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Topics covered in this lecture

¨ Introduction on Operating Systems
¨ Processes
¨ Inter-Process Communications
¨ Threads
¨ Process Synchronization and Atomic Transactions
¨ CPU scheduling algorithms
¨ Deadlocks
¨ Memory management
¨ Virtual memory
¨ Virtualization
¨ File systems
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Disclaimer and preparation for the final

¨ This slide set is meant to guide you in your preparation, but it does not mean other 
lecture slides omitted here are useless! Return to each lecture as needed to polish 
your understanding of concepts

¨ Your final will be 2h duration, taken online via Canvas+respondus, and will close 
Monday May 6th at 11:59pm (end time to complete the exam). It will open 
Sunday May 5th at 00:01am. Official final date is Monday morning, but I open 
for a longer period of time to accommodate people with jobs, etc. 

¨ All objectives listed for each module will be evaluated with at least one question, 
with a majority of points on checking you have achieved the learning objectives, 
and a minority of points on more advanced questions checking your full 
understanding of some specific concepts. These advanced questions will only cover 
lectures/content taught after the spring break
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Introduction on Operating Systems

Objectives:
¨ Summarize basic operating systems concepts
¨ Highlight key developments in the history of operating systems
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A modern computer is a complex system

¨ Multiple processors

¨ Main memory and Disks

¨ Keyboard, Mouse and Displays

¨ Network interfaces

¨ I/O devices
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Why do we need Operating Systems?

¨ If every programmer had to understand how all these components 
work?
¤ Software development would be arduous

¨ Managing all components and using them optimally is a challenge
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Computers are equipped with a layer of software

¨ Called the Operating System

¨ Functionality:
¤ Provide user programs with a better, simpler,  cleaner model of the 

computer
¤ Manage resources efficiently
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Where the operating system fits in

User interface Program

Operating System

Bare Hardware

Web browser E-mail reader Music Player

Software

User mode

Kernel mode
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Where the operating system fits in

¨ The OS runs on bare hardware in kernel mode
¤ Complete access to all hardware
¤ Can execute any instruction that the machine is capable of executing 

¨ Provides the base for all software
¤ Rest of the software runs in user-mode

n Only a subset of machine instructions is available
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The OS controls hardware and coordinates 
its use among various programs

User 1 User NUser 3User 2

Compiler       Assembler            Text editor      Database System

System and Application Programs

Operating System

Computer 
Hardware
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Kernel and user modes

¨ Everything running in kernel mode is part of the OS

¨ But some programs running outside it are part of it or at least closely 
associated with it
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Operating systems tend to be huge, complex and 
long-lived

¨ Source code of an OS like Linux or Windows?
¤ Order of 5 million lines of code (for kernel)

n 50 lines page, 1000 pages/volume = 100 volumes

¨ Application programs such as GUI, libraries and application software?
¤ 10-20 times that
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Why do operating systems live for a long time?

¨ Hard to write and folks are loath to throw it out

¨ Typically evolve over long periods of time
¤ Windows 95/98/Me is one OS
¤ Windows NT/2000/XP/Vista/7/8 is another
¤ System V, Solaris, BSD derived from original UNIX

¤ Linux is a fresh code base
n Closely modeled on UNIX and highly compatible with it

¤ Apple OS X based on XNU (X is not Unix) which is based on the Mach 
microkernel and BSD’s POSIX API 
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An operating system performs two unrelated 
functions

¨ Providing application programmers a clean abstract set of resources
¤ Instead of messy hardware ones

¨ Managing hardware resources
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The OS as an extended machine

¨ The architecture of a computer includes 
¤ Instruction set, memory organization, I/O, and bus structure 

¨ The architecture of most computers at the machine language level
¤ Primitive and awkward to program especially for I/O
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Main memory is generally the only large 
storage device the CPU deals with

¨ To execute a program, it must be mapped to absolute addresses and 
loaded into memory

¨ Execution involves accesses to instructions and data from memory
¤ By generating absolute addresses

¨ When program terminates, memory space is reclaimed
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Virtual memory allows processes not completely 
memory resident to execute

¨ Enables us to run programs that are larger than the actual physical 
memory

¨ Separates logical memory as viewed by user from physical memory

¨ Frees programmers from memory storage limitations
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Program Construct: 
Asynchronous operation

¨ Events happen at unpredictable times AND in 
unpredictable order.
¤ Interrupts from peripheral devices
¤ For e.g. keystrokes and printer data

¨ To be correct, a program must work will all possible 
timings

¨ Timing errors are very hard to repeat
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Program Construct: 
Concurrency

¨ Sharing resources in the same time frame

¨ Interleaved execution

¨ Major task of modern OS is concurrency control

¨ Bugs are hard to reproduce, and produce unexpected side effects
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Concurrency occurs at the hardware level 
because devices operate at the same time

¨ Interrupt: Electrical signal generated by a peripheral device to set 
hardware flag on CPU

¨ Interrupt detection is part of instruction cycle

¨ If interrupt detected
¤ Save current value of program counter
¤ Load new value that is address of interrupt service routine or interrupt 

handler: device drivers
n Drivers use signals (software) to notify processes
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Signal is the software notification of an event

¨ Often a response of the OS to an interrupt 
¤ OS uses signals to notify processes of completed 

I/O operations or errors

¨ Signal generated when event that causes signal occurs
¤ For example: keystroke and Ctrl-C

¨ A process catches a signal by executing handlers for the signal
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Concurrency constructs: I/O operations

¨ Coordinate resources so that CPU is not idle

¨ Blocking I/O blocks the progress of a process

¨ Asynchronous I/O (dedicated) threads circumvent this problem

¨ Ex: Application monitors 2 network channels
¤ If application is blocked waiting for input from one source, it cannot respond 

to input on 2nd channel
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Concurrency constructs: Processes & threads 

¨ User can create multiple processes; fork() in UNIX

¨ Inter process communications
¤ Common ancestor: pipes
¤ No common ancestor: signals, semaphores, shared address spaces, or 

messages

¨ Multiple threads within process = concurrency
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Trend: going multi-core for CPUs 

¨ Driven by power / physics
¨ Problem: parallelism in
the application? 
¨ We merely see 16-core
CPUs as HEDT in 2024

Grabbed from DoE Scidac
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Multiprogramming organizes jobs so that 
the CPU always has one to execute

¨ A single program (generally) cannot keep CPU & I/O devices busy at 
all times

¨ A user frequently runs multiple programs

¨ When a job needs to wait, the CPU switches to another job.

¨ Utilizes resources (cpu, memory, peripheral devices) effectively.
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Time sharing is a logical extension of the 
multiprogramming model

¨ CPU switches between jobs frequently, users can 
interact with programs

¨ Time shared OS allows many users to use computer 
simultaneously

¨ Each action in a time shared OS tends to be short
¤ CPU time needed for each user is small
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Processes

Objectives:
¨ Contrast programs and processes
¨ Explain the memory layout of processes
¨ Describe Process Control Blocks
¨ Explain the notion of Interrupts and Context Switches
¨ Describe process groups
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A process is just an instance of an executing program

¨ Conceptually each process has its own virtual CPU

¨ In reality, the CPU switches back-and-forth from process to process

¨ Processes are not affected by the multiprogramming
¤ Or relative speeds of different processes
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An example scenario: 4 processes

A

B

C

D

A

B C

D

Four Program Counters

4 processes in 
memory
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Example scenario: 4 processes

Pr
oc
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s

A

B

C

D

Time

• At any instant only one process executes
• Viewed over a long time, all processes have made 

progress
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Programs and processes

¨ Programs are passive, processes are active

¨ The difference between a program and a process is subtle, but crucial
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Key concepts

¨ Process is an activity of some kind; it has a
¤ Program
¤ Input and Output
¤ State

¨ Single processor may be shared among several processes
¤ Scheduling algorithm decides when to stop work on one, and start work on 

another 
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Key concepts

¨ Process is an activity of some kind; it has a
¤ Program
¤ Input and Output
¤ State

¨ Single processor may be shared among several processes
¤ Scheduling algorithm decides when to stop work on one, and start work on 

another 



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.34

How a program becomes a process

¨ When a program is executed, the OS copies the program image into 
main memory

¨ Allocation of memory is not enough to make a program into a process

¨ Must have a process ID

¨ OS tracks IDs and process states to orchestrate system resources 
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A process in memory

stack

heap

data

text
{Global variables}

{Function parameters, 
  return addresses, 
  and local variables}

max

low
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Program in memory (I)

¨ Program image appears to occupy contiguous blocks of memory

¨ OS maps programs into non-contiguous blocks
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Program in memory (II)

¨ Mapping divides the program into equal-sized pieces: pages

¨ OS loads pages into memory

¨ When processor references memory on page
¤ OS looks up page in table, and loads into memory
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Advantages of the mapping process

¨ Allows large logical address space for stack and heap
¤ No physical memory used unless actually needed

¨ OS hides the mapping process
¤ Programmer views program image as logically contiguous

¤ Some pages may not reside in memory 
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Finite State Machine

¨ An initial state

¨ A set of possible input events

¨ A finite number of states

¨ Transitions between these states

¨ Actions
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Process state transition diagram: When a process 
executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion
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Each process is represented by a process control 
block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any 
information that varies from 
process to process.



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.42

An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle
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Scheduling Queues

¨ Job Queue: Contains all processes
¤ A newly created process enters here first

¨ Ready Queue
¤ Processes residing in main memory
¤ Ready and waiting to execute
¤ Typically a linked list

¨ Device Queue
¤ Processes waiting for a particular I/O device
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Process scheduling

CPUReady 
queue

I/O QueueI/O
I/O 
request

Time  slice
expired

Fork a 
child

Wait for an
interrupt

interrupt
occurs

child 
executes
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Interrupts and Contexts

¨ Interrupt causes the OS to change CPU from its 
current task to run a kernel routine

¨ Save current context so that suspend and resume are 
possible

¨ Context is represented in the PCB
¤ Value of CPU registers
¤ Process state
¤ Memory management information
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Context switch refers to switching from one process 
to another

①  Save state of current process

②  Restore state of a different process

¨ Context switch time is pure overhead
¤ No useful work done while switching
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Example: Process tree in Solaris
Sched
pid=0

pageout 
pid=2

init
pid=1

fsflush 
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.48

Processes in UNIX

¨ init : Root parent process for all user processes

¨ Get a listing of processes with ps command 
§ ps: List of all processes associated with user
§ ps –a : List of all processes associated with   terminals
§ ps –A : List of all active processes
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Resource sharing between a process and its 
subprocess

¨ Child process may obtain resources directly from OS

¨ Child may be constrained to a subset of parent’s resources
¤ Prevents any process from overloading system

¨ Parent process also passes along initialization data to the child
¤ Physical and logical resources
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Parent/Child processes: 
Execution possibilities

¨ Parent executes concurrently with children

¨ Parent waits until some or all of its children terminate
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Parent/Child processes: 
Address space possibilities

¨ Child is a duplicate of the parent
¤ Same program and data as parent

¨ Child has a new program loaded into it
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Process creation in UNIX

¨ Process created using fork()
¤ fork() copies parent’s memory image

¤ Includes copy of parent’s address space

¨ Parent and child continue execution at instruction after 
fork()
¤ Child: Return code for fork() is  0 
¤ Parent: Return code for fork() is the non-ZERO process-ID 

of new child
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fork() results in the creation of 2 distinct programs

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will 
execute
from here
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A parent can move itself from off the 
ready queue and await child’s termination

¨ Done using the wait() system call.
¨ When child process completes, parent process 

resumes

fork()

wait()

exec(
)

exit()

resumes
parent

child

Return value = Non-ZERO
                           child PID

Return value=ZERO
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wait/waitpid allows caller to suspend 
execution till a child’s status is available

¨ Process status availability
¤ Most commonly after termination
¤ Also available if process is stopped

¨ waitpid(pid, *stat_loc, options)
§ pid== -1 : any child
§ pid > 0    : specific child
§ pid == 0 : any child in the same process group
§ pid < -1 :any child in process group abs(pid)
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Process groups

¨ Process group is a collection of processes

¨ Each process has a process group ID

¨ Process group leader?
¤ Process with pid==pgid

¨ kill treats negative pid as pgid
¤ Sends signal to all constituent processes
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Process Group IDs:
When a child is created with fork()

①  Inherits parent’s process group ID

②  Parent can change group ID of child by using 
setpgid

③  Child can give itself new process group ID
¤ Set process group ID = its process ID
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Process groups 

¨ It can contain processes which are: 
①  Parent (and further ancestors)

②  Siblings

③  Children (and further descendants)

¨ A process can only send signals to members of its process group
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Example: Process tree in Solaris
Sched
pid=0

pageout 
pid=2

init
pid=1

fsflush 
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin
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Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤ When a process is created, parent is given a special token (called handle)

n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy
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Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤ When a process is created, parent is given a special token (called handle)

n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy
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Process terminations

¨ Normal exit (voluntary)
¤ E.g. successful compilation of a program

¨ Error exit (voluntary)
¤ E.g. trying to compile a file that does not exist
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Process terminations

¨ Fatal error (involuntary)
¤ Program bug

n Referencing non-existing memory, dividing by zero, etc 

¨ Killed by another process (involuntary)
¤ Execute system call telling OS to kill some other process
¤ Killer must be authorized to do the killing of the killee
¤ Unix: kill    Win32: TerminateProcess
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Process terminations: 
This can be either normal or abnormal

¨ OS deallocates the process resources
¤ Cancel pending timers and signals
¤ Release virtual memory resources and locks
¤ Close any open files

¨ Updates statistics
¤ Process status and resource usage

¨ Notifies parent in response to a wait()
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On termination a UNIX process DOES NOT fully release resources 
until a parent execute a wait() for it

¨ When the parent is not waiting when the child terminates? 
¤ The process becomes a zombie

¨ Zombie is an inactive process
¤ Still has an entry in the process table
¤ But is already dead, so cannot be killed easily!! J

¨ Zombie processes often come from error in programming: not properly 
waiting on all children created, changing the parent while children still 
active, etc.
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Zombies and termination

¨ When a process terminates, its orphaned children and 
are adopted by a special process
¤ This special system process is init 

¨ Some more about the special process init
①  Has a pid of 1

②  Periodically executes wait() for children

③  Children without a parent are adopted by init
n Zombie processes are adopted by init after killing their 

parent, then cleaned by the periodic wait()
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Normal termination of processes

¨ Return from main

¨ Implicit return from main
¤ Function falls off the end

¨ Call to exit, _Exit or _exit
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Protection and Security

¨ Control access to system resources
¤ Improve reliability

¨ Defend against use (misuse) by unauthorized or 
incompetent users

¨ Examples
¤ Ensure process executes within its own space
¤ Force processes to relinquish control of CPU
¤ Device-control registers accessible only to the OS
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Inter-Process Communications

Objectives:
¨ Explain inter-process communications based on Shared Memory
¨ Explain inter-process communications based on Pipes
¨ Explain inter-process communications based on message passing
¨ Contrast inter-process communications based on shared memory, pipes, 

and message passing
¨ Design programs that implement inter-process communications
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Independent and Cooperating processes

¨ Independent: CANNOT affect or be affected by other processes

¨ Cooperating: CAN affect or be affected by other processes
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Why have cooperating processes?

¨ Information sharing: shared files

¨ Computational speedup
¤ Sub tasks for concurrency

¨ Modularity 

¨ Convenience: Do multiple things in parallel
¨ Privilege separation
¨ Etc.
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Cooperating processes need IPC to exchange data 
and information

¨ Shared memory
¤ Establish memory region to be shared
¤ Read and write to the shared region

¨ Message passing
¤ Communications through message exchange
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Contrasting the two IPC approaches

process A

process B 

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement
Best for small amounts of data
Kernel intervention for communications

Maximum speed
System calls to establish shared memory



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.74

Shared memory systems

¨ Shared memory resides in the address space of process creating it

¨ Other processes must attach segment to their address space
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IPC: Use of the created shared memory

¨ Once shared memory is attached to the process’s 
address space

¤ Routine memory accesses using * from shmat()
n Write to it 

n sprintf(shared_memory, “Hello”);
n Print string from memory

n printf(“*%\n”, shared_memory); 

¨ RULE: First attach, and then access
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IPC Shared Memory:
What to do when you are done

① Detach from the address space. 
§ shmdt() :SHared Memory DeTtach 
§ shmdt(shared_memory)

② To remove a shared memory segment
§ shmctl() : SHared Memory ConTroL operation 

n Specify the segment ID to be removed
n Specify operation to be performed: IPC_RMID
n Pointer to the shared memory region
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Message Passing: Communicate and synchronize actions 
without sharing the same address space

¨ Useful in distributed environments (e.g., Message Passing Interface)

¨ Two main operations
¤ send(message)
¤ receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤ Variable: Little more effort
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Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤ Shared memory
¤ Hardware bus
¤ Network
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Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering

¤ Automatic or explicit buffering
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Naming allows processes to refer to each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤ Direct
¤ Indirect
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Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process
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Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process definitions
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Indirect communications: Message sent and received 
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner 
¤ POSIX message queues use integers to identify 

mailboxes

¨ Processes communicate only if they have shared 
mailbox
¤ send(A, message)
¤ receive(A, message)
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Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤ P1 sends a message to A
¤ P2, P3 execute a receive() from A

¨ Possibilities? Allow …
①  Link to be associated with at most 2 processes

②  At most 1 process to execute receive() at a time

③  System to arbitrarily select who gets message 
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Mailbox ownership: Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤ Not attached to any process

¨ OS must allow processes to
¤ Create mailbox
¤ Send and receive through the mailbox
¤ Delete mailbox
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Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking
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Communicate and synchronize actions 
without sharing the same address space

¨ Useful in distributed environments (e.g., Message Passing Interface)

¨ Two main operations
¤ send(message)
¤ receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤ Variable: Little more effort
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Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤ Shared memory
¤ Hardware bus
¤ Network
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Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering

¤ Automatic or explicit buffering
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Naming allows processes to refer to each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤ Direct
¤ Indirect
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Direct communications

¨ Explicitly name recipient or sender 

¨ Link is established automatically 
¤ Exactly one link between the 2 processes

¨ Addressing
¤ Symmetric 
¤ Asymmetric 
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Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process
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Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process definitions
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Indirect communications: Message sent and received 
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner 
¤ POSIX message queues use integers to identify 

mailboxes

¨ Processes communicate only if they have shared 
mailbox
¤ send(A, message)
¤ receive(A, message)
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Indirect communications: Link properties

¨ Link established only if both members share mailbox

¨ Link may be associated with more than two processes
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Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤ P1 sends a message to A
¤ P2, P3 execute a receive() from A

¨ Possibilities? Allow …
①  Link to be associated with at most 2 processes

②  At most 1 process to execute receive() at a time

③  System to arbitrarily select who gets message 
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Mailbox ownership: Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤ Not attached to any process

¨ OS must allow processes to
¤ Create mailbox
¤ Send and receive through the mailbox
¤ Delete mailbox
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Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking
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Threads

Objectives:
¨ Explain differences between processes and threads
¨ Compare multithreading models
¨ Contrast differences between user and kernel threads
¨ Relate dominant threading libraries: POSIX, Win32, and Java
¨ Design threaded programs that can synchronize their actions
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What are threads?

¨ Miniprocesses or lightweight processes

¨ Why would anyone want to have a kind of process within a process?
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The main reason for using threads

¨ In many applications multiple activities are going on at once
¤ Some of these may block from time to time

¨ Decompose application into multiple sequential threads
¤ Running in quasi-parallel
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Isn’t this precisely the argument for processes?

¨ Yes, but there is a new dimension …

¨ Threads have the ability to share the address space (and all of its 
data) among themselves

¨ For several applications
¤ Processes (with their separate address spaces) don’t work
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Threads are also lighter weight than processes

¨ Faster to create and destroy than processes

¨ In many systems thread creation is 10-100 times faster

¨ When number of threads needed changes dynamically and rapidly?
¤ Lightweight property is very useful
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Threads:
The performance argument

¨ When all threads are CPU bound all the time?
¤ Additional threads would likely yield no performance gain

¨ But when there is substantial computing and substantial I/O
¤ Having threads allows activities to overlap

¤ Speeds up the application possibly
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User-level threads: Overview

Kernel

User 
space

Kernel 
space

Process Thread

Thread 
table

Process 
table

Runtime System



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.106

User threads are invisible to the kernel and have low 
overhead

¨ Compete among themselves for resources allocated to their 
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management 

n Before (and possibly after) calling jacketed library function.
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User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
①  Place thread on a list of waiting threads
②  Add call to list of actions to try later
③  Pick another thread to run

¨ ALL control is invisible to user and OS
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Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is 
thwarted by: 
¤ CPU bound threads
¤ Thread that rarely perform library calls … 

n Runtime can’t regain control to schedule  other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control 
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Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism
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Kernel-level threads: Overview

Kernel

User 
space

Kernel 
space

Process Thread

Thread 
table

Process table
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Kernel threads 

¨ Kernel is aware of kernel-level threads as schedulable entities
¤ Kernel maintains a thread table to keep track of all threads in the system

¨ Compete systemwide for processor resources
¤ Can take advantage of multiple processors
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Kernel threads:
Management costs

¨ Scheduling is almost as expensive as processes
¤ Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads 
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Hybrid thread models

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤ Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping 
¤ Implementation dependent
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The Many-to-One threading model

User threads

k Kernel thread
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Many-to-One Model maps many user level threads 
to 1 kernel thread

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!
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Many-to-One Model maps many user level threads 
to 1 kernel thread

¨ Only 1 thread can access kernel at a time
¤ Multiple threads unable to run in parallel on multi-processor/core system

¨ E.g.: Solaris Green threads, GNU Portable threads
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The One-to-One threading model

k k k
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One-to-One Model:
Maps each user thread to a kernel thread

¨ More concurrency
¤ Another thread can continue to run, when a thread invokes a blocking system 

call

¨ Threads run in parallel on multiprocessors
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One-to-One Model:
Maps each user thread to a kernel thread

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¤ Uses more kernel threads so uses more resources

¨ Supported by: 
¤ Linux
¤ Windows family: NT/XP/2000 
¤ Solaris 9 and up
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Many-to-Many threading Model:  
2-level is a variant of this

kk k kk k k

Many-to-Many Two-level
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Many-to-Many model

¨ Multiplex many user-level threads on a smaller number of kernel 
threads

¨ Number of kernel threads may be specific to
¤ Particular application
¤ Particular machine

¨ Supported in 
¤ IRIX, HP-US, and Solaris (prior to version 9)
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A comparison of the three models

Many-to-one One-to-One Many-to-Many

Kernel 
Concurrency

During blocking 
system call?

Kernel thread 
creation

Caveat

NO YES if many
threads

YES

Process Blocks Process DOES NOT 
block if other threads

Process DOES NOT 
block

Kernel thread 
already exists

Kernel thread 
creation overhead

Kernel threads
 available 

Use system calls 
(blocking) with care

Don’t create too 
many threads to not
use too much resources
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Thread libraries provide an API for creating and 
managing threads

User level library Kernel level 
library

Library code and data 
structures

Thread creation requires 
a system call?

OS/Kernel support

Reside in 
user space

Reside in 
kernel space

NO YES

NO YES



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.124

Dominant thread libraries (1)

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤ Provided as user- or kernel-level library
¤ Solaris, Mac OS X, Linux, …

¨ Win32 thread library
¤ Kernel-level library
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Dominant thread libraries (2)

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads 
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Process Synchronizations and Atomic Transactions

Objectives:
¨ Formulate the critical section problem
¨ Dissect a software solution to the critical section problem (case study: 

Peterson's solution)
¨ Explain Synchronization hardware and Instruction Set Architecture support 

for concurrency primitives.
¨ Assess classic problems in synchronization: bounded buffers, readers-writers, 

dining philosophers.
¨ Explain serializability of transactions
¨ Assess locking protocols
¨ Explain checkpointing and rollback recovery in transactional systems
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A look at the producer consumer problem

while (true) {
  while (counter == BUFFER_SIZE) {
     ; /*do nothing */
   }
   buffer[in] = nextProduced
   in = (in +1)%BUFFER_SIZE;
   counter++;
}

while (true) {
  while (counter == 0) {
     ; /*do nothing */
   }
   nextConsumed = buffer[out] 
   out = (out +1)% BUFFER_SIZE;
   counter--;
}

Producer

Consumer
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Implementation of ++/-- in machine language

counter++
  register1 = counter
  register1 = register1 + 1   
  counter   = register1

counter--
  register2 = counter
  register2 = register2 - 1   
  counter   = register2
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Lower-level statements may be interleaved in any 
order 

Producer execute:  register1 = counter

Producer execute:  register1 = register1 + 1

Producer execute:  counter = register1

Consumer execute:  register2 = counter

Consumer execute:  register2 = register2 - 1

Consumer execute:  counter = register2
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Lower-level statements may be interleaved in any 
order 

Producer execute:  register1 = counter

Producer execute:  counter = register1

Producer execute:  register1 = register1 + 1

Consumer execute:  register2 = counter

Consumer execute:  register2 = register2 - 1

Consumer execute:  counter = register2

The order of statements within each high-level statement is preserved
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Lower-level statements may be interleaved in any 
order (counter = 5)

Producer execute:  register1 = counter {register1 = 5}

Producer execute:  register1 = register1 + 1 {register1 = 6}

Consumer execute:  register2 = counter {register2 = 5}

Consumer execute:  register2 = register2 - 1 {register2 = 4}

Producer execute:  counter = register1 {counter = 6}

Consumer execute:  counter = register2 {counter = 4}

Counter has incorrect state of 4 
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Lower-level statements may be interleaved in any 
order (counter = 5)

Producer execute:  register1 = counter

Producer execute:  counter = register1

Producer execute:  register1 = register1 + 1

Consumer execute:  register2 = counter

Consumer execute:  register2 = register2 - 1

Consumer execute:  counter = register2

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 6}

{counter = 4}

Counter has incorrect state of 6 
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Race condition

¨ Several processes access and manipulate data concurrently

¨ Outcome of execution depends on
¤ Particular order in which accesses takes place

¨ Debugging programs with race conditions?
¤ Painful!
¤ Program runs fine most of the time, but once in a rare while something weird 

and unexpected happens
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The kernel is subject to several possible race 
conditions

¨ E.g.: Kernel maintains list of all open files
¤ 2 processes open files simultaneously
¤ Separate updates to kernel list may result in a race condition

¨ Other kernel data structures
¤ Memory allocation
¤ Process lists
¤ Interrupt handling
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Critical-Section

¨ System of n processes {P0, P1, …, Pn-1}

¨ Each process has a segment of code (critical section) where it:
¤ Changes common variables, updates a table, etc

¨ No two processes can execute in their critical sections at the same time
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The Critical-Section problem

¨ Design a protocol that processes can use to cooperate

¨ Each process must request permission to enter its critical section
¤ The entry section
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General structure of a participating process

do {

 

            critical section

           

            remainder section 

} while (TRUE);

entry section

exit section

Request permission
to enter

Housekeeping to let
other processes enter
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Requirements for a solution to the critical section 
problem

①  Mutual exclusion

②  Progress

③  Bounded wait

¨ PROCESS SPEED

¤ Each process operates at non-zero speed
¤ Make no assumption about the relative speed of the n processes
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Mutual Exclusion

¨ Only one process can execute in its critical section

¨ When a process executes in its critical section
¤ No other process is allowed to execute in its critical section
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Mutual Exclusion: Depiction

Process A

Process B

A enters 
critical section

T1 T2 T3 T4

B attempts to enter 
critical section

B enters 
critical section

B blocked

A exits 
critical section

B exits 
critical section
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Progress

¨ {C1} If No process is executing in its critical section, and …
¨ {C2} Some processes wish to enter their critical sections

¨ Decision on who gets to enter the critical section 
¤ Is made by processes that are NOT executing in their remainder 

section
¤ Selection cannot be postponed indefinitely
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Bounded waiting

¨ After a process has made a request to enter its critical section
¤ AND before this request is granted

¨ Limit number of times other processes are allowed to enter their 
critical sections
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Approaches to handling critical sections in the OS

¨ Nonpreemptive kernel
¤ If a process runs in kernel mode: no preemption
¤ Free from race conditions on kernel data structures

¨ Preemptive kernels
¤ Must ensure shared kernel data is free from race conditions
¤ Difficult on SMP (Symmetric Multi Processor) architectures

n 2 processes may run simultaneously on different processors
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Kernels: Why preempt?

¨ Suitable for real-time 
¤ A real-time process may preempt a kernel process

¨ More responsive
¤ Less risk that kernel mode process will run arbitrarily long
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Peterson’s Solution 

¨ Software solution to the critical section problem
¤ Restricted to two processes

¨ No guarantees on modern architectures
¤ Machine language instructions such as load and store implemented 

differently

¨ Good algorithmic description
¤ Shows how to address the 3 requirements
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Peterson’s Solution: The components

¨ Restricted to two processes in this example (but generalizable to n)

§ Pi and Pj

¨ Share two data items
§ int turn 

n Indicates whose turn it is to enter the critical section

§ boolean flag[2]
n Whether process is ready to enter the critical section 
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Peterson’s solution: Structure of process Pi

do {

 

            critical section

           

            remainder section 

} while (TRUE);

flag[0] = TRUE;
turn = 1;
while (flag[0] && turn==1) {;}

flag[0] = FALSE;
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Peterson’s solution: Structure of process Pj

do {

 

            critical section

           

            remainder section 

} while (TRUE);

flag[1] = TRUE;
turn = 0;
while (flag[0] && turn==0) {;}

flag[0] = FALSE;
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Peterson’s solution: Mutual exclusion

¨ Pi enters critical section only if 
     flag[j] == false OR turn == i

¨ If both processes try to execute in critical section at the 
same time
§ flag[0] == flag[1] == true
§ But turn can be 0 or 1, not BOTH 

¨ If Pj entered critical section
§  flag[j] == true AND turn == j
§ Will persist as long as Pj is in the critical section

while (flag[j] == true && turn==j) {;}
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Peterson’s Solution: 
Progress and Bounded wait 

¨ Pi can be stuck only if flag[j]==true AND turn==j
¤ If Pj is not ready: flag[j]== false, and  Pi can enter 
¤ Once Pj exits: it resets flag[j] to false

¨ If Pj resets flag[j] to true 
¤ Must set turn = i;

¨ Pi will enter critical section (progress) after at most one entry by Pj 
(bounded wait) 



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.151

Solving the critical section problem using locks

do {

 

            critical section

           

            remainder section 

} while (TRUE);

acquire lock

release lock
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Possible assists for solving critical section problem                                           
(1/2)

¨ Uniprocessor environment
¤ Prevent interrupts from occurring when shared variable is being modified

n No unexpected modifications!

¨ Multiprocessor environment
¤ Disabling interrupts is time consuming

n Message passed to ALL processors
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Possible assists for solving critical section problem                                           
(2/2)

¨ Special atomic hardware instructions
¤ Swap content of two words
¤ Modify word
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Swap()

void Swap(boolean *a, boolean *b ) {
     
     boolean temp = *a;
     *a = *b;
     *b = temp;
}
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Swap: Shared variable LOCK is initialized to false

do {

 

        critical section

           

        remainder section 

} while (TRUE);

key = TRUE;
while (key == TRUE) { 
   Swap(&lock, &key) 
}

lock = FALSE;

lock is a SHARED variable
key    is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE
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TestAndSet()

boolean TestAndSet(boolean *target ) {
     
     boolean rv = *target;
     *target = TRUE;
     return rv;
}

Sets target to true and returns old value of target
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TestAndSet: Shared boolean variable lock 
initialized to false

do {

 

        critical section

           

        remainder section 

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed 
simultaneously, they will be executed 
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE
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Entering and leaving critical regions using 
TestAndSet and Swap (Exchange)

enter_region:
    TSL REGISTER, LOCK
    CMP REGISTER, #0
    JNE enter_region
    RET

leave_region:
   MOVE LOCK, #0
   RET

enter_region:
    MOVE REGISTER, #1
    XCHNG REGISTER,LOCK
    CMP REGISTER, #0          
    JNE enter_region
    RET

leave_region:
    MOVE LOCK, #0
    RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization
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Semaphores

¨ Semaphore S is an integer variable

¨ Once initialized, accessed through atomic operations
§ wait()

§ signal()
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Defining the semaphore

typedef struct {
   int value;
   struct process *sleeping_list;
} semaphore;

list of processes
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The wait() operation to eliminate busy waiting

wait(semaphore *S){
    S->value--;

    if (S->value <0) {
      add process to S->sleeping_list;
      block();
    }

} block() suspends the
 process that invokes it

If value < 0
abs(value) is the number
of waiting processes
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The signal() operation to eliminate busy waiting

signal(semaphore *S) {
    S->value++;

    if (S->value <= 0) {
      remove a  process  P from S->sleeping_list;
      wakeup(P);
    }

} wakeup(P)resumes the 
execution of process  P
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Deadlocks and Starvation: Implementation of semaphore 
with a waiting queue

wait(S);
wait(Q);

signal(S);
signal(Q);

PROCESS P0

wait(Q);
wait(S);

signal(Q);
signal(S);

PROCESS P1

Say: P0 executes wait(S) and then P1 executes wait(Q) 

P0 must wait till P1 executes signal(Q)
Cannot be 
executed 
so deadlockP1 must wait till P0 executes signal(S)   
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Semaphores and atomic operations

¨ Once a semaphore action has started
¤ No other process can access the semaphore UNTIL

n Operation has completed or process has blocked

¨ Atomic operations
¤ Group of related operations
¤ Performed without interruptions

n Or not at all
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The bounded buffer problem

¨ Binary semaphore (mutex)
¤ Provides mutual exclusion for accesses to buffer pool
¤ Initialized to 1

¨ Counting semaphores
¤ empty: Number of empty slots available to produce

n Initialized to n
¤ full: Number of filled slots available to consume

n Initialized to 0
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Some other things to bear in mind

¨ Producer and consumer must be ready before they attempt to enter 
critical section

¨ Producer readiness?
¤ When a slot is available to add produced item

n wait(empty): empty is initialized to n

¨ Consumer readiness?
¤ When a producer has added new item to the buffer

n wait(full) : full initialized to 0
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The Producer
do {
         produce item nextp
 
 

         add nextp to buffer

           

         remainder section 

} while (TRUE);

wait(empty);
wait(mutex);

signal(mutex);
signal(full);

wait till slot available

Only producer OR consumer
can be in critical section

signal consumer 
that a slot is available

Allow producer OR consumer
to (re)enter critical section
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The Consumer
do {
         
 
 

      remove item from buffer
           (nextc)

           

         consume nextc

} while (TRUE);

wait(full);
wait(mutex);

signal(mutex);
signal(empty);

wait till slot available 
for consumption 

Only producer OR consumer
can be in critical section

signal producer that a 
slot is available to add

Allow producer OR consumer
to (re)enter critical section
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The Readers-Writers problem

¨ A database is shared among several concurrent processes

¨ Two types of processes
¤ Readers
¤ Writers
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Readers-Writers: Potential for adverse effects

¨ If two readers access shared data simultaneously?
¤ No problems

¨ If a writer and some other reader (or writer) access shared data 
simultaneously?
¤ Chaos
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Writers must have exclusive access to shared 
database while writing

¨ FIRST readers-writers problem:
¤ No reader should wait for other readers to finish; simply because a writer is 

waiting
n Writers may starve

¨ SECOND readers-writers problem:
¤ If a writer is ready it performs its write ASAP

n Readers may starve
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Solution to the FIRST readers-writers problem

¨ Variable int readcount
¤ Tracks how many readers are reading object

¨ Semaphore mutex {1}
¤  Ensure mutual exclusion when readcount is accessed

¨ Semaphore wrt {1}
① Mutual exclusion for the writers
② First (last) reader that enters (exits) critical section

n Not used by readers, when other readers are in their critical section
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The Writer: When a writer signals either 
a waiting writer or the readers resume

do {
         
 
 

        writing is performed

           

} while (TRUE);

wait(wrt);

signal(wrt);

When:
  writer in critical section
  and if n readers waiting

1 reader is queued on wrt
(n-1) readers queued on mutex
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The Reader process
do {
         
 
 

        reading is performed

           

         

} while (TRUE);

wait(mutex);
readcount++;
if (readcount ==1) {
  wait(wrt);
}
signal(mutex);

wait(mutex);
readcount--;
if (readcount ==0) {
  signal(wrt);
}
signal(mutex);

When:
  writer in critical section
  and if n readers waiting

1 is queued on wrt
(n-1) queued on mutex

mutex for mutual 
exclusion to readcount
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Dining Philosopher’s Problem: the situation
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The Problem

①  Philosopher tries to pick up two closest {LR} chopsticks

②  Pick up only 1 chopstick at a time
¤ Cannot pick up a chopstick being used

③  Eat only when you have both chopsticks

④  When done; put down both the chopsticks
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Why is the problem important?

¨ Represents allocation of several resources
¤ AMONG several processes

¨ Can this be done so that it is:
¤ Deadlock free
¤ Starvation free
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Dining philosophers: Simple solution 

¨ Each chopstick is a semaphore
¤ Grab by executing wait()
¤ Release by executing signal()

¨ Shared data 
¤ semaphore chopstick[5]; 
¤ All elements are initialized to 1
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What if all philosophers get hungry and grab the 
same {L/R} chopstick?

do {
         
 
 

        //eat

           

         //think

} while (TRUE);

wait(chopstick[i]);
wait(chopstick[(i+1)%5]);

signal(chopstick[i]);
signal(chopstick[(i+1)%5]);

Deadlock:
 If all processes 
access chopstick with 
same hand 

We will look at solution with monitors
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Dining-Philosophers Using Monitors
Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

¨ state[i] = EATING only if
§ state[(i+4)%5] != EATING && 
state[(i+1)%5] != EATING 

¨ condition self[5]

¤ Delay self when HUNGRY but unable to get chopsticks
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The pickup() and putdown() operations

pickup(int i) {
  state[i] = HUNGRY;
  test(i);
  if (state[i] != EATING) {
    self[i].wait();
  }
}

putdown(int i) {
  state[i] = THINKING;
  test( (i+4)%5 );
  test( (i+1)%5 );
}

Suspend self if unable 
to acquire chopstick

Check to see if person on 
left or right can use the
chopstick
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test() to see if philosopher can eat

test(int i) {
  if (state[(i+4)%5] != EATING &&
      state[i] == HUNGRY &&
      state[(i+1)%5 != EATING] ) {
  
   state[i] = EATING;
   self[i].signal();
  }
}

Eat only if HUNGRY and
Person on Left AND Right
are not eating

Signal a process that was
suspended while trying to eat
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Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic execution
¤ As one uninterruptible unit

¨ Also important to ensure, that critical section forms a single logical 
unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g. transfer of funds

n Credit one account and debit the other



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.184

Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤ Despite the possibility of failures
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Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored 
¤ To what it was before transaction started executing
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Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to various 
accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort etc
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Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤ Recovery takes longer

n Though no harm done by redoing (idempotency)
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Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤ Maintained by executing each transaction within a critical 
section
n Too restrictive

¨ Allow transactions to overlap while maintaining 
serializability
¤ Concurrency control algorithms 
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Serializability

¨ Serial schedule: Each transaction executes atomically
    n! schedules for n independent transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)
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Non-serial schedule: 
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤ Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤ AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule
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Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule
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Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤ By a series of swaps of non-conflicting operations
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CPU Scheduling Algorithms

Objectives:
¨ Assess scheduling criteria including fairness and time quanta.
¨ Explain and contrast different approaches to scheduling: preemptive 

and non-preemptive
¨ Explain and assess scheduling algorithms: FCFS, shortest jobs, priority, 

round-robin, multilevel feedback queues, and the Linux completely fair 
scheduler.

¨ Understand how CPU scheduling algorithms function on multiprocessors.
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CPU scheduling takes places under the following 
circumstances

new

ready running

waiting

terminated

I/O or wait

scheduler dispatch

interrupt

exit

I/O or event
completion 1

4

2

3
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Nonpreemptive or cooperative sheduling

¨ Process keeps CPU until it relinquishes it when:
①  It terminates
②  It switches to the waiting state

¨ Sometimes the only method on certain hardware 
platforms
¤ E.g. when they don’t have a hardware timer

¨ Used by initial versions of OS
¤ Windows: Windows 3.x
¤ Mac OS
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Preemptive scheduling

¨ Pick a process and let it run for a maximum of some fixed time

¨ If it is still running at the end of time interval?
¤ Suspend it ..

¨ Pick another process to run
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Preemptive scheduling: Requirements

¨ A clock interrupt at the end of the time interval to give control of CPU 
back to the scheduler

¨ If no hardware timer is available?
¤ Nonpremptive scheduling is the only option
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Preemptive scheduling incurs some costs: 
Affects the design of the OS

¨ System call processing
¤ Kernel may be changing kernel data structure (I/O queue)

¨ Process preempted in the middle AND
¤ Kernel needs to read/modify same structure?

¨ SOLUTION: Before context switch
¤ Wait for system call to complete OR
¤ I/O blocking to occur 
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Preemptive scheduling incurs some costs:
Interrupt processing

¨ Interrupts can occur at any time 
¤ Cannot always be ignored by kernel

n Consequences: Inputs lost or outputs overwritten

¨ Guard code affected by interrupts from simultaneous use: 
¤ Disable interrupts during entry
¤ Enable interrupts at exit
¤ CAVEAT: Should not be done often, and critical section must contain few 

instructions
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The dispatcher is invoked during every process 
switch

¨ Gives control of CPU to process selected by the scheduler

¨ Operations performed:
¤ Switch context
¤ Switch to user mode
¤ Restart program at the right location

¨ Dispatch latency
¤ Time to stop one process and start another
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Scheduling Algorithms: Goals

Fairness
Policy Enforcement

BalanceAll Systems

Throughput
Turnaround time
CPU Utilization

Response time
Proportionality

Meeting deadlines
Predictability

Interactive SystemsBatch Systems

Real-time systems
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CPU Utilization

¨ Difference between elapsed time and idle time

¨ Average over a period of time
¤ Meaningful only within a context
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Scheduling Criteria: Choice of scheduling algorithm 
may favor one over another

¨ CPU Utilization: Keep CPU as busy as possible? For example:
¤ 40% for lightly loaded system
¤ 90% for heavily loaded system

¨ Throughput: Number of completed processes per time unit? For 
example:
¤ Long processes: 1/hour
¤ Short processes: 10/second
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Scheduling Criteria: Choice of scheduling algorithm 
may favor one over another

¨ Turnaround time
§ tcompletion - tsubmission 

¨ Waiting time
§ Total time spent waiting in the ready queue

¨ Response time
§ Time to start responding
§ tfirst_response – tsubmission
§ Generally limited by speed of output device
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Scheduling Algorithms 

¨ Decides which process in the ready queue is allocated the CPU

¨ Could be preemptive or nonpreemptive

¨ Optimize measure of interest

¨ We will use Gantt charts to illustrate schedules
¤ Bar chart with start and finish times for processes
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First-Come, First-Served Scheduling (FCFS) 

¨ Process requesting CPU first, gets it first

¨ Managed with a FIFO queue
¤ When process enters ready queue?

n PCB is tacked to the tail of the queue

¤ When CPU is free?
n It is allocated to process at the head of the queue

¨ Simple to write and understand
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Average waiting times in FCFS

Process Burst 
Time

P1 24

P2 3

P3 3

24 27 30

P1 P2 P3

0

3 6 30

P2 P1P3

0

Wait time = (0 + 24 + 27)/3 = 17 

Wait time = (6 + 0 + 3)/3 = 3 
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Disadvantages of the FCFS scheme (1) 

¨ Once a process gets the CPU, it keeps it 
¤ Till it terminates or does I/O
¤ Unsuitable for time-sharing systems

¨ Average waiting time is generally not minimal
¤ Varies substantially if CPU burst times vary greatly



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.209

Disadvantages of the FCFS scheme (2) 

¨ Poor performance in certain situations
¤ 1 CPU-bound process and many I/O-bound processes
¤ Convoy effect: Smaller processes wait for the one big 

process to get off the CPU
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Shortest Job First (SJF) scheduling algorithm

¨ When CPU is available it is assigned to process with smallest CPU 
burst

¨ Moving a short process before a long process?
¤ Reduction in waiting time for short process 

                 GREATER THAN 
Increase in waiting time for long process

¨ Gives us minimum average waiting time for a set of processes that 
arrived simultaneously
¤ Provably Optimal



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.211

Depiction of SJF in action

Process Burst 
Time

P1 6

P2 8

P3 7

P4 3

P4

0 3 9 16 24

P1 P3 P2

Wait time = (3 + 16 + 9 + 0)/4 = 7 
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SJF is optimal ONLY when ALL the jobs are 
available simultaneously

¨ Consider 5 processes A, B, C, D and E
¤ Run times are:      2, 4, 1, 1, 1
¤ Arrival times are:  0,0, 3, 3, 3

¨ SJF will run jobs: A, B, C, D and E 
¤ Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8
¤ But if you run B, C, D, E and A ? 

n Average wait time: (7 + 0 + 1 + 2 +3)/5 = 2.6!
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Preemptive SJF
¨ A new process arrives in the ready queue

¤ If it is shorter than the currently executing process
n Preemptive SJF will preempt the current process

Process Arrival Burst

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1
0 1 5 10 17

P2 P4 P1 P3

26

Wait time = 
[(10-1) + (1-1) + (17-2) + (5-3)]/4 
= 26/4 = 6.5 
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Use of SJF in long term schedulers

¨ Length of the process time limit 
¤ Used as CPU burst estimate

¨ Motivate users to accurately estimate time limit
¤ Lower value will give faster response times
¤ Too low a value?

n Time limit exceeded error
n Requires resubmission!
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The SJF algorithm and short term schedulers

¨ No way to know the length of the next CPU burst

¨ So try to predict it

¨ Processes scheduled based on predicted CPU bursts 
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Priority Scheduling

¨ Priority associated with each process

¨ CPU allocated to process with highest priority 

¨ Can be preemptive or nonpreemptive
¤ If preemptive: Preempt CPU from a lower priority process 

when a higher one is ready 
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Depiction of priority scheduling in action
Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2

0 1 6 16 19

P5 P1 P3

18

P4

Wait time = (6 + 0 + 16 + 18 + 1)/5 = 8.2 

Here: Lower number means higher priority
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How priorities are set

¨ Internally defined priorities based on:
¤ Measured quantities
¤ Time limits, memory requirements, # of open files, ratio (averages) of I/O to 

CPU burst

¨ External priorities 
¤ Criteria outside the purview of the OS
¤ Importance of process, $ paid for usage, politics, etc.
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Issue with priority scheduling

¨ Can leave lower priority processes waiting  indefinitely

¨ Perhaps apocryphal tale:
¤ MIT’s IBM 7094 shutdown (1973) found processes from 1967!



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.220

Coping with issues in priority scheduling:
Aging

¨ Gradually increase priority of processes that wait for a long time

¨ Example:
¤ Process with priority of 127 and increments every 15 minutes
¤ Process priority becomes 0 in no more than 32 hours 
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Round-Robin Scheduling

¨ Similar to FCFS scheduling
¤ Preemption to enable switch between processes

¨ Ready queue is implemented as FIFO
¤ Process Entry: PCB at tail of queue
¤ Process chosen: From head of the queue

¨ CPU scheduler goes around ready queue
¤ Allocates CPU to each process one after the other

n CPU-bound up to a maximum of 1 quantum
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Round Robin: Choosing the quantum

¨ Context switch is time consuming
¤ Saving and loading registers and memory maps
¤ Updating tables 
¤ Flushing and reloading memory cache

¨ What if quantum is 4 ms and context switch overhead is 1 ms?
¤ 20% of CPU time thrown away in administrative overhead
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Round Robin: Improving efficiency by increasing 
quantum

¨ Let’s say quantum is 100 ms and context-switch is 1ms
¤ Now wasted time is only 1%

¨ But what if 50 concurrent requests come in?
¤ Each with widely varying CPU requirements
¤ 1st one starts immediately, 2nd one 100 ms later, …
¤ The last one may have to wait for 5 seconds!
¤ A shorter quantum would have given them better service
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If quantum is set longer than mean CPU burst?

¨ Preemption will not happen very often

¨ Most processes will perform a blocking operation before quantum runs 
out

¨ Switches happens only when process blocks and cannot continue
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Quantum: Summarizing the possibilities

¨ Too short?
¤ Too many context switches
¤ Lowers CPU efficiency

¨ Too long?
¤ Poor responses to interactive requests
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Deadlocks

Objectives:
¨ Explain deadlock characterization
¨ Contrast and explain schemes for deadlock prevention
¨ Evaluate approaches to deadlock avoidance
¨ Understand recovery from deadlocks



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.227

System model

¨ Finite number of resources
¤ Distributed among competing processes

¨ Resources are partitioned into different types
¤ Each type has a number of identical instances
¤ Resource type examples:

n Memory space, files, I/O devices
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A process must utilize resources in a sequence

¨ Request
¤ Requesting resource must wait until it can acquire resource
¤ request(), open(), allocate()

¨ Use
¤ Operate on the resource

¨ Release
¤ release(), close(), free()
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For kernel managed resources, the OS maintains a 
system resource table

¨ Is the resource free? 
¤ Record process that the resource is allocated to

¨ Is the resource allocated?
¤ Add to queue of processes waiting for resource

¨ For resources not managed by the OS
¤ Use wait() and signal() on semaphores
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Preemptable resources

¨ Can be taken away from process owning it with no ill effects

¨ Example: Memory
¤ Process B’s memory can be taken away and given to process A

n Swap B from memory, write contents to backing store, swap A in and let it use the 
memory
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Non-preemptable resources

¨ Cannot be taken away from a process without causing the process to 
fail

¨ If a process has started to burn a CD
¤ Taking the CD-recorder away from it and giving it to another process?

n Garbled CD
n CD recorders are not preemptable at an arbitrary moment

¨ In general, deadlocks involve non-preemptable resources
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Some notes on deadlocks

¨ The OS typically does not provide deadlock 
prevention facilities

¨ Programmers are responsible for designing deadlock 
free programs
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Deadlock: Formal Definition

¨ A set of processes is deadlocked if each process in the set is waiting for 
an event that only another process in the set can cause.

¨ Because all processes are waiting, none of them can cause events to 
wake any other member of the set
¤ Processes continue to wait forever



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.234

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources 

n Which are currently held by other processes
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Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0
¤ Implies hold-and-wait
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Methods for handling deadlocks

¨ Use protocol to prevent or avoid deadlocks
¤ Ensure system never enters a deadlocked state

¨ Allow system to enter deadlocked state; BUT
¤ Detect it and recover

¨ Ignore problem, pretend that deadlocks never occur
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When is ignoring the problem viable?

¨ When they occur infrequently (once per year)
¤ Ignoring is the cheaper solution
¤ Prevention, avoidance, detection and recovery

n Need to run constantly
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Four strategies for dealing with deadlocks

¨ Ignore the problem
¤ May be if you ignore it, it will ignore you

¨ Detection and Recovery
¤ Let deadlocks occur, detect them, and take action

¨ Deadlock avoidance 
¤ By careful resource allocation

¨ Deadlock prevention
¤ By structurally negating one of the four required conditions
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Deadlock Prevention

¨ Ensure that one of the necessary conditions for deadlocks cannot occur
① Mutual exclusion

② Hold and wait

③ No preemption

④ Circular wait
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Mutual exclusion must hold for 
non-sharable resources, but …

¨ Sharable resources do not require mutually exclusive access
¤  Cannot be involved in a deadlock

¨ A process never needs to wait for sharable resource
¤ Read-only files

¨  Some resources are intrinsically nonsharable
¤ So denying mutual exclusion often not possible
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Deadlock Prevention: Ensure hold-and-wait never 
occurs in the system [Strategy 1]

¨ Process must request and be allocated all its resources before 
execution
¤ Resource requests must precede other system calls

¨ E.g. copy data from DVD drive, sort file & print
¤ Printer needed only at the end
¤ BUT process will hold printer for the entire execution
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Deadlock Prevention: Ensure hold-and-wait never 
occurs in the system [Strategy 2]

¨ Allow a process to request resources only when it has none
¤ Release all resources, before requesting additional ones

¨ E.g. copy data from DVD drive, sort file & print
¤ First request DVD and disk file

n Copy and release resources

¤ Then request file and printer
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Disadvantages of protocols doing hold-and-wait

¨ Low resource utilization
¤ Resources are allocated but unused for long durations

¨ Starvation
¤ If a process needs several popular resources

n Popular resource might always be allocated to some other process
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Deadlock Prevention: Eliminate the preemption 
constraint                  [1/2]

¨ {C1} If a process is holding some resources
¨ {C2} Process requests another resource

n Cannot be immediately allocated

¨ All resources currently held by process is preempted
¤ Preempted resources added to list of resources process is waiting for
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Deadlock Prevention: Eliminate the preemption 
constraint                  [2/2]

¨ Process requests resources that are not currently available
¤ If resources allocated to another waiting process

n Preempt resources from the second process and assign it to the first one

¨ Often applied when resource state can be saved and restored
¤ CPU registers and memory space
¤ Unsuitable for tape drives
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Deadlock Prevention: Eliminating Circular wait

¨ Impose total ordering of all resource types
¤ Assign each resource type a unique number
¤ One-to-one function F:RàN 
F(tape drive) = 1; 
F(printer) = 12

① Request resources in increasing order

② If several instances of a resource type needed?
¤ Single request for all them must be issued
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Deadlock Prevention: Summary

¨ Prevent deadlocks by restraining how requests are made.
¤ Ensure at least 1 of the 4 conditions cannot occur

¨ Side effects: 
¤ Low device utilization
¤ Reduced system throughput
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Deadlock avoidance

¨ Require additional information about how resources are to be 
requested

¨ Knowledge about sequence of requests and releases for processes
¤ Allows us to decide if resource allocation could cause a future deadlock
¤ Process P: Tape drive, then printer
¤ Process Q: Printer, then tape drive 
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Deadlock avoidance: 
Handling resource requests

¨ For each resource request:
¤ Decide whether or not process should wait

n To avoid possible future deadlock

¨ Predicated on:
① Currently available resources
② Currently allocated resources
③ Future requests and releases of each process
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Avoidance algorithms differ in the 
amount and type of information needed

¨ Resource allocation state
¤ Number of available and allocated resources
¤ Maximum demands of processes

¨ Dynamically examine resource allocation state
¤ Ensure circular-wait cannot exist 

¨ Simplest model:
¤ Declare maximum number of resources for each type
¤ Use information to avoid deadlock
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Safe sequence

¨ Sequence of processes <P1,P2,…,Pn> for the current 
allocation state

¨ Resource requests made by Pi can be satisfied by:
¤ Currently available resources
¤ Resources held by Pj where j < i

n If needed resources not available, Pi can wait

¤ In general, when Pi terminates, Pi+1 can obtain its needed 
resources

¨ If no such sequence exists: system state is unsafe
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Safe states and deadlocks

¨ A system is safe ONLY IF there is a safe sequence

¨ A safe state is not a deadlocked state
¤ Deadlocked state is an unsafe state
¤ Not all unsafe states are deadlocks
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Unsafe states

¨ A unsafe state may lead to deadlock

¨ Behavior of processes controls unsafe states

¨ Cannot prevent processes from requesting resources such that 
deadlocks occur
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Banker’s Algorithm

¨ Designed by Dijkstra in 1965

¨ Modeled on a small-town banker
¤ Customers have been extended lines of credit
¤ Not ALL customers will need their maximum credit immediately

¨ Customers make loan requests from time to time  
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Crux of the Banker’s Algorithm 

¨ Consider each request as it occurs
¤ See if granting it is safe

¨ If safe: grant it;    If unsafe: postpone

¨ For safety banker checks if he/she has enough to satisfy some 
customer
¤ If so, that customer’s loans are assumed to be repaid
¤ Customer closest to limit is checked next
¤ If all loans can be repaid; state is safe: loan approved
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Banker’s Algorithm: Managing the customers. 
Banker has only reserved 10 units instead of 22

A 0 6

B 0 5

C 0 4

D 0 7

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Has Max

Free: 10 Free: 2 Free: 1

SAFE SAFE UNSAFE
Delay all requests except C

A customer may not need  the 
entire credit line. But the banker 
cannot count on this behaviorThere is ONLY ONE resource: Credit
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Banker’s algorithm: Crux

¨ Declare maximum number of resource instances 
needed
¤ Cannot exceed resource thresholds

¨ Determine if resource allocations leave system in a safe 
state
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Bankers Algorithm: Resource-request

Requesti≤ Needi

Requesti≤ Available

Available = Available – Requesti
Allocationi = Allocationi + Requesti
Needi = Needi - Requesti

Yes

Yes

NO

NO

Error
Exceeded claim

Wait for 
availability
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Bankers Algorithm: Safety
Initialize Work = Available

Find i such that:
Finish[i]==false && Needi≤ Work

Work = Work + Allocationi
Finish[i]=true 

for all i 
   if (Finish[i] == true)

YES

NO

YES

Safe state

NO
Unsafe state
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Recovery from deadlock

¨ Automated or manual

¨ OPTIONS
¤ Break the circular wait: Abort processes
¤ Preempt resources from deadlocked process(es)
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Breaking circular wait: 
Process termination

¨ Abort all deadlocked processes

¨ Abort processes one at a time
¤ After each termination,  check if deadlock persists

¨ Reclaim all resources allocated to terminated process
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Deadlock recovery: Resource preemption

Preempt resources from 
some process

Give resources to some 
other process

Deadlock broken

DONE

Deadlock persists

For a set of deadlocked processes
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Resource preemption: Issues

¨ Selecting a victim
¤ Which resource and process
¤ Order of preemption to minimize cost

¨ Starvation
¤ Process can be selected for preemption finite number of 

times
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Livelocks

¨ Polling (busy waits) used to enter critical section or access a resource
¤ Typically used for a short time when overhead for suspension is considered 

greater

¨ In a livelock two processes need each other’s resource
¤ Both run and make no progress, but neither process blocks
¤ Use CPU quantum over and over without making progress
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Livelocks do occur

¨ If fork fails because process table is full
¤ Wait for some time and try again

¨ But there could be a collection of processes each trying to do the same 
thing
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Memory Management

Objectives:
¨ Understand address binding and address spaces
¨ Explain contiguous memory allocations: including their advantages and 

disadvantages
¨ Analyze the key constructs underpinning paging systems including 

hardware support, shared pages, and structure of page tables
¨ Explain memory protection in paging environments
¨ Explain segmentation based approaches to memory management 

alongside settings in which they are particularly applicable
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Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least 
partially) during execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.268

Memory Unit

¨ Sees only a stream of memory addresses

¨ Oblivious to 
¤ How these addresses are generated

n Instruction counter, indexing, indirection, etc.

¤ What they are for
n Instructions or data
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Why processes must be memory resident

¨ Storage that the CPU can access directly
① Registers in the processor
② Main memory

¨ Machine instructions take memory addresses as arguments
¤ None operate on disk addresses

¨ Any instructions in execution plus needed data
¤ Must be in memory
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Processes and memory

¨ To execute, a program needs to be placed inside a 
process

¨ Process executes
¤ Access instructions and data from memory

¨ Process terminates
¤ Memory reclaimed and declared available
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Binding is a mapping from one address space to the 
next

¨ Processes can reside in any part of the physical memory
¤ First address of process need not be x0000

¨ Addresses in source program are symbolic

¨ Compiler binds symbolic addresses to relocatable addresses

¨ Loader binds relocatable addresses to absolute addresses
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Binding can be done at  …         [1/2]

¨ Compile time
¤ Known that the process will reside at location R

n If location changes: recompile

¤ MS-DOS .COM programs were bound this way

¨ Load time
¤ Based on compiler generated relocatable code
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Binding can be done at  …         [2/2]:
Execution-time

¨ Process can be moved around during execution
¤ Binding delayed until run time 
¤ Special hardware needed
¤ Supported by most OS
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Partitioning of memory

¨ Main memory needs to accommodate the OS and user processes

¨ Divided into two partitions
¤ Resident OS

n Usually low memory

¤ User processes
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Memory Mapping and Protection

¨ When CPU scheduler selects a process for execution
¤ Relocation and limit registers reloaded as part of context switch

¨ Every address generated by the CPU
¤ Checked against the relocation/limit registers
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Memory Mapping and Protection

<
YES

limit
register

relocation
register

memory

CPU

NO

TRAP to OS: Addressing ERROR

+
Logical 
address

Physical
address

E.g.: relocation=100040 and limit=74600
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Address spaces

¨ Logical
¤ Addresses generated by the program running on CPU

¨ Physical
¤ Addresses seen by the memory unit

¨ Logical address space
¤ Set of logical addresses generated by program

¨ Physical address space
¤ Set of physical addresses corresponding to the logical address space
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Generation of physical and logical addresses

¨ Compile-time and load-time
¤ Identical logical and physical addresses

¨ Execution time
¤ Logical addresses differ from physical addresses
¤ Logical address referred to as virtual address

¨ Runtime mapping performed in hardware
¤ Memory management unit (MMU)
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Memory management unit

¨ Mapping converts logical to physical addresses

¨ User program never sees real physical address
¤ Create pointer to location
¤ Store in memory, manipulate and compare

¨ When used as a memory address (load/store)
¤ Relocated to physical memory



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.280

Dynamic Storage Allocation Problem

¨ Satisfying a request of size n from the set of available spaces
¤ First fit
¤ Best fit
¤ Worst fit
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First fit

¨ Scan list of segments until you find a memory-hole that is big enough

¨ Hole is broken up into two pieces
¤ One for the process
¤ The other is unused memory 
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Best Fit

¨ Scan the entire list from beginning to the end

¨ Pick the smallest memory-hole that is adequate to host the process
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Comparing Best Fit and First Fit

¨ Best fit is slower than first fit

¨ Surprisingly, it also results in more wasted memory than first fit
¤ Tends to fill up memory with tiny, useless holes
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Worst fit

¨ How about going to the other extreme?
¤ Always take the largest available memory-hole
¤ Perhaps, the new memory-hole would be useful

¨ Simulations have shown that worst fit is not a good idea either



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.285

Contiguous Memory Allocation: Fragmentation

¨ As processes are loaded/removed from memory
¤ Free memory space is broken into small pieces

¨ External fragmentation
¤ Enough space to satisfy request; BUT
¤ Available spaces are not contiguous
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Fragmentation: Example

P1

P2

P3

P4
P5

Process P5 cannot be loaded because 
memory space is fragmented
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Fragmentation can be internal as well

¨ Memory allocated to process may be slightly larger than requested

¨ Internal fragmentation
¤ Unused memory is internal to blocks
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Compaction: Solution to external fragmentation

¨ Shuffle memory contents 
¤ Place free memory into large block

¨ Not possible if relocation is static
¤ Load time

¨ Approach involves moving: 
① Processes towards one end
② Gaps towards the other end
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Compaction: Example

P1

P2

P3

P4
P5
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Overview of how mapping of logical and physical 
addresses is performed

CPU

Memory 
Management 
Unit (MMU)

Translation 
Lookaside 

Buffer (TLB)

Physical 
Memory

Virtual 
address

Physical  
address

MMU may access Physical Memory to perform translations 
    {PageTable may be stored there}
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The Paging memory management scheme

¨ Physical address space of process can be non-contiguous

¨ Solves problem of fitting variable-sized memory chunks to backing 
store
¤ Backing store has fragmentation problem

n Compaction is impossible
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Basic method for implementing pages

¨ Break memory into fixed-sized blocks
¤ Physical memory: frames

¤ Logical memory: pages

¨ Backing store is also divided the same way 

Same size
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Paging Hardware: Paging is a form of dynamic 
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page 
number

Page 
offset

Page Table

Frame f
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Paging: Logical and Physical Memory

Page 0

Page 1

Page 2

Page 3

0

1

2

3

1

4

3

7

0

1

2

3

4

5

6

7

Page 0

Page 2

Page 1

Page 3

Logical Memory

Page Table

Physical Memory
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m bits

Logical address

Page size

¨ Usually a power of 2
§ 512 bytes – 16 MB

¨ Size of logical address: 2m

¨ Page size: 2n

Page offset

nm - n

Page number
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Paging and Fragmentation

¨ No external fragmentation
¤ Free frame available for allocation to other processes

¨ Internal fragmentation possible
¤ Last frame may not be full
¤ If process size is independent of page size

n Internal fragmentation = ½ page per process
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Paging: User program views memory as a single 
space

¨ Program is scattered throughout memory

¨ User view and physical memory reconciled by
¤ Address-translation hardware

¨ Process has no way of addressing memory outside of its page table 
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OS manages the physical memory

¨ Maintains frame-table; one entry per frame
¤ Free or allocated?
¤ If allocated: Which page of which process

¨ Maintains a page table for each process
¤ Used by CPU dispatcher to define hardware page table when process is 

CPU-bound
n Paging increases context switching time
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The purpose of the page table is to map virtual 
pages onto physical frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address
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Two major issues facing page tables

¨ Can be extremely large
¤ With a 4 KB page size, a 32-bit address space has 1 million pages
¤ Also, each process has its own page table

¨ The mapping must be fast
¤ Virtual-to-physical mapping must be done on every memory reference
¤ Page table lookup should not be a bottleneck 
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Translation look-aside buffer
Small, fast-lookup hardware cache

¨ Number of TLB entries is small (64 ~ 1024)
¤ Contains few page-table entries

¨ Each entry of the TLB consists of 2 parts
¤ A key and a value

¨ When the associative memory is presented with an item
¤ Item is compared with all keys simultaneously 
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The purpose of the page table is to map virtual 
pages onto page frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address
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Paging Hardware with a TLB

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page 
number

Page 
offset

Page Table

Frame f

TLB

TLB Miss

TLB hit
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Protection bits are associated with each frame

¨ Kept in the page table

¨ Bits can indicate
¤ Read-write, read-only, execute
¤ Illegal accesses can be trapped by the OS

¨ Valid-invalid bit
¤ Indicates if page is in the process’s logical address space
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0

1

2

3

4

5

6

7

Protection Bits: Page size=2K; 
Logical address space = 16K

Page 0

Page 1

Page 2

2

3

4

7

Logical Memory

Page Table

Page 3

Page 4

Page 5

8

9

0

0

v

v

v

v

v

v

i

i

0

1

2
3

4
5

6

Page 0

Page n

Physical Memory

Page 1

Page 2

Page 3

Page 4

Page 5

…

7
8

9

Program restricted to 0 - 10468

10K = 10240

Frame
Number

Valid/
Invalid bit
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Reentrant Code                     [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and 
¤ Then safely called again ("re-entered") before its previous invocations 

complete execution
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Reentrant Code                     [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
①  Execute same code at same time
②  Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data
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Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed
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Shared Paging
ed 1

ed 2

ed 3

Data 1

Data 3

Page n

Physical Memory

ed 1

ed 2

Data 2

…

0

1

2
3

4
5

6
7
8

9

3

6

1

4

3

6

7

4

Data 1

ed 3Process P1
ed 1

ed 2

ed 3

Data 2

Process P2

ed 1

ed 2

ed 3

Data 3

3

6

2

4

Process P3

Page Tables
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Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
①  Code must be reentrant
②  The OS must enforce read-only nature of the shared 

code
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Overheads in paging:
Page table and internal fragmentation 

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n  se/p: Total page table space

¨ Total Overhead = se/p + p/2

Page table overhead Internal fragmentation loss
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Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.313

Paging Hardware: Paging is a form of dynamic 
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page 
number

Page 
offset

Page Table

Frame f
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Hierarchical Paging

¨ Logical address spaces: 232 ~ 264

¨ Page size: 4KB = 22x 210= 212

¨ Number of page table entries?
§ Logical address space size/page size
§ 232/212 = 220 ≈ 1 million entries

¨ Page table entry = 4 bytes
¤ Page table for process = 220 x 4 = 4 MB
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Issues with large page tables

¨ Cannot allocate page table contiguously in memory

¨ Solution:
¤ Divide the page table into smaller pieces

n Page the page-table
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Two-level Paging

Page offsetPage number

20 12

32-bit logical address
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Two-level Paging

Page offset

12

32-bit logical address

Inner
Page

1010

Outer 
Page
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Physical memory
frame

Page of page table

Outer page
table

Address translation in two-level paging

p1 p2 d

p2

p1

d

Actual Physical address

Track pages 
of page-table 



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.319

x86-64

¨ Intel: IA-64 Itanium
¤ Not much traction

¨ AMD: x86-64
¤ Intel adopted AMD’s x86-64 architecture

¨ 64-bit address space: 264 (16 exabytes)

¨ Currently x86-64 provides
¤ 48–bit virtual address
¤ Page sizes: 4 KB, 2 MB, and 1 GB
¤ 4-level paging hierarchy
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ARM architectures

¨ iPhone and Android systems use this
¨ 32-bit ARM

¤ 4 KB and 16 KB pages
¤ 1 MB and 16 MB pages

2-level paging

1-level paging

There are two levels for TLBs:
    A separate TLB for data
    Another for instructions
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In our discussions so far …

¨ Virtual memory is one-dimensional
¤ Logical addresses go from 0 to some max value

¨ Many problems can benefit from having two or more separate virtual 
address spaces
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One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to 
the constant table

Address space
being used

Free

Program has an exceptional
number of variables
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One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to 
the constant table

Address space
being used

Free

Symbol table has BUMPED INTO
the source text table

Program has an exceptional
number of variables
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Segmentation

¨ Logical address space is a collection of segments

¨ Segments have name and length

¨ Addresses specify
¤ Segment name
¤ Offset within the segment

¨ Tuple: <segment-number, offset>
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Segmentation Hardware

s dCPU

s

Logical
Address

Physical
Address

Segment Table

limit base

+

TRAP: Addressing Error

NO

YES
<
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Rationale for Paging and Segmentation

¨ Get a large linear address space without having to 
buy more physical memory
¤ PAGING

¨ Allow programs and data to be broken up into 
logically independent address spaces
¤ Aids Sharing AND Protection

n Segmentation
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Comparison of Paging and Segmentation
Consideration Paging Segmentation

How many linear address 
spaces are there?

1 Many

Can total address space
exceed physical memory

YESYES

Can procedures and data be
distinguished and protected
separately?

YESNO

Can fluctuating table sizes
be accommodated?

NO YES
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Comparison of Paging and Segmentation
Consideration Paging Segmentation

Should the programmer be
aware the the technique is
being used?

NO YES

Is sharing of procedures
between users facilitated?

YESNO

Why was this technique
invented?

To allow programs and data 
to be broken up into logically
independent address spaces 
and to allow sharing and 
protection

To get a large linear
address space without
having to buy more 
physical memory
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Segmentation with Paging

¨ Multics: Each program can have up to 256K independent segments 
¤ Each with 64K 36-bit words

¨ Intel Pentium
¤ 16K independent segments
¤ Each segment has 109 32-bit words
¤ Few programs need more than 1000 segments, but many programs need 

large segments
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Virtual Memory

Objectives:
¨ Explain demand paging and page faults
¨ Contrast page replacement algorithms and explain Belady's anomaly
¨ Justify the rationale for stack algorithms
¨ Explain frame allocations
¨ Synthesize the concepts of thrashing and working sets
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How we got here …

Contiguous 
Memory

Virtual 
Memory

External 
Fragmentation

Pure 
Paging

Low Degree of 
Multiprogramming

Single 
Address 
space

Segmentation
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Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters, 
  return addresses, 
  and local variables}

max

low
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Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low
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Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by 
¤ Heap or stack segments
¤ Dynamically linked libraries
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Loading an executable program into memory

¨ What if we load the entire program?
¤ We may not need the entire program

¨ Load pages only when they are needed
¤ Demand Paging
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Differences between the swapper and pager

¨ Swapper
¤ Swaps the entire program into memory

¨ Pager
¤ Lazy swapper
¤ Never swap a page into memory unless it is actually 

needed
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Swapping: Temporarily moving a process out 
of memory into a backing store

Process 
P1

Process 
P2

Operating 
System

User space

Swap out

Swap in
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Pager swapping pages in and out of physical 
memory 

Program A

Program B

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Swap OUT

Swap IN
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Demand Paging: Basic concepts

¨ Guess pages to be utilized by process
¤ Before the process will be swapped out

¨ Avoid reading unused pages
¤ Better physical memory utilization
¤ Reduced I/O

n Lower swap times
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Distinguishing between pages in memory and those 
on disk

¨ Valid-Invalid bits
¤ Associated with entries in the page table

¨ Valid
¤ Page is both legal and in memory

¨ Invalid
① Page is not in logical address space of process

    OR
② Valid BUT currently on disk
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Distinguishing between pages in memory 
and those on disk

A
B
C

E
D

F
G
H

0
1
2

3
4

5
6

7

0
1
2

3

4

5

6

7

Page Table

6 v

4 v

9 v

I

I

I

I

I

A

C

F

0
1

2

3

4

5
6

7
8
9
10

11

12

13
14

15

A B

C D E

F G H

Logical 
Memory

Backing Store

Physical 
Memory
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PHYSICAL
MEMORY

BACKING 
STORE

PAGE 
TABLE

Handling page faults

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing 
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference
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Pure demand paging

¨ Never bring a page into memory unless it is required

¨ Execute process with no pages in memory
¤ First instruction of process will fault for the page

¨ Page fault to load page into memory and execute 
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Potential problems with pure demand paging

¨ Multiple page faults per instruction execution
¤ One fault for instruction
¤ Many faults for data

¨ Multiple page faults per instruction are rare
¤ Locality of reference
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Hardware requirements to support demand paging

¨ Page Table

¨ Secondary memory
¤ Section of disk known as swap space is used 
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Restarting instructions after a page fault

¨ Page faults occur at memory reference

¨ Use PCB to save state of the interrupted process

¨ Restart process in exactly the same place 
¤ Desired page is now in memory and accessible
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Effective access times

¨ Without page faults, effective access times are equal to memory 
access times
¤ 200 nanoseconds approximately

¨ With page faults
¤ Account for fault servicing with disk I/O
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Calculating the effective access times with demand 
paging

p     : probability of a page fault
    ma  : memory access time

    Effective access time =
          (1-p) x ma + p x page-fault-time



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.349

Components of page-fault servicing

Service
interrupt

Read in
 the page

Restart 
process

1~100 µS 1~100 µSLatency : 3 mS
Seek    : 5 mS
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Page replacement

¨ If no frame is free
¤ Find one that is not currently being used

n Use it
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Freeing a physical memory frame

¨ Write frame contents to swap space

¨ Change page table of process
¤ To reflect that page is no longer in memory

¨ Freed frame can now hold some other page
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Servicing a page fault

Retrieve page
from disk

Free frame available?

Use it

Select victim frame

Write victim frame
 to disk

YES
Done using a 
page replacement
algorithmNO
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PHYSICAL
MEMORY

BACKING 
STORE

PAGE 
TABLE

Page replacement is central to demand paging

load M

I
Free
Frame

OPERATING
SYSTEM

3 Locate page on backing store

4

Bring in
missing 
page

5

Reset page
 table

2 Trap to the OS

6

Restart
instruction

1

Reference
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Page replacement algorithms: 

¨ What are we looking for?
¤ Low page-fault rates

¨ How do we evaluate them?
¤ Run algorithm on a string of memory references

n Reference string

¤ Compute number of page faults 
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FIFO page replacement algorithm:
Out with the old; in with the new

¨ When a page must be replaced
¤ Replace the oldest one

¨ OS maintains list of all pages currently in memory
¤ Page at head of the list:    Oldest one
¤ Page at the tail:                Recent arrival

¨ During a page fault
¤ Page at the head is removed
¤ New page added to the tail
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FIFO example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Youngest

Oldest 

0

7 0

7

1

1

0

2

1

0

2

2

1

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

3

2

0

3

2

0

0

3

1

1

0

2

1

0

2

1

0

2

2

1

7

7

2

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String

No page fault
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How we got here …

Contiguous 
Memory

Demand 
Paging

Page 
Faults

Page replacement 
algorithms Page Bufferring Frame 

Allocation

External 
Fragmentation

Pure 
Paging

Low Degree of 
Multiprogramming

Working Sets
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Intuitively the greater the number of memory frames, 
the lower the faults

¨ Surprisingly this is not always the case

¨ In 1969 Belady, Nelson and Shedler discovered counter example* in 
FIFO
¤ FIFO caused more faults with 4 frames than 3

¨ This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging 
machine. Belady, Nelson and Shedler.



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.359

Belady’s anomaly: FIFO
Same reference string, different frames

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

Youngest

Oldest 

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 3 3 4 0 1 2

0 0 0 1 2 3 4 0 1

9 page faults
with 3 frames 

10 page faults
with 4 frames

Youngest

Oldest 

Numbers in this color: 
No page fault
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Belady’s anomaly

¨ Led to a whole theory on paging algorithms and properties

¨ Stack algorithms
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The Model

¨ There is an array M
¤ Keeps track of the state of memory

¨ M has as many elements as pages of virtual memory

¨ Divided into two parts
¤ Top part: m entries {Pages currently in memory}
¤ Bottom part: n-m entries

n Pages that were referenced BUT paged out 
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The model

Page fault

Reference 
String

n 
el

em
en

tsm
 e

nt
ri

es

Tracking the state of the array M over time
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Properties of the model

¨ When a page is referenced
¤ Move to the top entry of M

¨ If the referenced page is already in M
¤ All pages above it moved down one position
¤ Pages below it are not moved

¨ Transition from within box to outside of it
¤ Page eviction from main memory
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The model
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The optimal page replacement algorithm

¨ The best possible algorithm

¨ Easy to describe but impossible to implement

¨ Crux: 
Put off unpleasant stuff for as long as possible

¨ Idea: evict “Furthest-in-the-future” 
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The optimal page replacement algorithm description

¨ When a page fault occurs some set of pages are in memory

¨ One of these pages will be referenced next
¤ Other pages may be not be referenced until 10, 100 or 1000 instructions 

later

¨ Label each page with the number of instructions to be executed before 
it will be referenced
¤ Page with the highest label should be removed 
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The Least Recently Used (LRU) page replacement 
algorithm

¨ Approximation of the optimal algorithm

¨ Observation
¤ Pages used heavily in the last few instructions

n Probably will be used heavily in the next few

¤ Pages that have not been used
n Will probably remain unused for a long time

¨ When a page fault occurs?
¤ Throw out page that has been unused the longest
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LRU example: 3 memory frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7Recent

Least
Used

0

7 0

7

1

1

0

2

2

1

0

0

2

3

3

2

0

0

3

4

4

0

2

2

4

3

3

2

0

0

2

3

3

0

2

2

3

1

1

3

2

2

1

0

0

2

1

1

0

7

7

1

0

0

7

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Reference String
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Using Logical clocks to implement LRU

¨ Each page table entry has a time-of-use field
¤ Entry updated when page is referenced

n Contents of clock register are copied

¨ Replace the page with the smallest value
¤ Time increases monotonically

n Overflows must be accounted for

¨ Requires search of page table to find LRU page
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Stack based approach

¨ Keep stack of page numbers

¨ When page is referenced
¤ Move to the top of the stack

¨ Implemented as a doubly linked list

¨ No search done for replacement
¤ Bottom of the stack is the LRU page
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Problems with clock/stack based approaches to LRU 
replacements

¨ Inconceivable without hardware support
¤ Few systems provide requisite support for true LRU implementations

¨ Updates of clock fields or stack needed at every memory reference

¨ If we use interrupts and do software updates of data structures things 
would be very slow
¤ Would slow down every memory reference

n At least 10 times slower
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Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude approximation of LRU

FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging Efficient algorithm that approximates LRU well
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Page Buffering:
Being proactive 

¨ Maintain a list of modified pages

¨ When the paging device is idle
¤ Write modified pages to disk

¨ Implications
¤ If a page is selected for replacement increase likelihood of that page being 

clean
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Page Buffering: Reuse what you can

¨ Keep pool of free frames as before
¤ BUT remember which pages they held

¨ Frame contents are not modified when page is written to disk

¨ If page needs to come back in?
¤ Reuse the same frame if it was not used to hold some other page
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Buffering and applications

¨ Applications often understand their memory/disk usage better than 
the OS
¤ Provide their own buffering schemes

¨ If both the OS and the application were to buffer
¤ Twice the I/O is being utilized for a given I/O
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Frame allocation: How do you divvy up free memory 
among processes?

35 MB for the OS

93 MB for others

With demand paging all 93 frames would be in the free frame pool

Frame size = 1 MB; Total Size = 128 MB

2 processes at T0
   How are frames allocated?

128 MB
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Constraints on frame allocation

¨ Max: Total number of frames in the system
¤ Available physical memory

¨ Min: Need to allocate at least a minimum number of frames
¤ Defined by the architecture of the underlying system
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Minimum number of frames

¨ As you decrease the number of frames for a process
¤ Page fault increases
¤ Execution time increases too

¨ Defined by the architecture
¤ In some cases instructions and operands (indirect references) straddle page 

boundaries
n With 2 operands at least 6 frames needed
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Global vs Local Allocation

¨ Global replacement
¤ One process can take a memory frame from another process

¨ Local replacement
¤ Process can only choose from the set of frames that was allocated to it
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Local vs Global replacement:
Based on how often a page is referenced

Pages

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

Usage 
Count

10

7

5

3

9

4

2

6

3

5

6

Pages

A1

A2

A3

A5

B1

B2

B3

B4

C1

C2

C3
Local Replacement

Pages

A1

A2

A3

A4

B1

B2

A5

B4

C1

C2

C3
Global ReplacementProcesses A, B and C

Process A has 
page faulted
and needs to 
bring in a page
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Global vs Local Replacement 

Local Global

Number of frames
allocated to process Fixed Varies dynamically

Can process control its
own fault rate? YES NO

Can it use free frames 
that are available?

NO YES

Increases system
 throughput?

NO YES
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Locality of References

¨ During any phase of execution a process references a relatively small 
fraction of its pages

¨ Set of pages that a process is currently using
¤ Working set

¨ Working set evolves during process execution
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Implications of the working set

¨ If the entire working set is in memory
¤ Process will execute without causing many faults

n Until it moves to another phase of execution

¨ If the available memory is too small to hold the working set?
①  Process will cause many faults
②  Run very slowly
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Characterizing the affect of multiprogramming on 
thrashing

C
PU

 U
til

iz
at

io
n

Degree of Multiprogramming

Thrashing
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Mitigating the effects of thrashing

¨ Using a local page replacement algorithm
¤ One process thrashing does not cause cascading thrashing among other 

processes

¤ BUT if a process is thrashing
n Average service time for a page fault increases

¨ Best approach
① Track a process’ working set
② Make sure the working set is in memory before you let it run
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Virtualization

Objectives:
¨ Explain Virtual Machine Monitors (VMMs)
¨ Justify the Popek and Goldberg requirements for virtualization
¨ Explain how Virtualization works in the x86 architecture
¨ Compare Type-1 and Type-2 Hypervisors
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Firms often have multiple, dedicated servers: e-mail, 
FTP, e-commerce, web, etc.

¨ Load: May be one machine cannot handle all that load

¨ Reliability: Management does not trust the OS to run 24 x 7 without 
failures

¨ By putting one server on a separate computer, if one of the server 
crashes?
¤ At least the other ones are not affected

¨ If someone breaks into the web server, at least sensitive e-mails are 
still protected
¤ Sandboxing
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But …

¨ While this approach achieves isolation and fault tolerance
¤ This solution is expensive and hard to manage because so many machines 

are also involved

¨ Other reasons for having separate machines?
¤ Organizations depend on more than one OS for their daily operations

n Web server on Linux, mail server on Windows, e-commerce server on OS X, other 
services on various flavors of UNIX
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What to do?

¨ A possible (and popular) solution is to use virtual machine technology

¨ This sounds very hip and modern 
¤ But the idea is old … dating back to the 1960s
¤ Even so, the way we use it today is definitely new
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Main idea

¨ VMM (Virtual Machine Monitor) creates the illusion of multiple (virtual) 
machines on the same physical hardware
¤ VMM is also known as a hypervisor

n We will look at type 1 hypervisors (bare metal) and type 2 hypervisors (use 
services and abstractions offered by an underlying OS)

¨ Virtualization allows a single computer to host multiple virtual 
machines
¤ Each potentially running a different OS
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Failure in one virtual machines does not bring down 
any others

¨ Different servers run on different virtual machines
¤ Maintains partial-failure model at a lower cost with easier maintainability

¨ Also, we can run different OS on the same hardware
¤ Benefit from virtual machine isolation in the face of attacks 
¤ Plus enjoy other good stuff: savings, real estate, etc.
¤ Convenient for complex software stack with precise system dependencies

n Think core libraries



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.392

Why virtualization works        [1/2]

¨ Service outages are due not to faulty hardware, but due to poor 
software, emphatically including OSes  
¤ Ill-designed, unreliable, buggy, and poorly configured software

¨ Migration to another machine may be easier
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Why virtualization works        [2/2]

¨ The only software running in the highest privilege is the hypervisor

¨ Hypervisor has 2 orders of magnitude fewer lines of code than a full 
operating system
¤ Has 2 orders of magnitude fewer bugs

¨ A hypervisor is simpler than an OS because it does only one thing
¤ Emulate copies of the bare metal (most commonly the Intel x86 architecture)
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Advantages to running software in VMs besides 
strong isolation

¨ Few physical machines
¤ Saves money on hardware and electricity
¤ Takes up less rack space

¨ For companies such as Amazon or Microsoft
¤ Reducing physical demands on data centers represents huge cost savings
¤ Companies frequently locate their data centers in the middle of nowhere 

n Just to be close to hydroelectric dams (and cheap energy)
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Hypervisors should score well on 

¨ Safety
¤ Hypervisor should have full control of the virtualized resources

¨ Fidelity
¤ Behavior of program on a virtual machine should be identical to the same 

program running on bare hardware

¨ Efficiency
¤ Much of the code in the virtual machine should run without intervention from 

the hypervisor
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Safety

¨ Consider each instruction in turn in an interpreter (such as Bochs) and 
perform exactly what is needed
¤ May execute some instructions (INC) as is, but other instructions must be 

simulated

¨ We cannot allow the guest OS to disable interrupts for the entire 
machine or modify page-table mappings
¤ Trick is to make the guest OS believe that it has

¨ Interpreter may be safe, even hi-fi, but performance is abysmal
¤ So, VMMs try to execute most code directly
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Fidelity                                 [1/2] 

¨ Virtualization has long been a problem on x86
¤ Defects in 386 carried forward into new CPUs for 20 years in the name of 

backward compatibility

¨ Every CPU with kernel mode and user mode has instructions that 
behave differently
¤ Depending on whether it is executed in kernel/user mode

n Sensitive instructions
¤ Some instructions cause a trap 

when executed in user-mode
n Privileged instructions

A machine is virtualizable 
only if sensitive instructions 
are a subset of privileged 
instructions
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Fidelity                                 [2/2] 

¨ If you do something in user mode that you should not
¤ The hardware should trap!
¤ IBM/370 had this property, Intel’s 386 did not

¨ Several sensitive 386 instructions were ignored if executed in user mode
¤ Or executed with a different behavior
¤ E.g. POPF instruction replaces flags register which changes the bit that 

enables/disables interrupts
n In user-mode this bit was simply not changed

¨ Also, some instructions could read sensitive state in user mode without 
causing a trap
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Full virtualization

¨ Trap all instructions
¨ Fully simulate entire computer
¨ Trade-off: High overhead
¨ Benefit: Can virtualize any OS
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Paravirtualization                  [1/2]

¨ Never aims to present a virtual machine that looks just like the actual 
underlying hardware

¨ Present machine-line software interface that explicitly exposes that it 
is a virtualized environment
¤ Offers a set of hypercalls that allow the guest to send explicit requests to 

the hypervisor
n Similar to how a system call offers kernel services to applications

¨ DRAWBACK: Guest OS has to be aware of the virtual machine API
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Paravirtualization                  [2/2]

¨ Guests use hypercalls for privileged, sensitive operations like updating 
page tables
¤ But they do it in cooperation with the hypervisor
¤ Overall system can be simpler and faster

¨ Paravirtualization was offered by IBM since 1972

¨ Idea was revived by Denali (2002) and Xen (2003) hypervisors
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Terms

¨ Guest Operating System
¤ The OS running on top of the hypervisor

¨ Host Operating System
¤ For a type 2 hypervisor: the OS that runs on the hardware

¨ Safe executions
¤ Execute the machine’s instruction set in a safe manner
¤ Guest OSes may change or mess up its own page tables … but not those of 

others 
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Type 1 hypervisor

¨ Only program running in the most privileged mode

¨ Support multiple copies of the actual hardware
¤ Virtual machines
¤ Similar to processes a normal OS would run
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Location of Type-1 hypervisor

Hardware
(CPU, disk, network, interrupts, etc)

Type 1 hypervisor

Windows Linux
Control 
Domain

Excel Word Emacs
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Type 2 hypervisor

¨ Also referred to a hosted hypervisor

¨ Relies on a host OS, say Windows or Linux, to allocate and schedule 
resources

¨ Still pretends to be a full computer with a CPU and other devices
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Type 2: Running Guest OS

¨ When it starts for the first time, acts like a newly booted computer 
¤ Expects to find a DVD, USB drive or CD-ROM containing an OS

n The drive could be a virtual device
n Store the image as an ISO file on the hard drive and have hypervisor pretend its 

reading from proper DVD drive

¨ Hypervisor installs the OS to its virtual disk (just a file) by running 
installation that it found on DVD

¨ Once guest OS is installed on virtual disk, it can be booted and run
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Location of Type-2 hypervisor

Hardware
(CPU, disk, network, interrupts, etc)

Host OS 
(e.g. Linux)

Guest OS 
(e.g. Windows)

Type 2 hypervisor

Guest OS Processes

Host OS Process



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.408

Examples of hypervisors [Partial List]

Virtualization Method Type 1 hypervisor Type 2 hypervisor

Virtualization without 
hardware support

ESX Server 1.0 VMware workstation 1.0

Paravirtualization Xen 1.0

Virtualization with 
hardware support

vSphere, Xen, Hyper-V VMware Fusion, KVM, 
Parallels

Process Virtualization WINE
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Type-1 hypervisors

¨ Virtual machine runs as a user-process in user mode
¤ Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

¨ But the virtual machine runs a Guest OS that thinks it is in kernel mode 
(although, of course, it is not)
¤ Virtual kernel mode

¨ The virtual machine also runs user processes, which think they are in the 
user mode
¤ And really are in user mode
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Modes

Hardware

Type 1 hypervisor            Trap on privileged instruction

Guest Operating System

User processes

Kernel Mode

User mode

Virtual kernel mode

Virtual user mode
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Execution of kernel model instructions

¨ What if the Guest OS executes an instruction that is allowed only when 
the CPU is really in kernel mode?
¤ On CPUs without VT (Intel: Virtualization Technology)?

n Instruction fails and the OS crashes

¨ On CPUs with VT?
¤ A trap to the hypervisor does occur

n Hypervisor can inspect instruction to see if it was issued:
n By Guest OS: Arrange for the instruction to be carried out
n By user-process in that VM: Emulate what hardware would do when confronted with sensitive 

instruction executed in user-mode
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What if the guest is running and an interrupt 
arrives from an external device?

¨ Type 2 hypervisor depends on host’s device drivers to handle to the 
interrupt

¨ So, the hypervisor reconfigures hardware to to run the host OS 
system code
¤ When the device driver runs, it finds everything just as it expected it to be

¨ Hypervisor behaves just like teenagers throwing a party when parents 
are away
¤ It’s OK to rearrange furniture completely, as long as they put it back as they 

found it before parents get home
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Why do hypervisors work even on unvirtualizable 
hardware?

¨ Sensitive instructions in the guest kernel replaced by calls to 
procedures that emulate these instructions

¨ No sensitive instructions issued by the guest OS are ever executed 
directly by true hardware
¤ Turned into calls to the hypervisor, which emulates them
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Cost of virtualization

¨ We expect CPUs with VT would greatly outperform software 
techniques 

¨ Trap-and-emulate approach used by VT hardware generates a lot of 
traps … and these are expensive
¤ Ruin CPU caches, TLBs, and branch predictions

¨ In contrast, when sensitive instructions are replaced by calls to 
hypervisor procedures
¤ None of this context-switching overhead is incurred 
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True virtualization & paravirtualization

Hardware

Type 1 hypervisor                                      Microkernel

Unmodified Windows Modified Linux

Trap due 
to sensitive
instruction

Trap due to 
hypervisor
call

True virtualization Paravirtualization
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x86 privilege level architecture without virtualization

OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of 
User and OS Requests
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Full Virtualization: Binary translation approach to 
x86 virtualization

VMM

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of 
User and OS Requests

Binary Translation
of OS Requests
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Paravirtualization approach to x86 virtualization

Paravirtualized Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of 
User and OS Requests

“Hypercalls” to the 
Virtualization Layer
replace non-virtualizable
OS instructions 
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Hardware assisted virtualization

Guest OS

User Apps

Host Computer System Hardware

Ring 3

Ring 2

Ring 1

Ring 0

Direct execution of 
User and OS Requests

OS Requests trap to VMM 
without Binary Translation
or Paravirtualization

Root Mode
Privilege Levels
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Contrasting the virtualization approaches

Full virtualization 
with Binary 
Translation

Hardware Assisted 
Virtualization

OS Assisted 
Virtualization/Para
virtualization

Technique Binary Translation 
and Direct Execution

Exit to Root Mode 
on privileged 
instructions 

Hypercalls

Guest 
Modification/ 
Compatibility

Unmodified Guest 
OS

Excellent 
compatibility

Unmodified Guest 
OS

Excellent 
compatibility

GuestOS codified 
to issue Hypercalls 
so it can’t run on 
native hardware.

Compatibility is 
lacking
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Installing application software

¨ VMs offer a solution to a problem that has long plagued users 
(especially open source)
¤ How to install application programs

¨ Applications are dependent on numerous other applications and 
libraries
¤ Which themselves depend on a host of software packages

¨ Plus there are dependencies on particular versions of compilers, 
scripting languages, OS etc.
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With VMs …

¨ Developer can carefully construct a virtual machine
¤ Load it with required OS, compiler, libraries, and application code
¤ Freeze the entire unit … ready to run

¨ Only the software developer has to understand the dependencies
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Licensing Issues

¨ Some software is licensed on a per-CPU basis
¤ Especially, software for companies
¤ When they buy a program they have the right to run it on just one CPU

n What is a CPU anyway?
n Can we run multiple VMs all running on the same physical hardware?

¨ Problem is even worse, when companies have licenses for N machines 
running the software
¤ VMs come and go on demand
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File Systems

Objectives:
¨ Summarize file system structure
¨ Contrast contiguous allocation vs indexed allocations
¨ Explain the Unix File System
¨ Explain and contrast Windows File Systems: the File Allocation table 

and NTFS
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Files are an abstraction mechanism

¨ Provide a way to store information and read it back later

¨ Do this is an way that shields the user from
¤ How and where information is stored on disk 
¤ How disks really work



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.426

Files can be structured in many ways:
Unstructured sequence of bytes

¨ The OS does not know or care what is in the file
¤ Maximum flexibility

¨ OS does not help, but does not get in the way either

¨ Meaning is imposed by programs

¨ Most OS support this
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Mounting file systems

¨ Many systems have more than one disk
¤ How do you handle them?

¨ S1:Keep self contained file system on each disk
¤ And keep them separate

¨ S2: Allow one disk to be mounted in another disk’s file tree
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Mounting file systems

/

a b

c d

p q r

/

x y z

x y z

Hard Drive Diskette

cp /b/x /a/d/x

/

a b

c d

p q r

Hard Drive

cp D:/x /a/d/x
H is default
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Checks performed during mounting

¨ OS verifies that the device contains a valid file system

¨ Read device directory
¤ Make sure that the format is an expected one

¨ Windows mounting 
¤ Each device in a separate name space 
¤ {Letter followed by a colon e.g. G:}
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There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices
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I/O Control consists of device drivers

¨ Transfers information between main memory and disk

¨ Receives high-level commands
¤ Retrieve block 123, etc

¨ Outputs low-level, hardware-specific instructions
¤ Used by the hardware controller
¤ Writes bit patterns into specific locations of the I/O 

controller
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There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices
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Basic file system issues commands to the device 
driver

¨ Read and write physical blocks on disk
¤ E.g. Drive 1, cylinder 73, sector 10

¨ Manages buffers and caches 
① To hold file system, directory and data blocks

② Improves performance
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There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices
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File organization module

¨ Knows about files
¤ Logical and physical blocks

¨ Translate logical addresses to physical ones
¤ Needed for every block

¨ Includes a free space manager
¤ Tracks unallocated blocks and allocates as needed
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There are many levels that comprise a file system
Application
Programs

Logical
File System

File Organization
Module

Basic
File System

I/O Control

Devices
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The logical file system

¨ Manages metadata information
¤ Metadata is data describing the data

¨ Maintains file structure via file control blocks
¤ Info about the file

n Ownership and permissions
n Location of file contents

¤ inode in UNIX file systems
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Several file systems are in use

¨ CD-ROMs written in ISO 9660 format
¤ Designed by CD manufacturers

¨ UNIX
¤ Unix file system  (UFS)
¤ Berkley Fast File System (FFS)

¨ Windows: FAT, FAT32 and NTFS

¨ Linux
¤ Supports 40 different file systems
¤ Extended file system: ext2, ext3 and ext4
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On-disk structures used to implement a file system 
(1)

¨ Boot control block
¤ Information needed to boot an OS from that volume

¨ Volume control block: Volume information
¤ Number of blocks in the partition
¤ Size of the blocks
¤ Free-block count/pointers
¤ Free file-control-block count/pointers
¤ UFS: super-block Windows: Master file table 
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On-disk structures used to implement a file system 
(2)

¨ Directory structure to organize files
¤ One per file system

¨ Per file file-control-block
¤ Contains details about individual files
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In memory structures used to improve performance 
via caching

¨ Mount table 
¤ Information about each mounted volume

¨ Directory structure cache
¤ Holds information about recently accessed directories

¨ System-wide open file table
¤ File control block of each open file

¨ Buffers to hold file-system blocks
¤ To read and write to storage
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Creation of a new file

¨ Allocate a file-control block (FCB)

¨ Read appropriate directory into memory
¤ Directory is just a file in UNIX

n Special type field

¨ Update directory with new file name and FCB

¨ Write directory back to disk
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Directory implementation:
Hash table

¨ Linear list and a hash table is maintained

¨ Key computed from file name
¤ Hash table value returns pointer to entry in linear list

¨ Things to consider
①  Account for collisions in the hash space
②  Need to rehash the hash table when the number of 

entries exceed the limit 
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Contiguous Allocation

¨ Each file occupies a set of contiguous blocks on the disk
¤ If file is of size n blocks and starts at location b

n Occupies blocks b, b+1, …, b+n-1

¨ Disk head movements
¤ None for moving from block b to (b+1)
¤ Only when moving to a different track
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Sequential and direct access in contiguous 
allocations

¨ Sequential accesses 
¤ Remember disk address of the last referenced block
¤ When needed, read the next block

¨ Direct access to block i of file that starts at block b
   b + i
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Contiguous allocations suffer from external 
fragmentation

¨ Free space is broken up into chunks
¤ Space is fragmented into holes

¨ Largest continuous chunk may be insufficient for meeting request

¨ Compaction is very slow on large disks
¤ Needs several hours 
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File 
block
4

12

File 
block
3

10

File 
block
2

2

File 
block
1

7

Linked Allocation: Each file is a linked list of disk 
blocks

Physical
block

File 
block
0

4

File A

File 
block
3

14

File 
block
2

11

File 
block
1

3Physical
block

File 
block
0

6

File B

Pointer to next block
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Linked List Allocations:
Advantages

¨ Every disk block can be used
¤ No space is lost in external fragmentation

¨ Sufficient for directory entry to merely store disk address of first block
¤ Rest can be found starting there  
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Linked List Allocation:
Disadvantages

¨ Used effectively only for sequential accesses
¤ Extremely slow random access

¨ Space in each block set aside for pointers
¤ Each file requires slightly more space

¨ Reliability
¤ What if a pointer is lost or damaged?
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Linked list allocation: Take pointers from disk block 
and put in table

10

11

7

3

2

12

14

0
1

2

3

4
5

6

7
8

9

10
11

12
13

File 
block
4

12

File 
block
3

10

File 
block
2

2

File 
block
1

7

File 
block
0

4

EOF
Table tracks EVERY disk block in the system
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Linked list allocation using an index

¨ Entire disk block is available for data

¨ Random access is much easier
¤ Chain must still be followed

n But this chain could be cached in memory

¨ MS-DOS and OS/2 operating systems
¤ Use such a file allocation table (FAT)
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inode

¨ Fixed-length data structure
¤ One per file

¨ Contains information about
¤ File attributes

n Size, owner, creation/modification time etc.

¤ Disk addresses
n File blocks that comprise file
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inode

¨ The inode is used to encapsulate information about a large number of 
file blocks.

¨ For e.g. 
¤ Block size = 8 KB, and file size = 8 GB
¤ There would be a million file-blocks

n inode will store info about the pointers to these blocks

¤ inode allows us to access info for all these blocks
n Storing pointers to these file blocks also takes up storage 
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Managing information about data blocks in the 
inode

¨ First few data blocks of the file stored in the inode

¨ If the file is large: Indirect pointer
¤ To a block of pointers that point to additional data blocks

¨ If the file is larger: Double indirect pointer
¤ Pointer to a block of indirect pointers

¨ If the  file is huge: Triple indirect pointer
¤ Pointer to a block of double-indirect pointers 
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Schematic structure of the inode

File Attributes:
Size (bytes)
Owner UID/GID
Relevant times
Link and Block counts
Permissions

Direct pointers to first 
few file blocks

Single indirect pointer

Double indirect 
pointer

Triple indirect pointer

Pointers 
to next 

file blocks
Address of 
disk block
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i-Node: How the pointers to the file blocks are 
organized

Single indirect
block

Double indirect
block

Triple indirect
block

i-Node
Attributes



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L29.458

Disk Layout in traditional UNIX systems

Boot 
Block

Super
Block

i-Nodes

. . .

Data Blocks

An integral number of inodes fit in a single data block
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Super Block describes the state of the file system

¨ Total size of partition
¨ Block size and number of disk blocks
¨ Number of inodes
¨ List of free blocks
¨ inode number of the root directory

¨ Destruction of super block? 
¤ Will render file system unreadable
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A linear array of inodes follows the data block

¨ inodes are numbered from 1 to some max

¨ Each inode is identified by its inode number
¤ inode number contains info needed to locate 

inode on the disk
¤ Users think of files as filenames
¤ UNIX thinks of files in terms of inodes
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UNIX directory structure

¨ Contains only file names and the corresponding inode 
numbers

¨ Use ls –i to retrieve inode numbers of the files in the 
directory

i-node
Number

File name
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Directory entry, inode and data block for a simple 
file

12345

i-node
Number

name1

File name

1

23567

.
.

.
.

Fragment of the 
text in the file

Block 23567
inode 12345
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Two hard links to the same file

12345 name1

i-node File name

2

23567

.
.

.
.

Fragment of the 
text in the file

Directory entry
in /dirA

12345 name2

i-node File name

Directory entry
in /dirB

Block 23567

inode 12345
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File with a symbolic link

12345 name1

i-node File name

1

23567

.
.

.
.

Fragment of the 
text in the file

Directory entry
in /dirA

13579 name2

i-node File name

Directory entry
in /dirB

1

15213

.
.

.
.

Block 23567

“/dirA/name1”

Block 15213

inode 12345

inode 13579
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Limitations of a file system based on inodes

¨ File must fit in a single disk partition

¨ Partition size and number of files are fixed when system is set up
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Memory mapped files

¨ open(), read(), write()
¤ Requires system calls and disk access

¨ Allow part of the virtual address space to be logically associated with 
the file
¤ Memory mapping 
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Memory-mapping maps a disk block to a page (or 
pages) in memory

¨ Manipulate files through memory
¤ Multiple processes may map file concurrently 

n Enables data sharing

¤ Since JVM 1.4, Java supports memory-mapped files
n FileChannel

¨ Writes to files in memory are not necessarily 
immediate


