7

4

6

3

5 5

1

2

0

1

2

0

3

5 3

57

4

6

1

2

0

7

4

6

2

0

1

3

5

7

4

6

2

0

1

3

5

7

4

6

2

0

1

3

5

1

4

6

2

0

7

3

5

1

4

6

7

2

0

1

7

2

3

5

4

6
0

1

7

2

3

5

6
0

4

7

2
3

4

5

6
0

1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.365

The optimal page replacement algorithm

¨ The best possible algorithm

¨ Easy to describe but impossible to implement

¨ Crux:
Put off unpleasant stuff for as long as possible

¨ Idea: evict “Furthest-in-the-future”

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.366

The optimal page replacement algorithm description

¨ When a page fault occurs some set of pages are in memory

¨ One of these pages will be referenced next
¤ Other pages may be not be referenced until 10, 100 or 1000 instructions

later

¨ Label each page with the number of instructions to be executed before
it will be referenced
¤ Page with the highest label should be removed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.367

The Least Recently Used (LRU) page replacement
algorithm

¨ Approximation of the optimal algorithm

¨ Observation
¤ Pages used heavily in the last few instructions

n Probably will be used heavily in the next few

¤ Pages that have not been used
n Will probably remain unused for a long time

¨ When a page fault occurs?
¤ Throw out page that has been unused the longest

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.368

LRU example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Recent

Least
Used

0

7 0

7

1

1

0

2

2

1

0

0

2

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

0

2

3

3

0

2

2

3

1

1

3

2

2

1

0

0

2

1

1

0

7

7

1

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.369

Using Logical clocks to implement LRU

¨ Each page table entry has a time-of-use field
¤ Entry updated when page is referenced

n Contents of clock register are copied

¨ Replace the page with the smallest value
¤ Time increases monotonically

n Overflows must be accounted for

¨ Requires search of page table to find LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.370

Stack based approach

¨ Keep stack of page numbers

¨ When page is referenced
¤ Move to the top of the stack

¨ Implemented as a doubly linked list

¨ No search done for replacement
¤ Bottom of the stack is the LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.371

Problems with clock/stack based approaches to LRU
replacements

¨ Inconceivable without hardware support
¤ Few systems provide requisite support for true LRU implementations

¨ Updates of clock fields or stack needed at every memory reference

¨ If we use interrupts and do software updates of data structures things
would be very slow
¤ Would slow down every memory reference

n At least 10 times slower

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.372

Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude approximation of LRU

FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging Efficient algorithm that approximates LRU well

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.373

Page Buffering:
Being proactive

¨ Maintain a list of modified pages

¨ When the paging device is idle
¤ Write modified pages to disk

¨ Implications
¤ If a page is selected for replacement increase likelihood of that page being

clean

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.374

Page Buffering: Reuse what you can

¨ Keep pool of free frames as before
¤ BUT remember which pages they held

¨ Frame contents are not modified when page is written to disk

¨ If page needs to come back in?
¤ Reuse the same frame if it was not used to hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.375

Buffering and applications

¨ Applications often understand their memory/disk usage better than
the OS
¤ Provide their own buffering schemes

¨ If both the OS and the application were to buffer
¤ Twice the I/O is being utilized for a given I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.376

Frame allocation: How do you divvy up free memory
among processes?

35 MB for the OS

93 MB for others

With demand paging all 93 frames would be in the free frame pool

Frame size = 1 MB; Total Size = 128 MB

2 processes at T0
 How are frames allocated?

128 MB

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.377

Constraints on frame allocation

¨ Max: Total number of frames in the system
¤ Available physical memory

¨ Min: Need to allocate at least a minimum number of frames
¤ Defined by the architecture of the underlying system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.378

Minimum number of frames

¨ As you decrease the number of frames for a process
¤ Page fault increases
¤ Execution time increases too

¨ Defined by the architecture
¤ In some cases instructions and operands (indirect references) straddle page

boundaries
n With 2 operands at least 6 frames needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.379

Global vs Local Allocation

¨ Global replacement
¤ One process can take a memory frame from another process

¨ Local replacement
¤ Process can only choose from the set of frames that was allocated to it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.380

Local vs Global replacement:
Based on how often a page is referenced

Pages

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

Usage
Count

10

7

5

3

9

4

2

6

3

5

6

Pages

A1

A2

A3

A5

B1

B2

B3

B4

C1

C2

C3
Local Replacement

Pages

A1

A2

A3

A4

B1

B2

A5

B4

C1

C2

C3
Global ReplacementProcesses A, B and C

Process A has
page faulted
and needs to
bring in a page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.381

Global vs Local Replacement

Local Global

Number of frames
allocated to process Fixed Varies dynamically

Can process control its
own fault rate? YES NO

Can it use free frames
that are available?

NO YES

Increases system
 throughput?

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.382

Locality of References

¨ During any phase of execution a process references a relatively small
fraction of its pages

¨ Set of pages that a process is currently using
¤ Working set

¨ Working set evolves during process execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.383

Implications of the working set

¨ If the entire working set is in memory
¤ Process will execute without causing many faults

n Until it moves to another phase of execution

¨ If the available memory is too small to hold the working set?
① Process will cause many faults
② Run very slowly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.384

Characterizing the affect of multiprogramming on
thrashing

C
PU

 U
til

iz
at

io
n

Degree of Multiprogramming

Thrashing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.385

Mitigating the effects of thrashing

¨ Using a local page replacement algorithm
¤ One process thrashing does not cause cascading thrashing among other

processes

¤ BUT if a process is thrashing
n Average service time for a page fault increases

¨ Best approach
① Track a process’ working set
② Make sure the working set is in memory before you let it run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.386

Virtualization

Objectives:
¨ Explain Virtual Machine Monitors (VMMs)
¨ Justify the Popek and Goldberg requirements for virtualization
¨ Explain how Virtualization works in the x86 architecture
¨ Compare Type-1 and Type-2 Hypervisors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.387

Firms often have multiple, dedicated servers: e-mail,
FTP, e-commerce, web, etc.

¨ Load: May be one machine cannot handle all that load

¨ Reliability: Management does not trust the OS to run 24 x 7 without
failures

¨ By putting one server on a separate computer, if one of the server
crashes?
¤ At least the other ones are not affected

¨ If someone breaks into the web server, at least sensitive e-mails are
still protected
¤ Sandboxing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.388

But …

¨ While this approach achieves isolation and fault tolerance
¤ This solution is expensive and hard to manage because so many machines

are also involved

¨ Other reasons for having separate machines?
¤ Organizations depend on more than one OS for their daily operations

n Web server on Linux, mail server on Windows, e-commerce server on OS X, other
services on various flavors of UNIX

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.389

What to do?

¨ A possible (and popular) solution is to use virtual machine technology

¨ This sounds very hip and modern
¤ But the idea is old … dating back to the 1960s
¤ Even so, the way we use it today is definitely new

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.390

Main idea

¨ VMM (Virtual Machine Monitor) creates the illusion of multiple (virtual)
machines on the same physical hardware
¤ VMM is also known as a hypervisor

n We will look at type 1 hypervisors (bare metal) and type 2 hypervisors (use
services and abstractions offered by an underlying OS)

¨ Virtualization allows a single computer to host multiple virtual
machines
¤ Each potentially running a different OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.391

Failure in one virtual machines does not bring down
any others

¨ Different servers run on different virtual machines
¤ Maintains partial-failure model at a lower cost with easier maintainability

¨ Also, we can run different OS on the same hardware
¤ Benefit from virtual machine isolation in the face of attacks
¤ Plus enjoy other good stuff: savings, real estate, etc.
¤ Convenient for complex software stack with precise system dependencies

n Think core libraries

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.392

Why virtualization works [1/2]

¨ Service outages are due not to faulty hardware, but due to poor
software, emphatically including OSes
¤ Ill-designed, unreliable, buggy, and poorly configured software

¨ Migration to another machine may be easier

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.393

Why virtualization works [2/2]

¨ The only software running in the highest privilege is the hypervisor

¨ Hypervisor has 2 orders of magnitude fewer lines of code than a full
operating system
¤ Has 2 orders of magnitude fewer bugs

¨ A hypervisor is simpler than an OS because it does only one thing
¤ Emulate copies of the bare metal (most commonly the Intel x86 architecture)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.394

Advantages to running software in VMs besides
strong isolation

¨ Few physical machines
¤ Saves money on hardware and electricity
¤ Takes up less rack space

¨ For companies such as Amazon or Microsoft
¤ Reducing physical demands on data centers represents huge cost savings
¤ Companies frequently locate their data centers in the middle of nowhere

n Just to be close to hydroelectric dams (and cheap energy)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.395

Hypervisors should score well on

¨ Safety
¤ Hypervisor should have full control of the virtualized resources

¨ Fidelity
¤ Behavior of program on a virtual machine should be identical to the same

program running on bare hardware

¨ Efficiency
¤ Much of the code in the virtual machine should run without intervention from

the hypervisor

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.396

Safety

¨ Consider each instruction in turn in an interpreter (such as Bochs) and
perform exactly what is needed
¤ May execute some instructions (INC) as is, but other instructions must be

simulated

¨ We cannot allow the guest OS to disable interrupts for the entire
machine or modify page-table mappings
¤ Trick is to make the guest OS believe that it has

¨ Interpreter may be safe, even hi-fi, but performance is abysmal
¤ So, VMMs try to execute most code directly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.397

Fidelity [1/2]

¨ Virtualization has long been a problem on x86
¤ Defects in 386 carried forward into new CPUs for 20 years in the name of

backward compatibility

¨ Every CPU with kernel mode and user mode has instructions that
behave differently
¤ Depending on whether it is executed in kernel/user mode

n Sensitive instructions
¤ Some instructions cause a trap

when executed in user-mode
n Privileged instructions

A machine is virtualizable
only if sensitive instructions
are a subset of privileged
instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.398

Fidelity [2/2]

¨ If you do something in user mode that you should not
¤ The hardware should trap!
¤ IBM/370 had this property, Intel’s 386 did not

¨ Several sensitive 386 instructions were ignored if executed in user mode
¤ Or executed with a different behavior
¤ E.g. POPF instruction replaces flags register which changes the bit that

enables/disables interrupts
n In user-mode this bit was simply not changed

¨ Also, some instructions could read sensitive state in user mode without
causing a trap

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.399

Full virtualization

¨ Trap all instructions
¨ Fully simulate entire computer
¨ Trade-off: High overhead
¨ Benefit: Can virtualize any OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.400

Paravirtualization [1/2]

¨ Never aims to present a virtual machine that looks just like the actual
underlying hardware

¨ Present machine-line software interface that explicitly exposes that it
is a virtualized environment
¤ Offers a set of hypercalls that allow the guest to send explicit requests to

the hypervisor
n Similar to how a system call offers kernel services to applications

¨ DRAWBACK: Guest OS has to be aware of the virtual machine API

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.401

Paravirtualization [2/2]

¨ Guests use hypercalls for privileged, sensitive operations like updating
page tables
¤ But they do it in cooperation with the hypervisor
¤ Overall system can be simpler and faster

¨ Paravirtualization was offered by IBM since 1972

¨ Idea was revived by Denali (2002) and Xen (2003) hypervisors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.402

Terms

¨ Guest Operating System
¤ The OS running on top of the hypervisor

¨ Host Operating System
¤ For a type 2 hypervisor: the OS that runs on the hardware

¨ Safe executions
¤ Execute the machine’s instruction set in a safe manner
¤ Guest OSes may change or mess up its own page tables … but not those of

others

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.403

Type 1 hypervisor

¨ Only program running in the most privileged mode

¨ Support multiple copies of the actual hardware
¤ Virtual machines
¤ Similar to processes a normal OS would run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.404

Location of Type-1 hypervisor

Hardware
(CPU, disk, network, interrupts, etc)

Type 1 hypervisor

Windows Linux
Control
Domain

Excel Word Emacs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.405

Type 2 hypervisor

¨ Also referred to a hosted hypervisor

¨ Relies on a host OS, say Windows or Linux, to allocate and schedule
resources

¨ Still pretends to be a full computer with a CPU and other devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.406

Type 2: Running Guest OS

¨ When it starts for the first time, acts like a newly booted computer
¤ Expects to find a DVD, USB drive or CD-ROM containing an OS

n The drive could be a virtual device
n Store the image as an ISO file on the hard drive and have hypervisor pretend its

reading from proper DVD drive

¨ Hypervisor installs the OS to its virtual disk (just a file) by running
installation that it found on DVD

¨ Once guest OS is installed on virtual disk, it can be booted and run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.407

Location of Type-2 hypervisor

Hardware
(CPU, disk, network, interrupts, etc)

Host OS
(e.g. Linux)

Guest OS
(e.g. Windows)

Type 2 hypervisor

Guest OS Processes

Host OS Process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.408

Examples of hypervisors [Partial List]

Virtualization Method Type 1 hypervisor Type 2 hypervisor

Virtualization without
hardware support

ESX Server 1.0 VMware workstation 1.0

Paravirtualization Xen 1.0

Virtualization with
hardware support

vSphere, Xen, Hyper-V VMware Fusion, KVM,
Parallels

Process Virtualization WINE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.409

Type-1 hypervisors

¨ Virtual machine runs as a user-process in user mode
¤ Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

¨ But the virtual machine runs a Guest OS that thinks it is in kernel mode
(although, of course, it is not)
¤ Virtual kernel mode

¨ The virtual machine also runs user processes, which think they are in the
user mode
¤ And really are in user mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.410

Modes

Hardware

Type 1 hypervisor Trap on privileged instruction

Guest Operating System

User processes

Kernel Mode

User mode

Virtual kernel mode

Virtual user mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.411

Execution of kernel model instructions

¨ What if the Guest OS executes an instruction that is allowed only when
the CPU is really in kernel mode?
¤ On CPUs without VT (Intel: Virtualization Technology)?

n Instruction fails and the OS crashes

¨ On CPUs with VT?
¤ A trap to the hypervisor does occur

n Hypervisor can inspect instruction to see if it was issued:
n By Guest OS: Arrange for the instruction to be carried out
n By user-process in that VM: Emulate what hardware would do when confronted with sensitive

instruction executed in user-mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.412

What if the guest is running and an interrupt
arrives from an external device?

¨ Type 2 hypervisor depends on host’s device drivers to handle to the
interrupt

¨ So, the hypervisor reconfigures hardware to to run the host OS
system code
¤ When the device driver runs, it finds everything just as it expected it to be

¨ Hypervisor behaves just like teenagers throwing a party when parents
are away
¤ It’s OK to rearrange furniture completely, as long as they put it back as they

found it before parents get home

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.413

Why do hypervisors work even on unvirtualizable
hardware?

¨ Sensitive instructions in the guest kernel replaced by calls to
procedures that emulate these instructions

¨ No sensitive instructions issued by the guest OS are ever executed
directly by true hardware
¤ Turned into calls to the hypervisor, which emulates them

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.414

Cost of virtualization

¨ We expect CPUs with VT would greatly outperform software
techniques

¨ Trap-and-emulate approach used by VT hardware generates a lot of
traps … and these are expensive
¤ Ruin CPU caches, TLBs, and branch predictions

¨ In contrast, when sensitive instructions are replaced by calls to
hypervisor procedures
¤ None of this context-switching overhead is incurred

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.415

True virtualization & paravirtualization

Hardware

Type 1 hypervisor Microkernel

Unmodified Windows Modified Linux

Trap due
to sensitive
instruction

Trap due to
hypervisor
call

True virtualization Paravirtualization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.416

x86 privilege level architecture without virtualization

OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.417

Full Virtualization: Binary translation approach to
x86 virtualization

VMM

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

Binary Translation
of OS Requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.418

Paravirtualization approach to x86 virtualization

Paravirtualized Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

“Hypercalls” to the
Virtualization Layer
replace non-virtualizable
OS instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.419

Hardware assisted virtualization

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of
User and OS Requests

OS Requests trap to VMM
without Binary Translation
or Paravirtualization

Root Mode
Privilege Levels

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.420

Contrasting the virtualization approaches

Full virtualization
with Binary
Translation

Hardware Assisted
Virtualization

OS Assisted
Virtualization/Para
virtualization

Technique Binary Translation
and Direct Execution

Exit to Root Mode
on privileged
instructions

Hypercalls

Guest
Modification/
Compatibility

Unmodified Guest
OS

Excellent
compatibility

Unmodified Guest
OS

Excellent
compatibility

GuestOS codified
to issue Hypercalls
so it can’t run on
native hardware.

Compatibility is
lacking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.421

Installing application software

¨ VMs offer a solution to a problem that has long plagued users
(especially open source)
¤ How to install application programs

¨ Applications are dependent on numerous other applications and
libraries
¤ Which themselves depend on a host of software packages

¨ Plus there are dependencies on particular versions of compilers,
scripting languages, OS etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.422

With VMs …

¨ Developer can carefully construct a virtual machine
¤ Load it with required OS, compiler, libraries, and application code
¤ Freeze the entire unit … ready to run

¨ Only the software developer has to understand the dependencies

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.423

Licensing Issues

¨ Some software is licensed on a per-CPU basis
¤ Especially, software for companies
¤ When they buy a program they have the right to run it on just one CPU

n What is a CPU anyway?
n Can we run multiple VMs all running on the same physical hardware?

¨ Problem is even worse, when companies have licenses for N machines
running the software
¤ VMs come and go on demand

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.424

File Systems

Objectives:
¨ Summarize file system structure
¨ Contrast contiguous allocation vs indexed allocations
¨ Explain the Unix File System
¨ Explain and contrast Windows File Systems: the File Allocation table

and NTFS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.425

Files are an abstraction mechanism

¨ Provide a way to store information and read it back later

¨ Do this is an way that shields the user from
¤ How and where information is stored on disk
¤ How disks really work

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.426

Files can be structured in many ways:
Unstructured sequence of bytes

¨ The OS does not know or care what is in the file
¤ Maximum flexibility

¨ OS does not help, but does not get in the way either

¨ Meaning is imposed by programs

¨ Most OS support this

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.427

Mounting file systems

¨ Many systems have more than one disk
¤ How do you handle them?

¨ S1:Keep self contained file system on each disk
¤ And keep them separate

¨ S2: Allow one disk to be mounted in another disk’s file tree

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.428

Mounting file systems

/

a b

c d

p q r

/

x y z

x y z

Hard Drive Diskette

cp /b/x /a/d/x

/

a b

c d

p q r

Hard Drive

cp D:/x /a/d/x
H is default

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.429

Checks performed during mounting

¨ OS verifies that the device contains a valid file system

¨ Read device directory
¤ Make sure that the format is an expected one

¨ Windows mounting
¤ Each device in a separate name space
¤ {Letter followed by a colon e.g. G:}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.430

There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.431

I/O Control consists of device drivers

¨ Transfers information between main memory and disk

¨ Receives high-level commands
¤ Retrieve block 123, etc

¨ Outputs low-level, hardware-specific instructions
¤ Used by the hardware controller
¤ Writes bit patterns into specific locations of the I/O

controller

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.432

There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.433

Basic file system issues commands to the device
driver

¨ Read and write physical blocks on disk
¤ E.g. Drive 1, cylinder 73, sector 10

¨ Manages buffers and caches
① To hold file system, directory and data blocks

② Improves performance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.434

There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.435

File organization module

¨ Knows about files
¤ Logical and physical blocks

¨ Translate logical addresses to physical ones
¤ Needed for every block

¨ Includes a free space manager
¤ Tracks unallocated blocks and allocates as needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.436

There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.437

The logical file system

¨ Manages metadata information
¤ Metadata is data describing the data

¨ Maintains file structure via file control blocks
¤ Info about the file

n Ownership and permissions
n Location of file contents

¤ inode in UNIX file systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.438

Several file systems are in use

¨ CD-ROMs written in ISO 9660 format
¤ Designed by CD manufacturers

¨ UNIX
¤ Unix file system (UFS)
¤ Berkley Fast File System (FFS)

¨ Windows: FAT, FAT32 and NTFS

¨ Linux
¤ Supports 40 different file systems
¤ Extended file system: ext2, ext3 and ext4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.439

On-disk structures used to implement a file system
(1)

¨ Boot control block
¤ Information needed to boot an OS from that volume

¨ Volume control block: Volume information
¤ Number of blocks in the partition
¤ Size of the blocks
¤ Free-block count/pointers
¤ Free file-control-block count/pointers
¤ UFS: super-block Windows: Master file table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.440

On-disk structures used to implement a file system
(2)

¨ Directory structure to organize files
¤ One per file system

¨ Per file file-control-block
¤ Contains details about individual files

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.441

In memory structures used to improve performance
via caching

¨ Mount table
¤ Information about each mounted volume

¨ Directory structure cache
¤ Holds information about recently accessed directories

¨ System-wide open file table
¤ File control block of each open file

¨ Buffers to hold file-system blocks
¤ To read and write to storage

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.442

Creation of a new file

¨ Allocate a file-control block (FCB)

¨ Read appropriate directory into memory
¤ Directory is just a file in UNIX

n Special type field

¨ Update directory with new file name and FCB

¨ Write directory back to disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.443

Directory implementation:
Hash table

¨ Linear list and a hash table is maintained

¨ Key computed from file name
¤ Hash table value returns pointer to entry in linear list

¨ Things to consider
① Account for collisions in the hash space
② Need to rehash the hash table when the number of

entries exceed the limit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.444

Contiguous Allocation

¨ Each file occupies a set of contiguous blocks on the disk
¤ If file is of size n blocks and starts at location b

n Occupies blocks b, b+1, …, b+n-1

¨ Disk head movements
¤ None for moving from block b to (b+1)
¤ Only when moving to a different track

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.445

Sequential and direct access in contiguous
allocations

¨ Sequential accesses
¤ Remember disk address of the last referenced block
¤ When needed, read the next block

¨ Direct access to block i of file that starts at block b
 b + i

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.446

Contiguous allocations suffer from external
fragmentation

¨ Free space is broken up into chunks
¤ Space is fragmented into holes

¨ Largest continuous chunk may be insufficient for meeting request

¨ Compaction is very slow on large disks
¤ Needs several hours

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.447

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

Linked Allocation: Each file is a linked list of disk
blocks

Physical
block

File
block
0

4

File A

File
block
3

14

File
block
2

11

File
block
1

3Physical
block

File
block
0

6

File B

Pointer to next block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.448

Linked List Allocations:
Advantages

¨ Every disk block can be used
¤ No space is lost in external fragmentation

¨ Sufficient for directory entry to merely store disk address of first block
¤ Rest can be found starting there

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.449

Linked List Allocation:
Disadvantages

¨ Used effectively only for sequential accesses
¤ Extremely slow random access

¨ Space in each block set aside for pointers
¤ Each file requires slightly more space

¨ Reliability
¤ What if a pointer is lost or damaged?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.450

Linked list allocation: Take pointers from disk block
and put in table

10

11

7

3

2

12

14

0
1

2

3

4
5

6

7
8

9

10
11

12
13

File
block
4

12

File
block
3

10

File
block
2

2

File
block
1

7

File
block
0

4

EOF
Table tracks EVERY disk block in the system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.451

Linked list allocation using an index

¨ Entire disk block is available for data

¨ Random access is much easier
¤ Chain must still be followed

n But this chain could be cached in memory

¨ MS-DOS and OS/2 operating systems
¤ Use such a file allocation table (FAT)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

Computer Science
Colorado State University

L28.452

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.453

inode

¨ Fixed-length data structure
¤ One per file

¨ Contains information about
¤ File attributes

n Size, owner, creation/modification time etc.

¤ Disk addresses
n File blocks that comprise file

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.454

inode

¨ The inode is used to encapsulate information about a large number of
file blocks.

¨ For e.g.
¤ Block size = 8 KB, and file size = 8 GB
¤ There would be a million file-blocks

n inode will store info about the pointers to these blocks

¤ inode allows us to access info for all these blocks
n Storing pointers to these file blocks also takes up storage

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.455

Managing information about data blocks in the
inode

¨ First few data blocks of the file stored in the inode

¨ If the file is large: Indirect pointer
¤ To a block of pointers that point to additional data blocks

¨ If the file is larger: Double indirect pointer
¤ Pointer to a block of indirect pointers

¨ If the file is huge: Triple indirect pointer
¤ Pointer to a block of double-indirect pointers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.456

Schematic structure of the inode

File Attributes:
Size (bytes)
Owner UID/GID
Relevant times
Link and Block counts
Permissions

Direct pointers to first
few file blocks

Single indirect pointer

Double indirect
pointer

Triple indirect pointer

Pointers
to next

file blocks
Address of
disk block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.457

i-Node: How the pointers to the file blocks are
organized

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node
Attributes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.458

Disk Layout in traditional UNIX systems

Boot
Block

Super
Block

i-Nodes

. . .

Data Blocks

An integral number of inodes fit in a single data block

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.459

Super Block describes the state of the file system

¨ Total size of partition
¨ Block size and number of disk blocks
¨ Number of inodes
¨ List of free blocks
¨ inode number of the root directory

¨ Destruction of super block?
¤ Will render file system unreadable

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.460

A linear array of inodes follows the data block

¨ inodes are numbered from 1 to some max

¨ Each inode is identified by its inode number
¤ inode number contains info needed to locate

inode on the disk
¤ Users think of files as filenames
¤ UNIX thinks of files in terms of inodes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.461

UNIX directory structure

¨ Contains only file names and the corresponding inode
numbers

¨ Use ls –i to retrieve inode numbers of the files in the
directory

i-node
Number

File name

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.462

Directory entry, inode and data block for a simple
file

12345

i-node
Number

name1

File name

1

23567

.
.

.
.

Fragment of the
text in the file

Block 23567
inode 12345

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.463

Two hard links to the same file

12345 name1

i-node File name

2

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

12345 name2

i-node File name

Directory entry
in /dirB

Block 23567

inode 12345

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.464

File with a symbolic link

12345 name1

i-node File name

1

23567

.
.

.
.

Fragment of the
text in the file

Directory entry
in /dirA

13579 name2

i-node File name

Directory entry
in /dirB

1

15213

.
.

.
.

Block 23567

“/dirA/name1”

Block 15213

inode 12345

inode 13579

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.465

Limitations of a file system based on inodes

¨ File must fit in a single disk partition

¨ Partition size and number of files are fixed when system is set up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.466

Memory mapped files

¨ open(), read(), write()
¤ Requires system calls and disk access

¨ Allow part of the virtual address space to be logically associated with
the file
¤ Memory mapping

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.467

Memory-mapping maps a disk block to a page (or
pages) in memory

¨ Manipulate files through memory
¤ Multiple processes may map file concurrently

n Enables data sharing

¤ Since JVM 1.4, Java supports memory-mapped files
n FileChannel

¨ Writes to files in memory are not necessarily
immediate

