CS 370: OPERATING SYSTEMS
[COMPREHENSIVE REVIEW]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Introduction on Operating Systems
Processes

Inter-Process Communications
Threads

Process Synchronization and Atomic Transactions
CPU scheduling algorithms
Deadlocks

Memory management

Virtual memory

Virtualization

File systems

CS370: Operating Systems L29.2
Dept. Of Computer Science, Colorado State University

Disclaimer and preparation for the final

This slide set is meant to guide you in your preparation, but it does not mean other
lecture slides omitted here are useless! Return to each lecture as needed to polish
your understanding of concepts

Your final will be 2h duration, taken online via Canvas+respondus, and will close
Monday May 6™ at 11:59pm (end time to complete the exam). It will open
Sunday May 5™ at 00:01am. Official final date is Monday morning, but | open
for a longer period of time to accommodate people with jobs, etc.

All objectives listed for each module will be evaluated with at least one question,
with a majority of points on checking you have achieved the learning objectives,
and a minority of points on more advanced questions checking your full
understanding of some specific concepts. These advanced questions will only cover
lectures /content taught after the spring break

CS370: Operating Systems L29.3
Dept. Of Computer Science, Colorado State University

Introduction on Operating Systems

Obijectives:
Summarize basic operating systems concepts

Highlight key developments in the history of operating systems

CS370: Operating Systems L29.4
Dept. Of Computer Science, Colorado State University

A modern computer is a complex system

Multiple processors
Main memory and Disks
Keyboard, Mouse and Displays

Network interfaces

1/O devices

CS370: Operating Systems L29.5
Dept. Of Computer Science, Colorado State University

Why do we need Operating Systems?

If every programmer had to understand how all these components
work?

Software development would be arduous

Managing all components and using them optimally is a challenge

CS370: Operating Systems L29.6
Dept. Of Computer Science, Colorado State University

Computers are equipped with a layer of software

Called the Operating System

Functionality:

Provide user programs with a better, simpler, cleaner model of the
computer

Manage resources efficiently

CS370: Operating Systems L29.7
Dept. Of Computer Science, Colorado State University

Where the operating system fits in

Web browser

User mode —

Kernel mode __

B

-

~— —

User interface Program

Operating System

Bare Hardware

CS370: Operating Systems

—_—

E-mail reader Music Player

— Software

Dept. Of Computer Science, Colorado State University

L29.8

Where the operating system fits in

The OS runs on bare hardware in kernel mode
Complete access to all hardware

Can execute any instruction that the machine is capable of executing

Provides the base for all software
Rest of the software runs in user-mode

Only a subset of machine instructions is available

CS370: Operating Systems L29.9
Dept. Of Computer Science, Colorado State University

The OS controls hardware and coordinates
its use among various programs

weeskiolies

Compiler Assembler Text editor Database Syst
System and Application Programs

Operating System
Computer
Hardware

CS370: Operating Systems L29.10
Dept. Of Computer Science, Colorado State University

Kernel and user modes

Everything running in kernel mode is part of the OS

But some programs running outside it are part of it or at least closely
associated with it

CS370: Operating Systems L29.11
Dept. Of Computer Science, Colorado State University

Operating systems tend to be huge, complex and
long-lived

Source code of an OS like Linux or Windows?

Order of 5 million lines of code (for kernel)

50 lines page, 1000 pages/volume = 100 volumes

Application programs such as GUI, libraries and application software?
10-20 times that

CS370: Operating Systems L29.12
Dept. Of Computer Science, Colorado State University

Why do operating systems live for a long time?

Hard to write and folks are loath to throw it out

Typically evolve over long periods of time
Windows 95/98 /Me is one OS
Windows NT/2000/XP /Vista/7 /8 is another
System V, Solaris, BSD derived from original UNIX

Linux is a fresh code base

Closely modeled on UNIX and highly compatible with it

Apple OS X based on XNU (X is not Unix) which is based on the Mach
microkernel and BSD’s POSIX API

CS370: Operating Systems L29.13
Dept. Of Computer Science, Colorado State University

An operating system performs two unrelated
functions

Providing application programmers a clean abstract set of resources

Instead of messy hardware ones

Managing hardware resources

CS370: Operating Systems L29.14
Dept. Of Computer Science, Colorado State University

The OS as an extended machine

The architecture of a computer includes

Instruction set, memory organization, /O, and bus structure

The architecture of most computers at the machine language level

Primitive and awkward to program especially for 1/O

CS370: Operating Systems L29.15
Dept. Of Computer Science, Colorado State University

Main memory is generally the only large
storage device the CPU deals with

To execute a program, it must be mapped to absolute addresses and
loaded into memory

Execution involves accesses to instructions and data from memory

By generating absolute addresses

When program terminates, memory space is reclaimed

CS370: Operating Systems L29.16
Dept. Of Computer Science, Colorado State University

Virtual memory allows processes not completely
memory resident to execute

Enables us to run programs that are larger than the actual physical

memory
Separates logical memory as viewed by user from physical memory

Frees programmers from memory storage limitations

CS370: Operating Systems L29.17
Dept. Of Computer Science, Colorado State University

Program Construct:
Asynchronous operation

Events happen at unpredictable times AND in
unpredictable order.

Interrupts from peripheral devices

For e.g. keystrokes and printer data

To be correct, a program must work will all possible
timings

Timing errors are very hard to repeat

CS370: Operating Systems L29.18
Dept. Of Computer Science, Colorado State University

Program Construct:
Concurrency

Sharing resources in the same time frame
Interleaved execution
Maijor task of modern OS is concurrency control

Bugs are hard to reproduce, and produce unexpected side effects

CS370: Operating Systems L29.19
Dept. Of Computer Science, Colorado State University

Concurrency occurs at the hardware level
because devices operate at the same time

Interrupt: Electrical signal generated by a peripheral device to set
hardware flag on CPU

Interrupt detection is part of instruction cycle

If interrupt detected
O Save current value of program counter

O Load new value that is address of interrupt service routine or interrupt
handler: device drivers

Drivers use signals (software) to notify processes

CS370: Operating Systems L29.20
Dept. Of Computer Science, Colorado State University

Signal is the software notification of an event

Often a response of the OS to an interrupt

OS uses signals to notify processes of completed
1/O operations or errors

Signal generated when event that causes signal occurs

For example: keystroke and Cirl-C

A process catches a signal by executing handlers for the signal

CS370: Operating Systems L29.21
Dept. Of Computer Science, Colorado State University

Concurrency constructs: |/O operations

Coordinate resources so that CPU is not idle
Blocking 1/O blocks the progress of a process
Asynchronous 1/O (dedicated) threads circumvent this problem

Ex: Application monitors 2 network channels

If application is blocked waiting for input from one source, it cannot respond
to input on 2"¥ channel

CS370: Operating Systems 129.22
Dept. Of Computer Science, Colorado State University

Concurrency constructs: Processes & threads

User can create multiple processes; fork() in UNIX

Inter process communications
Common ancestor: pipes

No common ancestor: signals, semaphores, shared address spaces, or
messages

Multiple threads within process = concurrency

CS370: Operating Systems 129.23
Dept. Of Computer Science, Colorado State University

Trend: going multi-core for CPUs

Increase processor compute capability by factor of 4

o Driven by power / physics e
Single Core, 1 GHz Processor Four Core, 1 GHz Processor

01 Problem: parallelism in

the application? D
7 We merely see 16-core

Consumes

—— | | ==
= | | =

Assume 1 Watt Core Power ~ Number of

CPUS as HEDT in 2024 Increasing Frequency EIEE

Single Core, 1 GHz Processor Single Core, 4 GHz Processor

Consumes
‘ 64 Watts

Assume 1 Watt Core

& i3
Grabbed from DoE Scidac Power ~ (frequency)

CS370: Operating Systems L29.24
Dept. Of Computer Science, Colorado State University

Multiprogramming organizes jobs so that
the CPU always has one to execute

A single program (generally) cannot keep CPU & 1/O devices busy at
all times

A user frequently runs multiple programs
When a job needs to wait, the CPU switches to another job.

Utilizes resources (cpu, memory, peripheral devices) effectively.

CS370: Operating Systems L29.25
Dept. Of Computer Science, Colorado State University

Time sharing is a logical extension of the
multiprogramming model
CPU switches between jobs frequently, users can
interact with programs

Time shared OS allows many users to use computer
simultaneously

Each action in a time shared OS tends to be short

CPU time needed for each user is small

CS370: Operating Systems L29.26
Dept. Of Computer Science, Colorado State University

Processes

Obijectives:
Contrast programs and processes
Explain the memory layout of processes
Describe Process Control Blocks

Explain the notion of Interrupts and Context Switches

Describe process groups

CS370: Operating Systems L29.27
Dept. Of Computer Science, Colorado State University

A process is just an instance of an executing program

Conceptually each process has its own virtual CPU

In reality, the CPU switches back-and-forth from process to process

Processes are not affected by the multiprogramming

Or relative speeds of different processes

CS370: Operating Systems 129.28
Dept. Of Computer Science, Colorado State University

An example scenario: 4 processes

Four Program Counters

4 processes in
memory

CS370: Operating Systems L29.29
Dept. Of Computer Science, Colorado State University

Example scenario: 4 processes

Processes

Time ==

* At any instant only one process executes

* Viewed over a long time, all processes have made
progress

CS370: Operating Systems L29.30
Dept. Of Computer Science, Colorado State University

Programs and processes

Programs are passive, processes are active

The difference between a program and a process is subtle, but crucial

CS370: Operating Systems L29.31
Dept. Of Computer Science, Colorado State University

Key concepts

Process is an activity of some kind; it has a
Program
Input and Output
State

Single processor may be shared among several processes

Scheduling algorithm decides when to stop work on one, and start work on
another

CS370: Operating Systems L29.32
Dept. Of Computer Science, Colorado State University

Key concepts

Process is an activity of some kind; it has a
Program
Input and Output
State

Single processor may be shared among several processes

Scheduling algorithm decides when to stop work on one, and start work on
another

CS370: Operating Systems L29.33
Dept. Of Computer Science, Colorado State University

How a program becomes a process

When a program is executed, the OS copies the program image into
main memory

Allocation of memory is not enough to make a program into a process
Must have a process ID

OS tracks IDs and process states to orchestrate system resources

CS370: Operating Systems L29.34
Dept. Of Computer Science, Colorado State University

A process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}

{Program code}

low

CS370: Operating Systems L29.35
Dept. Of Computer Science, Colorado State University

Program in memory (I)

Program image appears to occupy contiguous blocks of memory

OS maps programs into non-contiguous blocks

CS370: Operating Systems L29.36
Dept. Of Computer Science, Colorado State University

Program in memory (ILI)

Mapping divides the program into equal-sized pieces: pages
OS loads pages into memory

When processor references memory on page

OS looks up page in table, and loads into memory

CS370: Operating Systems L29.37
Dept. Of Computer Science, Colorado State University

Advantages of the mapping process

Allows large logical address space for stack and heap

O No physical memory used unless actually needed

OS hides the mapping process
Programmer views program image as logically contiguous

Some pages may not reside in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.38

Finite State Machine

An initial state

A set of possible input events

A finite number of states
Transitions between these states

Actions

CS370: Operating Systems L29.39
Dept. Of Computer Science, Colorado State University

Process state transition diagram: When a process
executes it changes state

interrupt
- new /\ terminated
ready ~ running

scheduler dispatch

I/0 or event
completion /0 or event wait
waiting

CS370: Operating Systems L29.40
Dept. Of Computer Science, Colorado State University

Each process is represented by a process control

block SPCBE
R

PCB is a repository for any
information that varies from
process to process.

CS370: Operating Systems L29.41
Dept. Of Computer Science, Colorado State University

An example of CPU switching between processes
B

Process A Operating System Process B

—

r idle

| }idle

CS370: Operating Systems L29.42
Dept. Of Computer Science, Colorado State University

Scheduling Queues

Job Quevue: Contains all processes

A newly created process enters here first

Ready Queue
Processes residing in main memory
Ready and waiting to execute

Typically a linked list

Device Queue

Processes waiting for a particular 1/O device

CS370: Operating Systems L29.43
Dept. Of Computer Science, Colorado State University

Process scheduling

/O Queue pumm

CS370: Operating Systems L29.44
Dept. Of Computer Science, Colorado State University

Interrupts and Contexts

Interrupt causes the OS to change CPU from its
current task to run a kernel routine

Save current context so that suspend and resume are
possible

Context is represented in the PCB
Value of CPU registers
Process state

Memory management information

CS370: Operating Systems L29.45
Dept. Of Computer Science, Colorado State University

Context switch refers to switching from one process
to another

(1) Save state of current process
(2) Restore state of a different process

Context switch time is pure overhead

No useful work done while switching

CS370: Operating Systems L29.46
Dept. Of Computer Science, Colorado State University

Example: Process tree in Solaris
—

CS370: Operating Systems L29.47
Dept. Of Computer Science, Colorado State University

Processes in UNIX

1nit : Root parent process for all user processes

Get a listing of processes with ps command
ps: List of all processes associated with user
ps —a : List of all processes associated with terminals

ps —A: List of all active processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.48

Resource sharing between a process and its
subprocess

Child process may obtain resources directly from OS

Child may be constrained to a subset of parent’s resources

Prevents any process from overloading system

Parent process also passes along initialization data to the child

Physical and logical resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.49

Parent /Child processes:

Execution possibilities
——

-1 Parent executes concurrently with children

1 Parent waits until some or all of its children terminate

CS370: Operating Systems L29.50

Dept. Of Computer Science, Colorado State University

Parent /Child processes:

Address space possibilities
—

o Child is a duplicate of the parent

Same program and data as parent

1 Child has a new program loaded into it

CS370: Operating Systems L29.51
Dept. Of Computer Science, Colorado State University

Process creation in UNIX

Process created using fork ()
fork () copies parent’s memory image

Includes copy of parent’s address space

Parent and child continue execution at instruction after
fork ()

Child: Return code for fork () is @

Parent: Return code for fork () is the non-ZERO process-I1D
of new child

CS370: Operating Systems L29.52
Dept. Of Computer Science, Colorado State University

fork () results in the creation of 2 distinct programs

Parent Child
PID=abc PID=xyz
id =fork () _Resu_l‘rsm) '-;d —fork () Child will
W execute
from here
id = xyz here id = 0 here
CS370: Operating Systems L29.53

Dept. Of Computer Science, Colorado State University

A parent can move itself from off the

ready queue and await child’s termination
-b

1 Done using the wait () system call.

1 When child process completes, parent process

parent
resumes
Return value = Non-ZERO

child PID

resumes

Return value=ZERO

CS370: Operating Systems L29.54
Dept. Of Computer Science, Colorado State University

wait/waitpid allows caller to suspend
execution till a child’s status is available

Process status availability
Most commonly after termination

Also available if process is stopped

waltpid(pid, *stat loc, options)
pid== -1 : any child
pid > 0 :specific child
pid == : any child in the same process group

pid < -1 :any child in process group abs(pid)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.55

Process groups

Process group is a collection of processes
Each process has a process group ID

Process group leader?

Process with p1d==pgid

kill treats negative pid as pgid

Sends signal to all constituent processes

CS370: Operating Systems L29.56
Dept. Of Computer Science, Colorado State University

Process Group IDs:
When a child is created with fork ()

(1) Inherits parent’s process group 1D

(2) Parent can change group ID of child by using
setpgid

(3) Child can give itself new process group 1D

Set process group ID = its process ID

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.57

Process groups

It can contain processes which are:

(1) Parent (and further ancestors)

(2) Siblings
(3) Children (and further descendants)

A process can only send signals to members of its process group

CS370: Operating Systems L29.58
Dept. Of Computer Science, Colorado State University

Example: Process tree in Solaris
—

CS370: Operating Systems L29.59
Dept. Of Computer Science, Colorado State University

Windows has no concept of a process hierarchy

The only hint of a hierarchy?

When a process is created, parent is given a special token (called handle)
Use this to control the child

However, parent is free to pass this token to some other process

Invalidates hierarchy

CS370: Operating Systems L29.60
Dept. Of Computer Science, Colorado State University

Windows has no concept of a process hierarchy

The only hint of a hierarchy?

When a process is created, parent is given a special token (called handle)
Use this to control the child

However, parent is free to pass this token to some other process

Invalidates hierarchy

CS370: Operating Systems L29.61
Dept. Of Computer Science, Colorado State University

Process terminations

Normal exit (voluntary)

E.g. successful compilation of a program

Error exit (voluntary)

E.g. trying to compile a file that does not exist

CS370: Operating Systems L29.62
Dept. Of Computer Science, Colorado State University

Process terminations

Fatal error (involuntary)

Program bug

Referencing non-existing memory, dividing by zero, etc

Killed by another process (involuntary)

Execute system call telling OS to kill some other process

Killer must be authorized to do the killing of the killee
Unix: kill Win32: TerminateProcess

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.63

Process terminations:
This can be either normal or abnormal

OS deallocates the process resources
Cancel pending timers and signals

Release virtual memory resources and locks

Close any open files

Updates statistics

Process status and resource usage

Notifies parent in response to a wait ()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.64

On termination a UNIX process DOES NOT fully release resources
until a parent execute a wait() for it

When the parent is not waiting when the child terminates?

The process becomes a zombie

Zombie is an inactive process
Still has an entry in the process table

But is already dead, so cannot be killed easily!l ©

ZLombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still
active, etc.

CS370: Operating Systems L29.65
Dept. Of Computer Science, Colorado State University

Zombies and termination

When a process terminates, its orphaned children and
are adopted by a special process

This special system process is init

Some more about the special process 1nit
(1) Hasapidof1

(2) Periodically executes wait() for children

(3) Children without a parent are adopted by init

B Zombie processes are adopted by init after killing their
parent, then cleaned by the periodic wait()

CS370: Operating Systems L29.66
Dept. Of Computer Science, Colorado State University

Normal termination of processes

S S
1 Return from main

o Implicit return from main

= Function falls off the end

0 Callto exit, Exitor exit

CS370: Operating Systems L29.67
Dept. Of Computer Science, Colorado State University

Protection and Security

Control access to system resources

Improve reliability

Defend against use (misuse) by unauthorized or
incompetent users

Examples

Ensure process executes within its own space
Force processes to relinquish control of CPU

Device-control registers accessible only to the OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.68

Inter-Process Communications

Obijectives:
Explain inter-process communications based on Shared Memory

Explain inter-process communications based on Pipes

Explain inter-process communications based on message passing

Contrast inter-process communications based on shared memory, pipes,
and message passing

Design programs that implement inter-process communications

CS370: Operating Systems L29.69
Dept. Of Computer Science, Colorado State University

Independent and Cooperating processes

Independent: CANNOT affect or be affected by other processes

Cooperating: CAN affect or be affected by other processes

CS370: Operating Systems L29.70
Dept. Of Computer Science, Colorado State University

Why have cooperating processes?

Information sharing: shared files

Computational speedup

Sub tasks for concurrency
Modularity

Convenience: Do multiple things in parallel
Privilege separation

Etc.

CS370: Operating Systems L29.71
Dept. Of Computer Science, Colorado State University

Cooperating processes need |IPC to exchange data

and information
R

1 Shared memory
Establish memory region to be shared

Read and write to the shared region

7 Message passing

Communications through message exchange

CS370: Operating Systems L29.72
Dept. Of Computer Science, Colorado State University

Contrasting the two IPC approaches
B

Easi i i
asier to implement Maximum speed

Best for small amounts of data System calls to establish shared memory

Kernel intervention for communications

CS370: Operating Systems L29.73
Dept. Of Computer Science, Colorado State University

Shared memory systems

Shared memory resides in the address space of process creating it

Other processes must attach segment to their address space

CS370: Operating Systems L29.74
Dept. Of Computer Science, Colorado State University

IPC: Use of the created shared memory

Once shared memory is attached to the process’s
address space

Routine memory accesses using * from shmat ()

Write to it
sprintf (shared memory, "“Hello”);

Print string from memory

printf (“*%\n”, shared memory);

RULE: First attach, and then access

CS370: Operating Systems L29.75
Dept. Of Computer Science, Colorado State University

IPC Shared Memory:
What to do when you are done

(1) Detach from the address space.
shmdt () :SHared Memory DeTtach

shmdt (shared memory)

(2) To remove a shared memory segment
shmctl () : SHared Memory ConTroL: operation

Specify the segment ID to be removed
Specify operation to be performed: IPC RMID

Pointer to the shared memory region

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.76

Message Passing: Communicate and synchronize actions

without sharing the same address space

1 Useful in distributed environments (e.g., Message Passing Interface)

1 Two main operations
send (message)

recelve (message)

1 Message sizes can be:
Fixed: Easy

Variable: Little more effort

CS370: Operating Systems L29.77
Dept. Of Computer Science, Colorado State University

Communications between processes

There needs to be a communication link

Underlying physical implementation
Shared memory
Hardware bus

Network

CS370: Operating Systems L29.78
Dept. Of Computer Science, Colorado State University

Aspects to consider for IPC

(1) Communications

Direct or indirect

(2) Synchronization

Synchronous or asynchronous

(3) Buffering

Automatic or explicit buffering

CS370: Operating Systems L29.79
Dept. Of Computer Science, Colorado State University

Naming allows processes to refer to each other
—

01 Processes use each other’s identity to communicate

1 Communications can be
Direct

Indirect

CS370: Operating Systems L29.80
Dept. Of Computer Science, Colorado State University

Direct Communications:
Addressing

and sender of message
* send (P, message)

* recelve (Q, message)

* AsymmeT”C add ressing € ——— Only sender names recipient
— send (P, message) Recipient does not

—recelve (1d, message)

* Variable 1d set to name of the sending process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.81

Direct Communications: Disadvantages

Limited modularity of process definitions

Cascading effects of changing the identifier of process

Examine all other process definitions

CS370: Operating Systems L29.82
Dept. Of Computer Science, Colorado State University

Indirect communications: Message sent and received
from mailboxes (ports)

Each mailbox has a unique identification & owner

POSIX message queues use integers to identify
mailboxes

Processes communicate only if they have shared
mailbox

send (A, message)

recelve (A, message)

CS370: Operating Systems L29.83
Dept. Of Computer Science, Colorado State University

Indirect communications

Processes P1, P2 and P3 share mailbox A

P1 sends a message to A

P2, P3 execute a receive () from A

Possibilitiese Allow ...

(1) Link to be associated with at most 2 processes

@ At most 1 process to execute receive () at atime

(3) System to arbitrarily select who gets message

CS370: Operating Systems L29.84
Dept. Of Computer Science, Colorado State University

Mailbox ownership: Owned by OS

Mailbox has its own existence

Mailbox is independent

Not attached to any process

OS must allow processes to
Create mailbox
Send and receive through the mailbox

Delete mailbox

CS370: Operating Systems L29.85
Dept. Of Computer Science, Colorado State University

Message passing: Synchronization issues
Options for implementing primitives

Blocking send

Block until received by process or mailbox

Nonblocking send

Send and promptly resume other operations

Blocking receive

Block until message available

Nonblocking receive

Retrieve valid message or null

Producer-Consumer problem: Easy with blocking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.86

Communicate and synchronize actions
without sharing the same address space

Useful in distributed environments (e.g., Message Passing Interface)

Two main operations
send (message)

recelve (message)

Message sizes can be:
Fixed: Easy

Variable: Little more effort

CS370: Operating Systems L29.87
Dept. Of Computer Science, Colorado State University

Communications between processes

There needs to be a communication link

Underlying physical implementation
Shared memory
Hardware bus

Network

CS370: Operating Systems L29.88
Dept. Of Computer Science, Colorado State University

Aspects to consider for IPC

(1) Communications

Direct or indirect

(2) Synchronization

Synchronous or asynchronous

(3) Buffering

Automatic or explicit buffering

CS370: Operating Systems L29.89
Dept. Of Computer Science, Colorado State University

Naming allows processes to refer to each other
—

01 Processes use each other’s identity to communicate

1 Communications can be
Direct

Indirect

CS370: Operating Systems L29.90
Dept. Of Computer Science, Colorado State University

Direct communications

Explicitly name recipient or sender

Link is established automatically

Exactly one link between the 2 processes

Addressing

Symmetric

Asymmetric

CS370: Operating Systems L29.91
Dept. Of Computer Science, Colorado State University

Direct Communications:
Addressing

and sender of message
* send (P, message)

* recelve (Q, message)

* AsymmeT”C add ressing € ——— Only sender names recipient
— send (P, message) Recipient does not

—recelve (1d, message)

* Variable 1d set to name of the sending process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.92

Direct Communications: Disadvantages

Limited modularity of process definitions

Cascading effects of changing the identifier of process

Examine all other process definitions

CS370: Operating Systems L29.93
Dept. Of Computer Science, Colorado State University

Indirect communications: Message sent and received
from mailboxes (ports)

Each mailbox has a unique identification & owner

POSIX message queues use integers to identify
mailboxes

Processes communicate only if they have shared
mailbox

send (A, message)

recelve (A, message)

CS370: Operating Systems L29.94
Dept. Of Computer Science, Colorado State University

Indirect communications: Link properties

Link established only if both members share mailbox

Link may be associated with more than two processes

CS370: Operating Systems L29.95
Dept. Of Computer Science, Colorado State University

Indirect communications

Processes P1, P2 and P3 share mailbox A

P1 sends a message to A

P2, P3 execute a receive () from A

Possibilitiese Allow ...

(1) Link to be associated with at most 2 processes

@ At most 1 process to execute receive () at atime

(3) System to arbitrarily select who gets message

CS370: Operating Systems L29.96
Dept. Of Computer Science, Colorado State University

Mailbox ownership: Owned by OS

Mailbox has its own existence

Mailbox is independent

Not attached to any process

OS must allow processes to
Create mailbox
Send and receive through the mailbox

Delete mailbox

CS370: Operating Systems L29.97
Dept. Of Computer Science, Colorado State University

Message passing: Synchronization issues
Options for implementing primitives

Blocking send

Block until received by process or mailbox

Nonblocking send

Send and promptly resume other operations

Blocking receive

Block until message available

Nonblocking receive

Retrieve valid message or null

Producer-Consumer problem: Easy with blocking

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.98

Threads

Obijectives:
Explain differences between processes and threads
Compare multithreading models
Contrast differences between user and kernel threads
Relate dominant threading libraries: POSIX, Win32, and Java

Design threaded programs that can synchronize their actions

CS370: Operating Systems L29.99
Dept. Of Computer Science, Colorado State University

What are threads?

Miniprocesses or lightweight processes

Why would anyone want to have a kind of process within a process?

CS370: Operating Systems L29.100
Dept. Of Computer Science, Colorado State University

The main reason for using threads

In many applications multiple activities are going on at once

Some of these may block from time to time

Decompose application into multiple sequential threads

Running in quasi-parallel

CS370: Operating Systems L29.101
Dept. Of Computer Science, Colorado State University

Isn’t this precisely the argument for processes?

Yes, but there is a new dimension ...

Threads have the ability to share the address space (and all of its
data) among themselves

For several applications

Processes (with their separate address spaces) don’t work

CS370: Operating Systems L29.102
Dept. Of Computer Science, Colorado State University

Threads are also lighter weight than processes

Faster to create and destroy than processes
In many systems thread creation is 10-100 times faster

When number of threads needed changes dynamically and rapidly?
Lightweight property is very useful

CS370: Operating Systems L29.103
Dept. Of Computer Science, Colorado State University

Threads:
The performance argument

When all threads are CPU bound all the time?

Additional threads would likely yield no performance gain

But when there is substantial computing and substantial I/O
Having threads allows activities to overlap

Speeds up the application possibly

CS370: Operating Systems L29.104
Dept. Of Computer Science, Colorado State University

User-level threads: Overview

User
=
space

Kernel
space

rocess rea

Runtime System

\

Kernel -\

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Thread
table

Process
table

L29.105

User threads are invisible to the kernel and have low
overhead

Compete among themselves for resources allocated to their
encapsulating process

Scheduled by a thread runtime system that is part of the process code

Programs link to a special library
Each library function is enclosed by a jacket

Jacket function calls thread runtime to do thread management

Before (and possibly after) calling jacketed library function.

CS370: Operating Systems L29.106
Dept. Of Computer Science, Colorado State University

User level thread libraries: Managing blocking calls

Replace potentially blocking calls with non-blocking ones
If a call does not block, the runtime invokes it

If the call may block
(1) Place thread on a list of waiting thread:s
(2) Add call to list of actions to try later
(3) Pick another thread to run

ALL control is invisible to user and OS

CS370: Operating Systems L29.107
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (1)

Assumes that the runtime will eventually regain control, this is
thwarted by:

CPU bound threads

Thread that rarely perform library calls ...

Runtime can’t regain control to schedule other threads

Programmer must avoid lockout situations
Force CPU-bound thread to yield control

CS370: Operating Systems L29.108
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (2)

Can only share processor resources allocated to encapsulating process

Limits available parallelism

CS370: Operating Systems L29.109
Dept. Of Computer Science, Colorado State University

Kernel-level threads: Overview

]
s |
User
-
space
—
Kernel Thread

Process table
CS370: Operating Systems L29.110
Dept. Of Computer Science, Colorado State University

Kernel threads

Kernel is aware of kernel-level threads as schedulable entities

Kernel maintains a thread table to keep track of all threads in the system

Compete systemwide for processor resources

Can take advantage of multiple processors

CS370: Operating Systems L29.111
Dept. Of Computer Science, Colorado State University

Kernel threads:
Management costs

Scheduling is almost as expensive as processes

Synchronization and data sharing less expensive than processes

More expensive to manage than user-level threads

CS370: Operating Systems L29.112
Dept. Of Computer Science, Colorado State University

Hybrid thread models

Write programs in terms of user-level threads

Specify number of schedulable entities associated with process

Mapping at runtime to achieve parallelism

Level of user-control over mapping

Implementation dependent

CS370: Operating Systems L29.113
Dept. Of Computer Science, Colorado State University

The Many-to-One threading model

§ § § § €&— User threads

€— Kernel thread

CS370: Operating Systems L29.114
Dept. Of Computer Science, Colorado State University

Many-to-One Model maps many user level threads
to 1 kernel thread
Thread management done by thread library in user-space

What happens when one thread makes a blocking system call?

The entire process blocks!

CS370: Operating Systems L29.115
Dept. Of Computer Science, Colorado State University

Many-to-One Model maps many user level threads
to 1 kernel thread

Only 1 thread can access kernel at a time

Multiple threads unable to run in parallel on multi-processor /core system

E.g.: Solaris Green threads, GNU Portable threads

CS370: Operating Systems L29.116
Dept. Of Computer Science, Colorado State University

The One-to-One threading model

233
vo®

CS370: Operating Systems L29.117
Dept. Of Computer Science, Colorado State University

One-t0-One Model:

Maps each user thread to a kernel thread

7 More concurrency

Another thread can continue to run, when a thread invokes a blocking system
call

o Threads run in parallel on multiprocessors

CS370: Operating Systems L29.118
Dept. Of Computer Science, Colorado State University

One-to-One Model:
Maps each user thread to a kernel thread

Disadvantages:

There is an overhead for kernel thread creation

Multiple user threads can degrade application performance

Uses more kernel threads so uses more resources

Supported by:

Linux
Windows family: NT/XP /2000
Solaris @ and up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.119

Many-to-Many threading Model:
2-level is a variant of this

gii 2223 3

wEw

Many-to-Many Two-level

CS370: Operating Systems L29.120
Dept. Of Computer Science, Colorado State University

Many-to-Many model

Multiplex many user-level threads on a smaller number of kernel
threads

Number of kernel threads may be specific to
Particular application

Particular machine

Supported in
IRIX, HP-US, and Solaris (prior to version 9)

CS370: Operating Systems L29.121
Dept. Of Computer Science, Colorado State University

A comparison of the three models

Many-to-one One-to-One Many-to-Many
Kernel NO YES if many YES
Concurrency threads
During bIOCking Process Blocks Process DOES NOT Process DOES NOT
system call? block if other threads block
Kern?| thread Kernel thread Kernel thread Kernel threads
creation already exists creation overhead available
Caveat Use system calls Don’t create too

(blocking) with care many threads to not

use too much resources

CS370: Operating Systems L29.122
Dept. Of Computer Science, Colorado State University

Thread libraries provide an API for creating and

manadging threads
-b

Library code and data Reside in Reside in
structures user space kernel space
Thread creation requires
a system call? NO YES
OS/Kernel support NO YES
CS370: Operating Systems L29.123

Dept. Of Computer Science, Colorado State University

Dominant thread libraries (1)

POSIX pthreads
Extends POSIX standard (IEEE 1003.1c¢)

Provided as user- or kernel-level library
Solaris, Mac OS X, Linux, ...

Win32 thread library

Kernel-level library

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.124

Dominant thread libraries (2)

Java threading API

Implemented using thread library on host system
On Windows: Threads use Win32 API
UNIX /Linux: Uses pthreads

CS370: Operating Systems L29.125
Dept. Of Computer Science, Colorado State University

Process Synchronizations and Atomic Transactions

Obijectives:
Formulate the critical section problem

Dissect a software solution to the critical section problem (case study:
Peterson's solution)

Explain Synchronization hardware and Instruction Set Architecture support
for concurrency primitives.

Assess classic problems in synchronization: bounded buffers, readers-writers,
dining philosophers.

Explain serializability of transactions

Assess locking protocols
Explain checkpointing and rollback recovery in transactional systems

CS370: Operating Systems L29.126
Dept. Of Computer Science, Colorado State University

A look at the producer consumer problem

while (true) {
while (counter == BUFFER SIZE) ({
; /*do nothing */
}

buffer[in] = nextProduced Producer
in = (in +1)%BUFFER_SIZE;
counter++;
}
while (true) {
while (counter == 0) {
; /*do nothing */
} Consumer
nextConsumed = buffer[out]
out = (out +1)% BUFFER SIZE;
counter--;
}
O3/ U: Uperating Systems L29.127

Dept. Of Computer Science, Colorado State University

Implementation of ++/-- in machine language
B

counter++
registerl = counter
registerl = registerl + 1
counter = registerl
counter--
register?2 = counter
register?2 = register2 - 1
counter = register?

CS370: Operating Systems L29.128
Dept. Of Computer Science, Colorado State University

Lower-level statements may be interleaved in any

order

Producer execute:

Producer execute:

Producer execute:

Consumer execute:
Consumer execute:

Consumer execute:

registerl = counter
registerl = registerl + 1
counter = registerl
register?2 = counter
register?2 = register?2 - 1
counter = register?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.129

Lower-level statements may be interleaved in any

order

Producer

Consumer
Producer

Consumer

Producer

Consumer

The order of statements within each high-level statement is preserved

execute:

execute:

execute:

execute:

execute:

execute:

registerl = counter
register?2 = counter
registerl = registerl + 1
register?2 = register?2 - 1
counter = registerl
counter = register?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.130

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: registerl = counter {register1 = 5}
Producer execute: registerl = registerl + 1 {register1 = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register?2 = register?2 - 1 {register2 = 4}
Producer execute: counter = registerl {counter = 6}
Consumer execute: counter = register?’? {counter = 4}

Counter has incorrect state of 4

CS370: Operating Systems L29.131
Dept. Of Computer Science, Colorado State University

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: registerl = counter {register1 = 5}
Producer execute: registerl = registerl + 1 {register1 = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register?2 = register?2 - 1 {register2 = 4}
Consumer execute: counter = register? {counter = 4}
Producer execute: counter = registerl {counter = 6}

Counter has incorrect state of 6

CS370: Operating Systems L29.132
Dept. Of Computer Science, Colorado State University

Race condition

Several processes access and manipulate data concurrently

Outcome of execution depends on

Particular order in which accesses takes place

Debugging programs with race conditions?
Painful!

Program runs fine most of the time, but once in a rare while something weird
and unexpected happens

CS370: Operating Systems L29.133
Dept. Of Computer Science, Colorado State University

The kernel is subject to several possible race
conditions

E.g.: Kernel maintains list of all open files
2 processes open files simultaneously

Separate updates to kernel list may result in a race condition

Other kernel data structures
Memory allocation
Process lists

Interrupt handling

CS370: Operating Systems L29.134
Dept. Of Computer Science, Colorado State University

Critical-Section

System of n processes {P,, P;, ..., P..1}

Each process has a segment of code (critical section) where it:

Changes common variables, updates a table, etc

No two processes can execute in their critical sections at the same time

CS370: Operating Systems L29.135
Dept. Of Computer Science, Colorado State University

The Critical-Section problem
Design a protocol that processes can use to cooperate

Each process must request permission to enter its critical section

The entry section

CS370: Operating Systems L29.136
Dept. Of Computer Science, Colorado State University

General structure of a participating process

do {
Request permission

: to ent
enfry section / o enter

critical section

exit section €—__ Housekeeping to let
other processes enter

remainder section

} while (TRUE) ;

CS370: Operating Systems L29.137
Dept. Of Computer Science, Colorado State University

Requirements for a solution to the critical section

problem

(1) Mutual exclusion

(2) Progress
(3) Bounded wait

PROCESS SPEED

Each process operates at non-zero speed

Make no assumption about the relative speed of the n processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.138

Mutual Exclusion

Only one process can execute in its critical section

When a process executes in its critical section

No other process is allowed to execute in its critical section

CS370: Operating Systems L29.139
Dept. Of Computer Science, Colorado State University

Mutual Exclusion: Depiction
—

A enters

.) A exits
critical section

critical section
Process A

B enters

B attempts to enter B exits

critical section critical section

i o

Process B

S—

|
' B blocked

\n
a
=,
o)
g
(7]
4
Q
=.
(o)
=

Tl T2 T3 T4

CS370: Operating Systems L29.140
Dept. Of Computer Science, Colorado State University

Progress

{C1} If No process is executing in its critical section, and ...

{C2} Some processes wish to enter their critical sections

Decision on who gets to enter the critical section

Is made by processes that are NOT executing in their remainder
section

Selection cannot be postponed indefinitely

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.141

Bounded waiting

After a process has made a request to enter its critical section

AND before this request is granted

Limit number of times other processes are allowed to enter their
critical sections

CS370: Operating Systems L29.142
Dept. Of Computer Science, Colorado State University

Approaches to handling critical sections in the OS

Nonpreemptive kernel
If a process runs in kernel mode: no preemption

Free from race conditions on kernel data structures

Preemptive kernels
Must ensure shared kernel data is free from race conditions

Difficult on SMP (Symmetric Multi Processor) architectures

2 processes may run simultaneously on different processors

CS370: Operating Systems L29.143
Dept. Of Computer Science, Colorado State University

Kernels: Why preempt?

Suitable for real-time

A real-time process may preempt a kernel process

More responsive

Less risk that kernel mode process will run arbitrarily long

CS370: Operating Systems L29.144
Dept. Of Computer Science, Colorado State University

Peterson’s Solution

Software solution to the critical section problem

Restricted to two processes

No guarantees on modern architectures

Machine language instructions such as 1oad and store implemented
differently

Good algorithmic description

Shows how to address the 3 requirements

CS370: Operating Systems L29.145
Dept. Of Computer Science, Colorado State University

Peterson’s Solution: The components

Restricted to two processes in this example (but generalizable to n)

Pi and PJ

Share two data items

int turn

Indicates whose turn it is to enter the critical section

boolean flag[2]

Whether process is ready to enter the critical section

CS370: Operating Systems L29.146
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Structure of process P,

T,
do {

critical section

remainder section

} while (TRUE);

CS370: Operating Systems L29.147
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Structure of process P.

T,
do {

critical section

remainder section

} while (TRUE);

CS370: Operating Systems L29.148
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Mutual exclusion

while (flag[j] == true && turn==j) {;}
P, enters critical section only if
flag[j] == false OR turn == 1
If both processes try to execute in critical section at the
same time
flag[0] == flagl[l] == true

But turn can be 0 or 1, not BOTH

|f Pj entered critical section

flag[j] == true AND turn ==]
Will persist as long as P;is in the critical section

CS370: Operating Systems L29.149
Dept. Of Computer Science, Colorado State University

Peterson’s Solution:
Progress and Bounded wait

P;can be stuck only if flag[j]==true AND turn==j

If P;is not ready: flag[j]== false, and Pjcan enter
Once P;exits: it resets flag[j] to false

If P; resets f1lag[j] to true

Must set turn = 1i;

P; will enter critical section (progress) after at most one entry by P;
(bounded wait)

CS370: Operating Systems L29.150
Dept. Of Computer Science, Colorado State University

Solving the critical section problem using locks
N

do {

acquire lock
critical section
release lock

remainder section

} while (TRUE) ;

CS370: Operating Systems L29.151
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem

(1/2)

Uniprocessor environment

Prevent interrupts from occurring when shared variable is being modified

No unexpected modifications!

Multiprocessor environment

Disabling interrupts is time consuming

Message passed to ALL processors

CS370: Operating Systems L29.152
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem
(2/2)
-~ 1
o Special atomic hardware instructions
o Swap content of two words

o Modify word

CS370: Operating Systems L29.153
Dept. Of Computer Science, Colorado State University

Swap ()

void Swap (boolean *a, boolean *b) {

boolean temp = *a;
* a = *b ;
*b = temp;
}
CS370: Operating Systems L29.154

Dept. Of Computer Science, Colorado State University

Swap: Shared variable LOCK is initialized to false

do |
key = TRUE;
while (key == TRUE) { Cannot enter critical section
Swap (&lock, &key) UNLESS lock == FALSE

}

critical section

lock = FALSE;

remainder section lock is a SHARED variable
key is a LOCAL variable

} while (TRUE) ;

CS370: Operating Systems L29.155
Dept. Of Computer Science, Colorado State University

TestAndSet ()
T

boolean TestAndSet (boolean *target) {
boolean rv = *target;

*target = TRUE;
return rv;

CS370: Operating Systems L29.156
Dept. Of Computer Science, Colorado State University

TestAndSet: Shared boolean variable 1ock
initialized to false

do |

while (TestAndSet (&lock)) {;}

critical section \ To break out:
Return value of TestAndSet

hould be FALSE
lock = FALSE; Snovie be

remainder section

If two TestAndSet () are executed

simultaneously, they will be executed

} while (TRUE); sequentially in some arbitrary order

CS370: Operating Systems L29.157
Dept. Of Computer Science, Colorado State University

Entering and leaving critical regions using

__ TestAndSet and Swap (Exchange)

enter region:
TSL REGISTER, LOCK
CMP REGISTER, #0

JNE enter region
RET

enter region:
MOVE REGISTER, #1
XCHNG REGISTER, LOCK
CMP REGISTER, #0
JNE enter region
RET

leave region: leave region:

MOVE LOCK, #0 MOVE LOCK, #0
RET RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems L29.158
Dept. Of Computer Science, Colorado State University

Semaphores

Semaphore S is an integer variable

Once initialized, accessed through atomic operations
walt ()

signal ()

CS370: Operating Systems L29.159
Dept. Of Computer Science, Colorado State University

Defining the semaphore
—

typedef struct {

int value;

struct process *sleeping list;
} semaphore;

list of processes

CS370: Operating Systems L29.160
Dept. Of Computer Science, Colorado State University

The wait () operation to eliminate busy waiting

If value<O
wait (semaphore *8) { abs(value) is the number
S—>value——;/ of waiting processes

1f (S->value <0) {

add process to S->sleeping list;
block () ;

J

} block () suspends the
process that invokes it

CS370: Operating Systems L29.161
Dept. Of Computer Science, Colorado State University

The signal () operation to eliminate busy waiting

signal (semaphore *S) {
S—->value++;

1f (S->value <= 0) {
remove a process P from S->sleeping list;
wakeup (P) ;

} wakeup (P) resumes the
execution of process P

CS370: Operating Systems L29.162
Dept. Of Computer Science, Colorado State University

Deadlocks and Starvation: Implementation of semaphore

with a waiting queue

PROCESS PO

PROCESS P1
walit (S) ; walt (Q) ;
walt (Q) ; wait (S) ;

signal (S) ;

signal (Q) ;
signal (Q) ;

signal (S) ;

Say: PO executes wait (S) and then P1 executes wait (Q)

Cannot be

PO must wait till P1 executes signal (Q) (/- executed
P1 must wait till PO executes signal (S) so deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.163

Semaphores and atomic operations

Once a semaphore action has started

No other process can access the semaphore UNTIL

Operation has completed or process has blocked

Atomic operations
Group of related operations

Performed without interruptions
Or not at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.164

The bounded buffer problem

Binary semaphore (mutex)
Provides mutual exclusion for accesses to buffer pool

Initialized to 1

Counting semaphores
empty: Number of empty slots available to produce
Initialized to 1

full: Number of filled slots available to consume

Initialized to O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.165

Some other things to bear in mind

Producer and consumer must be ready before they attempt to enter

critical section

Producer readiness?¢

When a slot is available to add produced item

walt (empty): empty is initialized to I

Consumer readiness?¢

When a producer has added new item to the buffer
wait (full) : full initialized to ()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.166

The Producer

do wait till slot available
produce i1tem nextp

wait (empty) ;
wait (mutex);e _ Only producer OR consumer

can be in critical section
add nextp to buffer

signal (mutex) ;¢ Allow pr'oducer.QR consumer
signal (full) ; to (re)enter critical section

remalinder section

signal consumer
| while (TRUE):; that a slot is available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.167

The Consumer

do { wait till slot available

for consumption
wait (full) ;

wait (mutex);e _ Only producer OR consumer
can be in critical section

remove 1tem from buffer

(nextc)
Allow producer OR consumer

signal (mutex) ;e to (re)enter critical section
signal (empty) ;

consume nextc

signal producer that a
} while (TRUE); slot is available to add

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.168

The Readers-Writers problem
A database is shared among several concurrent processes

Two types of processes

Readers

Writers

CS370: Operating Systems L29.169
Dept. Of Computer Science, Colorado State University

Readers-Writers: Potential for adverse effects

If two readers access shared data simultaneously?

No problems

If a writer and some other reader (or writer) access shared data
simultaneously?

Chaos

CS370: Operating Systems L29.170
Dept. Of Computer Science, Colorado State University

Writers must have exclusive access to shared
database while writing

FIRST readers-writers problem:

No reader should wait for other readers to finish; simply because a writer is
waiting

Writers may starve

SECOND readers-writers problem:

If a writer is ready it performs its write ASAP

Readers may starve

CS370: Operating Systems L29.171
Dept. Of Computer Science, Colorado State University

Solution to the FIRST readers-writers problem

Variable int readcount

Tracks how many readers are reading object

Semaphore mutex {1}

Ensure mutual exclusion when readcount is accessed

Semaphore wrt {1}
(1) Mutual exclusion for the writers

(2) First (last) reader that enters (exits) critical section

Not used by readers, when other readers are in their critical section

CS370: Operating Systems L29.172
Dept. Of Computer Science, Colorado State University

The Writer: When a writer signals either
a waiting writer or the readers resume

do |

When:

writer in critical section
and if n readers waiting

writing iper%- 1 reader is queued on wrt

(n-1) readers queued on mutex

walt (wrt) ;

signal (wrt) ;

} while (TRUE) ;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.173

The Reader process

mutex for mutual

do | walt (mutex) P .
readcount++; exclusion to readcount
1f (readcount ==1) {
walt (wrt) ;
} When:
signal (mutex) ; writer in critical section

and if n readers waiting
reading 1s performed

walt (mutex) ; 1lis queued on wrt
readcount—--; (n-l) queued on mutex
1f (readcount ==0) {

signal (wrt) ;
}

signal (mutex) ;

} while (TRUE) ;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.174

Dining Philosopher’s Problem: the situation

CS370: Operating Systems L29.175
Dept. Of Computer Science, Colorado State University

The Problem

(1) Philosopher tries to pick up two closest {LR} chopsticks

(2) Pick up only 1 chopstick at a time
Cannot pick up a chopstick being used

(3) Eat only when you have both chopsticks

(4) When done; put down both the chopsticks

CS370: Operating Systems L29.176
Dept. Of Computer Science, Colorado State University

Why is the problem important?

Represents allocation of several resources

AMONG several processes

Can this be done so that it is:
Deadlock free

Starvation free

CS370: Operating Systems L29.177
Dept. Of Computer Science, Colorado State University

Dining philosophers: Simple solution

Each chopstick is a semaphore

Grab by executing wait ()

Release by executing signal ()

Shared data

semaphore chopstick[5];

All elements are initialized to 1

CS370: Operating Systems L29.178
Dept. Of Computer Science, Colorado State University

What if all philosophers get hungry and grab the
same {L/R} chopstick?

o Deadlock:
wait (chopstick([i]) ; g If all Pl"OC@SS.eS .
wait (chopstick[(i+1)%5]); access chopstick with
same hand
//eat

signal (chopstick[i]) ;
signal (chopstick[(i+1) %$5]);

//think
We will look at solution with monitors

} while (TRUE) ;

CS370: Operating Systems L29.179
Dept. Of Computer Science, Colorado State University

Dining-Philosophers Using Monitors

Deadlock-free
T

enum {THINKING, HUNGRY,EATING} state[o];

0 state[i] = EATING only if

state[(1+4)%5] != EATING &&
state[(1+1)%5] != EATING

0 condition self[5]

Delay self when HUNGRY but unable to get chopsticks

CS370: Operating Systems L29.180
Dept. Of Computer Science, Colorado State University

The pickup () and putdown () operations

pickup (1nt 1) {

state[1] = HUNGRY;
test (1) ;
if (state[i] != EATING) { Suspend self if unable

self[i].wait () ;e=—"_ to acquire chopstick
J

J

putdown (int i) {
state[1] = THINKING;

test ((1i+4)%5); Check 1‘0. see if person on
test ((i+1)%5) ;' left or'.r'lgh’r can use the
} chopstick

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.181

test () to see if philosopher can eat

Eat only if HUNGRY and
Person on Left AND Right
are not eating

test (1nt 1) {
1f (state[(1+4)%5] != EATING &&
state[1l] == HUNGRY & &
(1+

state]| 1)%5 != EATING]) {
state[1] = EATING;
self[i] .signal() ;
} \ Signal a process that was
} suspended while trying to eat

CS370: Operating Systems L29.182
Dept. Of Computer Science, Colorado State University

Atomic transactions

Mutual exclusion of critical sections ensures their atomic execution

As one uninterruptible unit

Also important to ensure, that critical section forms a single logical
unit of work

Either work is performed in its entirety or not at all

E.g. transfer of funds

Credit one account and debit the other

CS370: Operating Systems L29.183
Dept. Of Computer Science, Colorado State University

Transaction

Collection of operations performing a single logical function

Preservation of atomicity

Despite the possibility of failures

CS370: Operating Systems L29.184
Dept. Of Computer Science, Colorado State University

Transaction rollbacks

An aborted transaction may have modified data

State of accessed data must be restored

To what it was before transaction started executing

CS370: Operating Systems L29.185
Dept. Of Computer Science, Colorado State University

Log-based recovery to ensure atomicity:
Rely on stable storage

Record info describing all modifications made by transaction to various
accessed data.

Each log record describes a single write
Transaction name

Data item name
Old value

New value

Other log records exist to record significant events

Start of transaction, commit, abort etc

CS370: Operating Systems L29.186
Dept. Of Computer Science, Colorado State University

Rationale for checkpointing
When failure occurs we consult the log for undoing or redoing

But if done naively, we need to search entire log!
Time consuming

Recovery takes longer

Though no harm done by redoing (idempotency)

CS370: Operating Systems L29.187
Dept. Of Computer Science, Colorado State University

Concurrent atomic transactions

Since each transaction is atomic
Executed serially in some arbitrary order
Serializability

Maintained by executing each transaction within a critical
section

Too restrictive

Allow transactions to overlap while maintaining
serializability

Concurrency control algorithms

CS370: Operating Systems L29.188
Dept. Of Computer Science, Colorado State University

Serializability

Serial schedule: Each transaction executes atomically

n! schedules for n independent transactions

TO T1l

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)

CS370: Operating Systems L29.189

Dept. Of Computer Science, Colorado State University

Non-serial schedule:
Allow two transactions to overlap

Does not imply incorrect execution

Define the notion of conflicting operations

O; and O, conflict if they access same data item

AND at least one of them is a write operation

If O, and O, do not conflict; we can swap their order

To create a new schedule

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.190

Concurrent serializable schedule

TO TO
read (A) re?d(AJ
write (A) wrilte (A)
read (B)
write (B)
read (B)
write (B)

Serial Schedule

CS370: Operating Systems L29.191

Dept. Of Computer Science, Colorado State University

Conflict serializability

If schedule S can be transformed into a serial schedule S’

By a series of swaps of non-conflicting operations

CS370: Operating Systems L29.192
Dept. Of Computer Science, Colorado State University

CPU Scheduling Algorithms

Obijectives:
Assess scheduling criteria including fairness and time quanta.

Explain and contrast different approaches to scheduling: preemptive
and non-preemptive

Explain and assess scheduling algorithms: FCFS, shortest jobs, priority,
round-robin, multilevel feedback queues, and the Linux completely fair
scheduler.

Understand how CPU scheduling algorithms function on multiprocessors.

CS370: Operating Systems L29.193
Dept. Of Computer Science, Colorado State University

CPU scheduling takes places under the following

circumstances
_]
i 2
Intferrupt
terminated
new
N
, 4 exit
ready running

No scheduling choice {1,4}
Non preemptive

scheduler dispatch

I/0 or event

; 1
completion 3

waiting

N I/0 or wait

CS370: Operating Systems L29.194
Dept. Of Computer Science, Colorado State University

Nonpreemptive or cooperative sheduling

Process keeps CPU until it relinquishes it when:
(1) It terminates
(2) It switches to the waiting state

Sometimes the only method on certain hardware
platforms

E.g. when they don’t have a hardware timer

Used by initial versions of OS
Windows: Windows 3.x
Mac OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.195

Preemptive scheduling

Pick a process and let it run for a maximum of some fixed time

If it is still running at the end of time interval?

Suspend it ..

Pick another process to run

CS370: Operating Systems L29.196
Dept. Of Computer Science, Colorado State University

Preemptive scheduling: Requirements
A clock interrupt at the end of the time interval to give control of CPU
back to the scheduler

If no hardware timer is available?

Nonpremptive scheduling is the only option

CS370: Operating Systems L29.197
Dept. Of Computer Science, Colorado State University

Preemptive scheduling incurs some costs:
Affects the design of the OS

System call processing

Kernel may be changing kernel data structure (1/O queue)

Process preempted in the middle AND

Kernel needs to read/modify same structure?

SOLUTION: Before context switch

Woait for system call to complete OR
1/O blocking to occur

CS370: Operating Systems L29.198
Dept. Of Computer Science, Colorado State University

Preemptive scheduling incurs some costs:
Interrupt processing

Interrupts can occur at any time

Cannot always be ignored by kernel

Consequences: Inputs lost or outputs overwritten

Guard code affected by interrupts from simultaneous use:
Disable interrupts during entry
Enable interrupts at exit

CAVEAT: Should not be done often, and critical section must contain few
instructions

CS370: Operating Systems L29.199
Dept. Of Computer Science, Colorado State University

The dispatcher is invoked during every process
switch

Gives control of CPU to process selected by the scheduler

Operations performed:
Switch context
Switch to user mode

Restart program at the right location

Dispatch latency

Time to stop one process and start another

CS370: Operating Systems L29.200
Dept. Of Computer Science, Colorado State University

Scheduling Algorithms: Goals
B

Throughput

Turnaround time Response time

CPU Utilization Proportionality

Batch Systems Interactive Systems

Fairness
Policy Enforcement
Balance

All System

Meeting deadlines

Predictability Real-time systems

CS370: Operating Systems L29.201
Dept. Of Computer Science, Colorado State University

CPU Utilization

Difference between elapsed time and idle time

Average over a period of time

Meaningful only within a context

CS370: Operating Systems L29.202
Dept. Of Computer Science, Colorado State University

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

CPU Utilization: Keep CPU as busy as possible? For example:
40% for lightly loaded system
?0% for heavily loaded system

Throughput: Number of completed processes per time unite For
example:

Long processes: 1 /hour

Short processes: 10/second

CS370: Operating Systems L29.203
Dept. Of Computer Science, Colorado State University

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

1 Turnaround time
T - T

completion submission

7 Waiting time

Total time spent waiting in the ready queue

-1 Response time

Time to start responding

tfirst_response - tsubmission

Generally limited by speed of output device

CS370: Operating Systems L29.204
Dept. Of Computer Science, Colorado State University

Scheduling Algorithms

Decides which process in the ready queue is allocated the CPU
Could be preemptive or nonpreemptive
Optimize measure of interest

We will use Gantt charts to illustrate schedules

Bar chart with start and finish times for processes

CS370: Operating Systems L29.205
Dept. Of Computer Science, Colorado State University

First-Come, First-Served Scheduling (FCFS)

Process requesting CPU first, gets it first

Managed with a FIFO queue

When process enters ready queue?
PCB is tacked to the tail of the queue

When CPU is free?

It is allocated to process at the head of the queue

Simple to write and understand

CS370: Operating Systems L29.206
Dept. Of Computer Science, Colorado State University

Average waiting times in FCFS

P1 24 0 24 27 30
P2 3 Wait time = (0 + 24 + 27)/3 = 17
P3 3
P2 | P3 P
° 3 6 30
Wait time = (6 + 0 + 3)/3 = 3

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

L29.207

Disadvantages of the FCFS scheme (1)

Once a process gets the CPU, it keeps it
Till it terminates or does 1/O

Unsuitable for time-sharing systems

Average waiting time is generally not minimal

Varies substantially if CPU burst times vary greatly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.208

Disadvantages of the FCFS scheme (2)

Poor performance in certain situations
1 CPU-bound process and many 1/O-bound processes

Convoy effect: Smaller processes wait for the one big
process to get off the CPU

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.209

Shortest Job First (SJF) scheduling algorithm

When CPU is available it is assigned to process with smallest CPU
burst

Moving a short process before a long process?

Reduction in waiting time for short process
GREATER THAN
Increase in waiting time for long process

Gives us minimum average waiting time for a set of processes that
arrived simultaneously

Provably Optimal

CS370: Operating Systems L29.210
Dept. Of Computer Science, Colorado State University

Depiction of SJF in action

-
P 6 0 3 9 16 24
P2 8 Wait time = (3 + 16 + 9 + 0)/4 = 7
P3 7/
P4 3

CS370: Operating Systems L29.211
Dept. Of Computer Science, Colorado State University

SJF is optimal ONLY when ALL the jobs are
available simultaneously

Consider 5 processes A, B, C, D and E
Run times are: 2,4,1,1,1

Arrival times are: 0,0, 3, 3, 3

SJF will run jobs: A, B, C, D and E

Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8
But if yourunB, C,D, E and A ¢
Average wait time: (7 + 0+ 1 + 2 +3)/5 = 2.6!

CS370: Operating Systems L29.212
Dept. Of Computer Science, Colorado State University

Preemptive SJF

A new process arrives in the ready queue

If it is shorter than the currently executing process

Preemptive SJF will preempt the current process

Pl P2 P4 Pl P3

o 1 5 10 17 26
Process Arrival Burst
Pl 0 8

Wait time =

P2] 4 [(10-1) + (1-1) + (17-2) + (5-3)]1/4
P3 2 9 = 26/4 = 6.5
P4 5

CS370: Operating Systems L29.213
Dept. Of Computer Science, Colorado State University

Use of SJF in long term schedulers

Length of the process time limit
Used as CPU burst estimate

Motivate users to accurately estimate time limit
Lower value will give faster response times

Too low a value?
Time limit exceeded error

Requires resubmission!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.214

The SJF algorithm and short term schedulers

N
7 No way to know the length of the next CPU burst

7 So try to predict it

71 Processes scheduled based on predicted CPU bursts

CS370: Operating Systems L29.215
Dept. Of Computer Science, Colorado State University

Priority Scheduling

Priority associated with each process
CPU allocated to process with highest priority

Can be preemptive or nonpreemptive

If preemptive: Preempt CPU from a lower priority process
when a higher one is ready

CS370: Operating Systems L29.216
Dept. Of Computer Science, Colorado State University

Depiction of priority scheduling in action

-E

Wait time

P1 10 3 Here: Lower number means higher priority
P2 1
P3 2 4
P4 1 5
P5 5 2
P2 P5 Pl P3 P4
0 1 6 16 18 19

= (6 + 0+ 16 + 18 + 1)/5 = 8.2

CS370: Operating Systems L29.217
Dept. Of Computer Science, Colorado State University

How priorities are set

Internally defined priorities based on:
Measured quantities

Time limits, memory requirements, # of open files, ratio (averages) of 1/O to
CPU burst

External priorities
Criteria outside the purview of the OS

Importance of process, $ paid for usage, politics, etc.

CS370: Operating Systems L29.218
Dept. Of Computer Science, Colorado State University

Issue with priority scheduling

Can leave lower priority processes waiting indefinitely

Perhaps apocryphal tale:
MIT’s IBM 7094 shutdown (197 3) found processes from 1967

CS370: Operating Systems L29.219
Dept. Of Computer Science, Colorado State University

Coping with issues in priority scheduling:
Aging

Gradually increase priority of processes that wait for a long time

Example:
Process with priority of 127 and increments every 15 minutes

Process priority becomes O in no more than 32 hours

CS370: Operating Systems L29.220
Dept. Of Computer Science, Colorado State University

Round-Robin Scheduling

Similar to FCFS scheduling

Preemption to enable switch between processes

Ready queue is implemented as FIFO
Process Entry: PCB at tail of queue

Process chosen: From head of the queue

CPU scheduler goes around ready queue

Allocates CPU to each process one after the other

CPU-bound up to a maximum of 1 quantum

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.221

Round Robin: Choosing the quantum

Context switch is time consuming
Saving and loading registers and memory maps
Updating tables

Flushing and reloading memory cache

What if quantum is 4 ms and context switch overhead is 1 ms?

20% of CPU time thrown away in administrative overhead

CS370: Operating Systems L29.222
Dept. Of Computer Science, Colorado State University

Round Robin: Improving efficiency by increasing
quantum

Let’s say quantum is 100 ms and context-switch is 1ms

Now wasted time is only 1%

But what if 50 concurrent requests come in?
Each with widely varying CPU requirements
15" one starts immediately, 2"¥ one 100 ms later, ...
The last one may have to wait for 5 seconds!

A shorter quantum would have given them better service

CS370: Operating Systems L29.223
Dept. Of Computer Science, Colorado State University

If quantum is set longer than mean CPU burst?

Preemption will not happen very often

Most processes will perform a blocking operation before quantum runs

out

Switches happens only when process blocks and cannot continue

CS370: Operating Systems L29.224
Dept. Of Computer Science, Colorado State University

Quantum: Summarizing the possibilities
—

1 Too short?
Too many context switches

Lowers CPU efficiency

1 Too long?

Poor responses to interactive requests

CS370: Operating Systems L29.225
Dept. Of Computer Science, Colorado State University

Deadlocks

Obijectives:
Explain deadlock characterization
Contrast and explain schemes for deadlock prevention
Evaluate approaches to deadlock avoidance

Understand recovery from deadlocks

CS370: Operating Systems L29.226
Dept. Of Computer Science, Colorado State University

System model

Finite number of resources

Distributed among competing processes

Resources are partitioned into different types
Each type has a number of identical instances

Resource type examples:

Memory space, files, | /O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.227

A process must utilize resources in a sequence

I
7 Request

Requesting resource must wait until it can acquire resource

request (), open(),allocate()

1 Use

Operate on the resource

1 Release

release(),close (), free ()

CS370: Operating Systems L29.228
Dept. Of Computer Science, Colorado State University

For kernel managed resources, the OS maintains a
system resource table

Is the resource free?

Record process that the resource is allocated to

Is the resource allocated?

Add to queue of processes waiting for resource

For resources not managed by the OS

Use wait () and signal () on semaphores

CS370: Operating Systems L29.229
Dept. Of Computer Science, Colorado State University

Preemptable resources

Can be taken away from process owning it with no ill effects

Example: Memory

Process B's memory can be taken away and given to process A

Swap B from memory, write contents to backing store, swap A in and let it use the
memory

CS370: Operating Systems L29.230
Dept. Of Computer Science, Colorado State University

Non-preemptable resources

Cannot be taken away from a process without causing the process to
fail
If a process has started to burn a CD

Taking the CD-recorder away from it and giving it to another process?
Garbled CD

CD recorders are not preemptable at an arbitrary moment

In general, deadlocks involve non-preemptable resources

CS370: Operating Systems L29.231
Dept. Of Computer Science, Colorado State University

Some notes on deadlocks

The OS typically does not provide deadlock
prevention facilities

Programmers are responsible for designing deadlock
free programs

CS370: Operating Systems L29.232
Dept. Of Computer Science, Colorado State University

Deadlock: Formal Definition

A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause.

Because all processes are waiting, none of them can cause events to
wake any other member of the set

Processes continue to wait forever

CS370: Operating Systems L29.233
Dept. Of Computer Science, Colorado State University

Deadlocks:
Necessary Conditions (I)

Mutual Exclusion
At least one resource held in nonsharable mode

When a resource is being used

Another requesting process must wait for its release

Hold-and-wait
A process must hold one resource

Wait to acquire additional resources

Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.234

Deadlocks:
Necessary Conditions (I 1)

No preemption
Resources cannot be preempted

Only voluntary release by process holding it

Circular wait
A set of {P,, P4, ..., P,} waiting processes must exist
P, 2> P; P,2> P,, ..., P, P,

Implies hold-and-wait

CS370: Operating Systems L29.235
Dept. Of Computer Science, Colorado State University

Methods for handling deadlocks

Use protocol to prevent or avoid deadlocks

Ensure system never enters a deadlocked state

Allow system to enter deadlocked state; BUT

Detect it and recover

Ignore problem, pretend that deadlocks never occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.236

When is ignoring the problem viable?

When they occur infrequently (once per year)
Ignoring is the cheaper solution

Prevention, avoidance, detection and recovery

Need to run constantly

CS370: Operating Systems L29.237
Dept. Of Computer Science, Colorado State University

Four strategies for dealing with deadlocks

Ignore the problem

May be if you ignore it, it will ignore you

Detection and Recovery

Let deadlocks occur, detect them, and take action

Deadlock avoidance

By careful resource allocation

Deadlock prevention

By structurally negating one of the four required conditions

CS370: Operating Systems L29.238
Dept. Of Computer Science, Colorado State University

Deadlock Prevention

Ensure that one of the necessary conditions for deadlocks cannot occur
(1) Mutual exclusion

(2) Hold and wait
(3) No preemption
(4) Circular wait

CS370: Operating Systems L29.239
Dept. Of Computer Science, Colorado State University

Mutual exclusion must hold for
non-sharable resources, but ...

Sharable resources do not require mutually exclusive access

Cannot be involved in a deadlock

A process never needs to wait for sharable resource

Read-only files

Some resources are intrinsically nonsharable

So denying mutual exclusion often not possible

CS370: Operating Systems L29.240
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 1]

Process must request and be allocated all its resources before
execution

Resource requests must precede other system calls

E.g. copy data from DVD drive, sort file & print
Printer needed only at the end

BUT process will hold printer for the entire execution

CS370: Operating Systems L29.241
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 2]

Allow a process to request resources only when it has none

Release all resources, before requesting additional ones

E.g. copy data from DVD drive, sort file & print
First request DVD and disk file

Copy and release resources

Then request file and printer

CS370: Operating Systems L29.242
Dept. Of Computer Science, Colorado State University

Disadvantages of protocols doing hold-and-wait

Low resource utilization

Resources are allocated but unused for long durations

Starvation

If a process needs several popular resources

Popular resource might always be allocated to some other process

CS370: Operating Systems L29.243
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Eliminate the preemption
constraint [1/2]

{C1} If a process is holding some resources

{C2} Process requests another resource

Cannot be immediately allocated

All resources currently held by process is preempted

Preempted resources added to list of resources process is waiting for

CS370: Operating Systems L29.244
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Eliminate the preemption
constraint [2/2]

Process requests resources that are not currently available

If resources allocated to another waiting process

Preempt resources from the second process and assign it to the first one

Often applied when resource state can be saved and restored
CPU registers and memory space

Unsuitable for tape drives

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.245

Deadlock Prevention: Eliminating Circular wait

Impose total ordering of all resource types

Assign each resource type a unique number

One-to-one function F: R2>N
F(tape drive) = 1;
F(printer) = 12

(1) Request resources in increasing order

(2) If several instances of a resource type needed?

Single request for all them must be issued

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.246

Deadlock Prevention: Summary

Prevent deadlocks by restraining how requests are made.

Ensure at least 1 of the 4 conditions cannot occur

Side effects:

Low device utilization

Reduced system throughput

CS370: Operating Systems L29.247
Dept. Of Computer Science, Colorado State University

Deadlock avoidance

Require additional information about how resources are to be
requested

Knowledge about sequence of requests and releases for processes
Allows us to decide if resource allocation could cause a future deadlock
Process P: Tape drive, then printer

Process Q: Printer, then tape drive

CS370: Operating Systems L29.248
Dept. Of Computer Science, Colorado State University

Deadlock avoidance:
Handling resource requests

For each resource request:

Decide whether or not process should wait

To avoid possible future deadlock

Predicated on:
(1) Currently available resources
(2) Currently allocated resources

(3) Future requests and releases of each process

CS370: Operating Systems L29.249
Dept. Of Computer Science, Colorado State University

Avoidance algorithms differ in the
amount and type of information needed

Resource allocation state
Number of available and allocated resources

Maximum demands of processes

Dynamically examine resource allocation state

Ensure circular-wait cannot exist

Simplest model:
Declare maximum number of resources for each type

Use information to avoid deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.250

Safe sequence

Sequence of processes <P,, P,, ..., P> for the current
allocation state

Resource requests made by P. can be satisfied by:

Currently available resources
Resources held by P, where J < 1

If needed resources not available, P. can wait

In general, when P, terminates, P, .; can obtain its needed
resources

If no such sequence exists: system state is unsafe

CS370: Operating Systems L29.251
Dept. Of Computer Science, Colorado State University

Safe states and deadlocks

A system is safe ONLY IF there is a safe sequence

A safe state is not a deadlocked state
Deadlocked state is an unsafe state

Not all unsafe states are deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.252

Unsafe states

A unsafe state may lead to deadlock
Behavior of processes controls unsafe states

Cannot prevent processes from requesting resources such that
deadlocks occur

CS370: Operating Systems L29.253
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm

Designed by Dijkstra in 1965

Modeled on a small-town banker
Customers have been extended lines of credit

Not ALL customers will need their maximum credit immediately

Customers make loan requests from time to time

CS370: Operating Systems L29.254
Dept. Of Computer Science, Colorado State University

Crux of the Banker’s Algorithm

Consider each request as it occurs

See if granting it is safe
If safe: grant it; If unsafe: postpone

For safety banker checks if he/she has enough to satisfy some
customer

If so, that customer’s loans are assumed to be repaid
Customer closest to limit is checked next

If all loans can be repaid; state is safe: loan approved

CS370: Operating Systems L29.255
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm: Managing the customers.
Banker has only reserved 10 units instead of 22

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
cC 0 4 cC 2 4 cC 2 4
b 0 7 D 4 7 D 4 7

Free: 10 Free: 2 Free: 1

Delay all requests except C
SAFE SAFE UNSAFE

A customer may not need the

entire credit line. But the banker

There is ONLY ONE resource: Credit) ;
cannot count on this behavior

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.256

Banker’s algorithm: Crux

Declare maximum number of resource instances
nheeded

Cannot exceed resource thresholds

Determine if resource allocations leave system in a safe
state

CS370: Operating Systems L29.257
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Resource-request

Request,;< Need;

l Yes

Request.< Availlable

NO
> Error
Exceeded claim
NO —>» Wait for
availability

l Yes

Need;

Available = Available — Request;
Allocation; = Allocation; + Request;

= Need; - Request;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.258

Bankers Algorithm: Safety
Initialize Work = Available

Find i1 such that: <
Finish[l1]==false && Need;< Work
lYTS
NO _ .
Work = Work + Allocation;
Finish[i]=true
for all 1 NO Unsafe tat
—> if (Finish[i] == true) [2 ~aesae
l YES
Safe state
CS370: Operating Systems L29.259

Dept. Of Computer Science, Colorado State University

Recovery from deadlock
Automated or manual

OPTIONS

Break the circular wait: Abort processes

Preempt resources from deadlocked process(es)

CS370: Operating Systems L29.260
Dept. Of Computer Science, Colorado State University

Breaking circular wait:
Process termination

Abort all deadlocked processes

Abort processes one at a time

After each termination, check if deadlock persists

Reclaim all resources allocated to terminated process

CS370: Operating Systems L29.261
Dept. Of Computer Science, Colorado State University

Deadlock recovery: Resource preemption

For a set of deadlocked processes

Preempt resources from
p h

some process

l Deadlock persists

Give resources to some

other process

l Deadlock broken

DONE

CS370: Operating Systems L29.262
Dept. Of Computer Science, Colorado State University

Resource preemption: Issues

Selecting a victim
Which resource and process

Order of preemption to minimize cost

Starvation

Process can be selected for preemption finite number of
times

CS370: Operating Systems L29.263
Dept. Of Computer Science, Colorado State University

Livelocks

Polling (busy waits) used to enter critical section or access a resource

Typically used for a short time when overhead for suspension is considered
greater

In a livelock two processes need each other’s resource
Both run and make no progress, but neither process blocks

Use CPU quantum over and over without making progress

CS370: Operating Systems L29.264
Dept. Of Computer Science, Colorado State University

Livelocks do occur

If fork fails because process table is full

Woait for some time and try again

But there could be a collection of processes each trying to do the same
thing

CS370: Operating Systems L29.265
Dept. Of Computer Science, Colorado State University

Memory Management

Obijectives:
Understand address binding and address spaces

Explain contiguous memory allocations: including their advantages and
disadvantages

Analyze the key constructs underpinning paging systems including
hardware support, shared pages, and structure of page tables

Explain memory protection in paging environments

Explain segmentation based approaches to memory management
alongside settings in which they are particularly applicable

CS370: Operating Systems L29.266
Dept. Of Computer Science, Colorado State University

Memory Management: Why?

Main objective of system is to execute programs

Programs and data must be in memory (af least
partially) during execution

To improve CPU vutilization and response times
Several processes need to be memory resident

Memory needs to be shared

CS370: Operating Systems L29.267
Dept. Of Computer Science, Colorado State University

Memory Unit

Sees only a stream of memory addresses

Oblivious to

How these addresses are generated

Instruction counter, indexing, indirection, etc.

What they are for

Instructions or data

CS370: Operating Systems L29.268
Dept. Of Computer Science, Colorado State University

Why processes must be memory resident

Storage that the CPU can access directly
(1) Registers in the processor

(2) Main memory

Machine instructions take memory addresses as arguments

None operate on disk addresses

Any instructions in execution plus needed data

Must be in memory

CS370: Operating Systems L29.269
Dept. Of Computer Science, Colorado State University

Processes and memory

To execute, a program needs to be placed inside a
process

Process executes

Access instructions and data from memory

Process terminates

Memory reclaimed and declared available

CS370: Operating Systems L29.270
Dept. Of Computer Science, Colorado State University

Binding is a mapping from one address space to the
next

Processes can reside in any part of the physical memory
First address of process need not be X0000

Addresses in source program are symbolic
Compiler binds symbolic addresses to relocatable addresses

Loader binds relocatable addresses to absolute addresses

CS370: Operating Systems L29.271
Dept. Of Computer Science, Colorado State University

Binding can be done at ... [1/2]

Compile time

Known that the process will reside at location R

If location changes: recompile

MS-DOS .COM programs were bound this way

Load time

Based on compiler generated relocatable code

CS370: Operating Systems L29.272
Dept. Of Computer Science, Colorado State University

Binding can be done at ... [2/2]:
Execution-time

Process can be moved around during execution
Binding delayed until run time
Special hardware needed

Supported by most OS

CS370: Operating Systems L29.273
Dept. Of Computer Science, Colorado State University

Partitioning of memory

Main memory needs to accommodate the OS and user processes

Divided into two partitions
Resident OS

Usually low memory

User processes

CS370: Operating Systems L29.274
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

When CPU scheduler selects a process for execution

Relocation and limit registers reloaded as part of context switch

Every address generated by the CPU

Checked against the relocation/limit registers

CS370: Operating Systems L29.275
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

limit relocation

register register
Logical l Physical
address address

YES
CPU ——— < > + >
NO
v memory

TRAP to OS: Addressing ERROR

E.g.: relocation=100040 and limit=74600

CS370: Operating Systems L29.276
Dept. Of Computer Science, Colorado State University

Address spaces

Logical
Addresses generated by the program running on CPU

Physical

Addresses seen by the memory unit

Logical address space
Set of logical addresses generated by program

Physical address space
Set of physical addresses corresponding to the logical address space

CS370: Operating Systems L29.277
Dept. Of Computer Science, Colorado State University

Generation of physical and logical addresses

Compile-time and load-time

Identical logical and physical addresses

Execution time
Logical addresses differ from physical addresses

Logical address referred to as virtual address

Runtime mapping performed in hardware

Memory management unit (MMU)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.278

Memory management unit

Mapping converts logical to physical addresses

User program never sees real physical address
Create pointer to location

Store in memory, manipulate and compare

When used as a memory address (load /store)

Relocated to physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.279

Dynamic Storage Allocation Problem
—

0 Satisfying a request of size n from the set of available spaces
First fit

Best fit
Worst fit

CS370: Operating Systems L29.280
Dept. Of Computer Science, Colorado State University

First fit

Scan list of segments until you find a memory-hole that is big enough

Hole is broken up into two pieces
One for the process

The other is unused memory

CS370: Operating Systems L29.281
Dept. Of Computer Science, Colorado State University

Best Fit

Scan the entire list from beginning to the end

Pick the smallest memory-hole that is adequate to host the process

CS370: Operating Systems L29.282
Dept. Of Computer Science, Colorado State University

Comparing Best Fit and First Fit

Best fit is slower than first fit

Surprisingly, it also results in more wasted memory than first fit

Tends to fill up memory with tiny, useless holes

CS370: Operating Systems L29.283
Dept. Of Computer Science, Colorado State University

Worst fit

How about going to the other extreme?
Always take the largest available memory-hole

Perhaps, the new memory-hole would be useful

Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems L29.284
Dept. Of Computer Science, Colorado State University

Contiguous Memory Allocation: Fragmentation

As processes are loaded/removed from memory

Free memory space is broken into small pieces

External fragmentation
Enough space to satisfy request; BUT

Available spaces are not contiguous

CS370: Operating Systems L29.285
Dept. Of Computer Science, Colorado State University

°
Fragmentation: Example
.
CS370: Operating Systems L29.286
Dept. Of Computer Science, Colorado State University

Fragmentation can be internal as well

Memory allocated to process may be slightly larger than requested

Internal fragmentation

Unused memory is internal to blocks

CS370: Operating Systems L29.287
Dept. Of Computer Science, Colorado State University

Compaction: Solution to external fragmentation

Shuffle memory contents

Place free memory into large block

Not possible if relocation is static

Load time

Approach involves moving:
(1) Processes towards one end

@ Gaps towards the other end

CS370: Operating Systems L29.288
Dept. Of Computer Science, Colorado State University

Compaction: Example

CS370: Operating Systems L29.289
Dept. Of Computer Science, Colorado State University

Overview of how mapping of logical and physical

addresses is performed
—

CPU

Virtual
address

A\ 4

Memory s Iranslation Physical
Management o Lookaside Memory
Unit (MMU) Buffer (TLB)

Physical '

address | TTc=--o_______ o o-===7T7

MMU may access Physical Memory to perform translations
{PageTable may be stored there}

CS370: Operating Systems L29.290
Dept. Of Computer Science, Colorado State University

The Pc:glng memory mcmc:gemen’r scheme
Physical address space of process can be non-contiguous

Solves problem of fitting variable-sized memory chunks to backing
store

Backing store has fragmentation problem

Compaction is impossible

CS370: Operating Systems L29.291
Dept. Of Computer Science, Colorado State University

Basic method for implementing pages

Break memory into fixed-sized blocks

Physical memory: frames
. Same size
Logical memory: pages :|'

Backing store is also divided the same way

CS370: Operating Systems L29.292
Dept. Of Computer Science, Colorado State University

Paging Hardware: Paging is a form of dynamic

relocation
—

Page Page
number [... offset Physical

A Address

CPU —)‘ p | d }'_" Frame f

£111..111

f
A

Page Table

CS370: Operating Systems L29.293
Dept. Of Computer Science, Colorado State University

Paging: Logical and Physical Memory

w N B O

Page Table

Logical Memory

Physical Memory
CS370: Operating Systems L29.294
Dept. Of Computer Science, Colorado State University

Page size

Usually a power of 2
512 bytes— 16 MB

Size of logical address: 2™

Page size: 27

Page number Page offset

m - n n m bits

Logical address

CS370: Operating Systems L29.295
Dept. Of Computer Science, Colorado State University

Paging and Fragmentation

No external fragmentation

Free frame available for allocation to other processes

Internal fragmentation possible
Last frame may not be full

If process size is independent of page size

Internal fragmentation = 2 page per process

CS370: Operating Systems L29.296
Dept. Of Computer Science, Colorado State University

Paging: User program views memory das a single
space

Program is scattered throughout memory

User view and physical memory reconciled by

Address-translation hardware

Process has no way of addressing memory outside of its page table

CS370: Operating Systems L29.297
Dept. Of Computer Science, Colorado State University

OS manages the physical memory

Maintains frame-table; one entry per frame
Free or allocated?

If allocated: Which page of which process

Maintains a page table for each process

Used by CPU dispatcher to define hardware page table when process is
CPU-bound

Paging increases context switching time

CS370: Operating Systems L29.298
Dept. Of Computer Science, Colorado State University

The purpose of the page table is to map virtual
pages onto physical frames

Think of the page table as a function
Takes virtual page number as an argument

Produces physical frame number as result

Virtual page field in virtual address replaced by frame field

Physical memory address

CS370: Operating Systems L29.299
Dept. Of Computer Science, Colorado State University

Two major issues facing page tables

Can be extremely large
With a 4 KB page size, a 32-bit address space has 1 million pages

Also, each process has its own page table

The mapping must be fast
Virtual-to-physical mapping must be done on every memory reference

Page table lookup should not be a bottleneck

CS370: Operating Systems L29.300
Dept. Of Computer Science, Colorado State University

Translation look-aside buffer
Small, fast-lookup hardware cache

Number of TLB entries is small (64 ~ 1024)

Contains few page-table entries

Each entry of the TLB consists of 2 parts

A key and a value

When the associative memory is presented with an item

ltem is compared with all keys simultaneously

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.301

The purpose of the page table is to map virtual
pages onto page frames

Think of the page table as a function
Takes virtual page number as an argument

Produces physical frame number as result

Virtual page field in virtual address replaced by frame field

Physical memory address

CS370: Operating Systems L29.302
Dept. Of Computer Science, Colorado State University

Paging Hardware with a TLB

Page Page
number ;.. offset Physical
A Address
ddress £000..000
CPU > p | d s> £ | d —> =
rame f
A
> TLB TLB hit £111..111
P J
> £ ‘
TLB Miss
Page Table

CS370: Operating Systems L29.303

Dept. Of Computer Science, Colorado State University

Protection bits are associated with each frame

Kept in the page table

Bits can indicate
Read-write, read-only, execute

lllegal accesses can be trapped by the OS

Valid-invalid bit

Indicates if page is in the process’s logical address space

CS370: Operating Systems L29.304
Dept. Of Computer Science, Colorado State University

Protection Bits: Page size=2K;
Logical address space = 16K

Program restrictedto 0 - 10468

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Logical Memory

10K = 10240

S o 0 W NN B O

Frame Valid/

Number Invalid bit
2 v
3 v
4 v
7 v
8 v
9 v
0 i
0 i

Page Table

CS370: Operating Systems

© 0O 0O U W N H O

Page 0

Page 1

Page

Page 3

Page 4

Page

Page

n

Physical Memory

Dept. Of Computer Science, Colorado State University

L29.305

Reentrant Code [1/2]

A computer program or subroutine is called reentrant if:
It can be interrupted in the middle of its execution and

Then safely called again ("re-entered") before its previous invocations
complete execution

CS370: Operating Systems L29.306
Dept. Of Computer Science, Colorado State University

Reentrant Code [2/2]

Non-self-modifying

Does not change during execution

Two or more processes can:

(1) Execute same code at same time
(2) Will have different data

Each process has:

Copy of registers and data storage to hold the data

CS370: Operating Systems L29.307
Dept. Of Computer Science, Colorado State University

Shared Pages

System with N users

Each user runs a text editing program

Text editing program
150 KB of code
50 KB of data space

40 users
Without sharing: 8000 KB space needed
With sharing : 150 + 40 x 50 = 2150 KB needed

CS370: Operating Systems L29.308
Dept. Of Computer Science, Colorado State University

Shared Paging

0
1 Data 1
26 4 3 2 Data 3
ed 2 4 / Page Tables 3 od 1
Data 1|| 1 5
ed 1 3
6 ed 3
Process P, ed 2 4
7 Data 2
ed 3 6
8
ed 1 3 Data 2 7 9
d 2
° : Process P,
ed 3 6
Page n
Data 3|| 2
Physical Memory
Process P4
CS370: Operating Systems L29.309

Dept. Of Computer Science, Colorado State University

Shared Paging

Other heavily used programs can be shared

Compilers, runtime libraries, database systems, etc.

To be shareable:
(1) Code must be reentrant

(2) The OS must enforce read-only nature of the shared
code

CS370: Operating Systems L29.310
Dept. Of Computer Science, Colorado State University

Overheads in paging:
Page table and internal fragmentation

Average process size = §
Page size = p

Size of each page entry = ¢
Pages per process = s/p

se/p: Total page table space

Total Overhead = se/p + p/2

—> < —

Page table overhead Internal fragmentation loss

CS370: Operating Systems L29.311
Dept. Of Computer Science, Colorado State University

Typical use of the page table

Process refers to addresses through pages’ virtual address
Process has page table

Table has entries for pages that process uses

One slot for each page

Irrespective of whether it is valid or not

Page table sorted by virtual addresses

CS370: Operating Systems L29.312
Dept. Of Computer Science, Colorado State University

Paging Hardware: Paging is a form of dynamic

relocation

Page
number

CPU

Logical offset

Physical
_\égsresiﬁyr// Address

Page

N
”

£000..000
—~ A
£111..111
P -

Frame f

S —

il

Page Table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.313

Hierarchical Paging

Logical address spaces: 232 ~ 2°4
Page size: 4KB = 22x 2'10= 212

Number of page table entries?

Logical address space size/page size

232/212 = 220 = 1 million entries

Page table entry = 4 bytes
Page table for process = 22°x 4 = 4 MB

CS370: Operating Systems L29.314
Dept. Of Computer Science, Colorado State University

Issues with large page tables
Cannot allocate page table contiguously in memory

Solution:

Divide the page table into smaller pieces

Page the page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.315

Two-level Paging
N

Page number Page offset

20 12

32-bit logical address

CS370: Operating Systems L29.316
Dept. Of Computer Science, Colorado State University

Two-level Paging
N

Outer Inner
Page Page Page offset
10 10 12

32-bit logical address

CS370: Operating Systems L29.317
Dept. Of Computer Science, Colorado State University

Address translation in two-level paging
-

P| P | d

P Actual Physical address
P2 Physical memory
frame
d
Track pages Outer page
table

of page-table

Page of page table

CS370: Operating Systems L29.318
Dept. Of Computer Science, Colorado State University

x86-64

Intel: IA-64 ltanium

Not much traction

AMD: x86-64
Intel adopted AMD’s x86-64 architecture

64-bit address space: 2% (16 exabytes)

Currently x86-64 provides
48—Dbit virtual address
Page sizes: 4 KB, 2 MB, and 1 GB
4-level paging hierarchy

CS370: Operating Systems L29.319
Dept. Of Computer Science, Colorado State University

ARM architectures

iPhone and Android systems use this

32-bit ARM tevel poa
-level paging
4 KB and 16 KB pages —
1 MB and 16 MB pages
$\\\\1—1eve1 paging

There are two levels for TLBs:
A separate TLB for data
Another for instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.320

In our discussions so far ...

Virtual memory is one-dimensional

Logical addresses go from 0 to some max value

Many problems can benefit from having two or more separate virtual
address spaces

CS370: Operating Systems L29.321
Dept. Of Computer Science, Colorado State University

One dimensional address space with growing tables

-*

Address space

being used Address space allocated to

the constant table

Free

CS370: Operating Systems L29.322
Dept. Of Computer Science, Colorado State University

One dimensional address space with growing tables

-*

Symbol table has BUMPED INTO
the source text table

Address space

being used Address space allocated to

the constant table

Free

CS370: Operating Systems L29.323
Dept. Of Computer Science, Colorado State University

Segmentation

Logical address space is a collection of segments

Segments have name and length

Addresses specify
Segment name

Offset within the segment

Tuple: <segment-number, offset>

CS370: Operating Systems L29.324
Dept. Of Computer Science, Colorado State University

Segmentation Hardware

cu —|s |d

Logical
Address Segment Table

Physical
Address

TRAP: Addressing Error

CS370: Operating Systems L29.325
Dept. Of Computer Science, Colorado State University

Rationale for Paging and Segmentation

Get a large linear address space without having to
buy more physical memory

PAGING

Allow programs and data to be broken up into
logically independent address spaces

Aids Sharing AND Protection

Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.326

Comparison of Paging and Segmentation
——

How many linear address
spaces are there?

1 Many

Can total address space YES YES

exceed physical memory

Can procedures and data be
distinguished and protected NO YES
separately?

Can fluctuating table sizes NO YES
be accommodated?

CS370: Operating Systems L29.327
Dept. Of Computer Science, Colorado State University

Comparison of Paging and Segmentation

Should the programmer be

between users facilitated?

aware the the technique is NO YES
being used?
Is sharing of procedures NO YES

Why was this technique
invented?

To allow programs and data
to be broken up into logically
independent address spaces
and to allow sharing and
protection

To get a large linear
address space without
having to buy more
physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.328

Segmentation with Paging

Multics: Each program can have up to 256K independent segments

Each with 64K 36-bit words

Intel Pentium
16K independent segments
Each segment has 10° 32-bit words

Few programs need more than 1000 segments, but many programs need

large segments

CS370: Operating Systems L29.329

Dept. Of Computer Science, Colorado State University

Virtual Memory

Obijectives:
Explain demand paging and page faults
Contrast page replacement algorithms and explain Belady's anomaly
Justify the rationale for stack algorithms

Explain frame allocations

Synthesize the concepts of thrashing and working sets

CS370: Operating Systems L29.330
Dept. Of Computer Science, Colorado State University

How we got here ...
B

CS370: Operating Systems L29.331
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}

Low {Program code}

CS370: Operating Systems L29.332
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory

L EEEEE——————,
max

Requures actual physical space
ONLY IF heap or stack grows

low

CS370: Operating Systems L29.333
Dept. Of Computer Science, Colorado State University

Sparse address spaces

Virtual address spaces with holes

Harnessed by
Heap or stack segments

Dynamically linked libraries

CS370: Operating Systems L29.334
Dept. Of Computer Science, Colorado State University

Loading an executable program into memory

What if we load the entire program?

We may not need the entire program

Load pages only when they are needed

Demand Paging

CS370: Operating Systems L29.335
Dept. Of Computer Science, Colorado State University

Differences between the swapper and pager
—

0 Swapper

Swaps the entire program into memory

0 Pager
Lazy swapper

Never swap a page into memory unless it is actually

needed

CS370: Operating Systems L29.336
Dept. Of Computer Science, Colorado State University

Swapping: Temporarily moving a process out
of memory into a backing store

_] *

Operating

System \\/
Swap out -

Swap in -
User space \/

CS370: Operating Systems L29.337
Dept. Of Computer Science, Colorado State University

Pager swapping pages in and out of physical

memory
-~
] 0 1 2 3
P A
rogram Swap 0U'I" S 4 5 6 -
8 9 10 11
12 13 14 15
16 17 18 19
Program B vaap IN

20 21 22 23

CS370: Operating Systems L29.338
Dept. Of Computer Science, Colorado State University

Demand Paging: Basic concepts

Guess pages to be utilized by process

Before the process will be swapped out

Avoid reading unused pages

Better physical memory utilization
Reduced I/O

Lower swap times

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.339

Distinguishing between pages in memory and those
on disk

Valid-Invalid bits

Associated with entries in the page table

Valid

Page is both legal and in memory

Invalid

(1) Page is not in logical address space of process

OR
(2) Valid BUT currently on disk

CS370: Operating Systems L29.340
Dept. Of Computer Science, Colorado State University

Distinguishing between pages in memory
and those on disk o

oW N RO

1
Physical2
A Memory
B 3 Backing Store
4 A
¢ 0 4 v 5
D 1 I 6 C
E 2 6 \'4 v A B
F
a 3 - 8 c D[| E
4 I 9 F
H
. 5 9 |v 10 FL €
6 |
Logical - 11
Memory 7 1 12
Page Table 13 |
CS3]7§: ems L29.341

Dept. Of Computer Science, Colorado State University

Handling page faults
—

@ Locate page on backing store

<
@ Trap to the OS
OPERATIN Reference

SYSTEM @
I
Free
5 Frame €
PAGE
load M @
mapLe R€Set page v
table Bring in
Restart missing
instruction page
PHYSICAL
MEMORY
BACKING
CS370: Operating Systems STORE L29.342

Dept. Of Computer Science, Colorado State University

Pure demand paging
Never bring a page into memory unless it is required

Execute process with no pages in memory

First instruction of process will fault for the page

Page fault to load page into memory and execute

CS370: Operating Systems L29.343
Dept. Of Computer Science, Colorado State University

Potential problems with pure demand paging

Multiple page faults per instruction execution
One fault for instruction

Many faults for data

Multiple page faults per instruction are rare

Locality of reference

CS370: Operating Systems L29.344
Dept. Of Computer Science, Colorado State University

Hardware requirements to support demand paging

I
o Page Table

1 Secondary memory

01 Section of disk known as swap space is used

CS370: Operating Systems L29.345
Dept. Of Computer Science, Colorado State University

Restarting instructions after a page fault
Page faults occur at memory reference
Use PCB to save state of the interrupted process

Restart process in exactly the same place

Desired page is now in memory and accessible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.346

Effective access times

Without page faults, effective access times are equal to memory
access times

200 nanoseconds approximately

With page faults
Account for fault servicing with disk 1/0O

CS370: Operating Systems L29.347
Dept. Of Computer Science, Colorado State University

Calculating the effective access times with demand
paging

N
p :probability of a page fault

ma : memory access time

Effective access time =

(1-p) x ma + p x page-fault-time

CS370: Operating Systems L29.348
Dept. Of Computer Science, Colorado State University

Components of page-fault servicing

Service
interrupt

1~100 uS

Read in Restart
the page process
Latency : 3 mS 1~100 pS

Seek :5mS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.349

Page replacement
N

1 If no frame is free

o1 Find one that is not currently being used

m Use it

CS370: Operating Systems L29.350
Dept. Of Computer Science, Colorado State University

Freeing a physical memory frame

Write frame contents to swap space

Change page table of process

To reflect that page is no longer in memory

Freed frame can now hold some other page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.351

Servicing a page fault

Retrieve page
from disk

}

Free frame available?

YES

Use it

Done using a

page replacement
l NO / algorithm

Select victim frame J’

Write victim frame
to disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

129.352

Page replacement is central to demand paging
—

@ Locate page on backing store

< :
@ Trap to the OS
OPERATING Reference

SYSTEM @

I
Free
5 Frame € |
load M 6 PAGE @ :
TaBLE Reset page L
table Bring in
Restart missing
instruction page
PHYSICAL
MEMORY
BACKING
STORE
CS370: Operating Systems L29.353

Dept. Of Computer Science, Colorado State University

Page replacement algorithms:

What are we looking for?

Low page-fault rates

How do we evaluate them?

Run algorithm on a string of memory references

Reference string

Compute number of page faults

CS370: Operating Systems L29.354
Dept. Of Computer Science, Colorado State University

FIFO page replacement algorithm:
Out with the old; in with the new

When a page must be replaced

Replace the oldest one

OS maintains list of all pages currently in memory
Page at head of the list: Oldest one

Page at the tail: Recent arrival

During a page fault
Page at the head is removed

New page added to the tdil

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.355

FIFO example: 3 memory frames
N

- Reference String

Youngest 7 0 1 22 3 0 4 2300012 221701

70 112304233301 11272¢0
Oldest 7 0012 3042223000127

~ No page fault

CS370: Operating Systems L29.356
Dept. Of Computer Science, Colorado State University

How we got here ...
—

CS370: Operating Systems L29.357
Dept. Of Computer Science, Colorado State University

Intuitively the greater the number of memory frames,
the lower the faults

Surprisingly this is not always the case

In 1969 Belady, Nelson and Shedler discovered counter example™ in
FIFO

FIFO caused more faults with 4 frames than 3

This strange situation is now called Belady’s anomaly

* An anomaly in space-time characteristics of certain programs running in a paging
machine. Belady, Nelson and Shedler.

CS370: Operating Systems L29.358
Dept. Of Computer Science, Colorado State University

Belady’s anomaly: FIFO

Same reference string, different frames

O1 2301401 23
No page fault

4
Youngesst O 1 2 3 0O 1 4 4 4 2 3 3

9 page faults
O1 230111 42 2 with 3 frames
4

Oldest O1 23 00O0T1 4
0O1 2301401 2 3 4
Youngest O 1 2 3 3 3 4 01 2 3 4
10 page faults
R e R R with 4 frames
O1 1T 1 3 3 401 2

Oldest O 001 2 3 4 0 1

WU/ Ve \JTIITITTY u]olc‘ms

Dept. Of Computer Science, Colorado State University

Numbers in this color:

L29.359

Belady’s anomaly
-

7 Led to a whole theory on paging algorithms and properties

o Stack algorithms

CS370: Operating Systems L29.360
Dept. Of Computer Science, Colorado State University

The Model

There is an array M

Keeps track of the state of memory

M has as many elements as pages of virtual memory

Divided into two parts
Top part: m entries {Pages currently in memory}

Bottom part: n-m entries

Pages that were referenced BUT paged out

CS370: Operating Systems L29.361
Dept. Of Computer Science, Colorado State University

The model

Reference
String
v)
R
| -
=
o "
€ £
£
Q
Page fault c
Tracking the state of the array M over time
CS370: Operating Systems L29.362

Dept. Of Computer Science, Colorado State University

Properties of the model

When a page is referenced

Move to the top entry of M

If the referenced page is already in M
All pages above it moved down one position

Pages below it are not moved

Transition from within box to outside of it

Page eviction from main memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.363

The model

021 35463 7 47 3355311172341
0 2 1354 6 3 747 7 3 35 33 3117 23 4
0 2 7 35 4 6 33 447 7755531723
0 21 35 4666 6 4 44737 7531732
0 21 1 55 55 5 6 6 6 4 4 4 45517
02 2 11 11 1 1116 6 664 45?5
0 0 2 2 22 2 22222 226666
00 00 O 0OOUOT OTUOUOOO OGO OO
CS370: Operating Systems 129.364

Dept. Of Computer Science, Colorado State University

The optimal page replacement algorithm

The best possible algorithm

Easy to describe but impossible to implement

Crux:
Put off unpleasant stuff for as long as possible

ldea: evict “Furthest-in-the-future”

CS370: Operating Systems L29.365
Dept. Of Computer Science, Colorado State University

The optimal page replacement algorithm description

When a page fault occurs some set of pages are in memory

One of these pages will be referenced next

Other pages may be not be referenced until 10, 100 or 1000 instructions
later

Label each page with the number of instructions to be executed before
it will be referenced

Page with the highest label should be removed

CS370: Operating Systems L29.366
Dept. Of Computer Science, Colorado State University

The Least Recently Used (LRU) page replacement
algorithm

Approximation of the optimal algorithm

Observation

Pages used heavily in the last few instructions

Probably will be used heavily in the next few

Pages that have not been used

Will probably remain unused for a long time

When a page fault occurs?

Throw out page that has been unused the longest

CS370: Operating Systems L29.367
Dept. Of Computer Science, Colorado State University

LRU example: 3 memory frames
—

Reference String

Recent 7 01 20 3042303212 01701
7 0 120304230321 2017020

Least 7 01 223 0422033120117
Used

CS370: Operating Systems L29.368
Dept. Of Computer Science, Colorado State University

Using Logical clocks to implement LRU

Each page table entry has a time-of-use field

Entry updated when page is referenced

Contents of clock register are copied

Replace the page with the smallest value

Time increases monotonically

Overflows must be accounted for

Requires search of page table to find LRU page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.369

Stack based approach

Keep stack of page numbers

When page is referenced

Move to the top of the stack
Implemented as a doubly linked list

No search done for replacement

Bottom of the stack is the LRU page

CS370: Operating Systems L29.370
Dept. Of Computer Science, Colorado State University

Problems with clock /stack based approaches to LRU
replacements

Inconceivable without hardware support

Few systems provide requisite support for true LRU implementations
Updates of clock fields or stack needed at every memory reference

If we use interrupts and do software updates of data structures things
would be very slow

Would slow down every memory reference

At least 10 times slower

CS370: Operating Systems L29.371
Dept. Of Computer Science, Colorado State University

Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic
LRU (Least Recently Used) Excellent, but difficult to implement
NFU (Not Frequently Used) Fairly crude approximate to LRU
Aging Efficient algorithm that approximates LRU well
CS370: Operating Systems 129.372

Dept. Of Computer Science, Colorado State University

Page Buffering:
Being proactive

Maintain a list of modified pages

When the paging device is idle
Write modified pages to disk

Implications

If a page is selected for replacement increase likelihood of that page being
clean

CS370: Operating Systems L29.373
Dept. Of Computer Science, Colorado State University

Page Buffering: Reuse what you can

Keep pool of free frames as before

BUT remember which pages they held
Frame contents are not modified when page is written to disk

If page needs to come back in?

Reuse the same frame if it was not used to hold some other page

CS370: Operating Systems L29.374
Dept. Of Computer Science, Colorado State University

Buffering and applications

Applications often understand their memory /disk usage better than

the OS

Provide their own buffering schemes

If both the OS and the application were to buffer
Twice the 1/O is being utilized for a given 1/O

CS370: Operating Systems L29.375
Dept. Of Computer Science, Colorado State University

Frame allocation: How do you divvy up free memory

among processes?
Frame size = 1 MB; Total Size = 128 MB

35 MB for the OS
—~— 128 MB
93 MB for others
2 processes at Ty
How are frames allocated?

With demand paging all 93 frames would be in the free frame pool

CS370: Operating Systems L29.376
Dept. Of Computer Science, Colorado State University

Constraints on frame allocation

Max: Total number of frames in the system

Available physical memory

Min: Need to allocate at least a minimum number of frames

Defined by the architecture of the underlying system

CS370: Operating Systems L29.377
Dept. Of Computer Science, Colorado State University

Minimum number of frames

As you decrease the number of frames for a process
Page fault increases

Execution time increases too

Defined by the architecture

In some cases instructions and operands (indirect references) straddle page
boundaries

With 2 operands at least 6 frames needed

CS370: Operating Systems L29.378
Dept. Of Computer Science, Colorado State University

Global vs Local Allocation

Global replacement

One process can take a memory frame from another process

Local replacement

Process can only choose from the set of frames that was allocated to it

CS370: Operating Systems L29.379
Dept. Of Computer Science, Colorado State University

Local vs Global replacement:

Based on how often a page is referenced

Usage
Pages Count
Al 10
A2 7
A3 5
3
B1 9
B2 4
2
B4 6
Cl1 3
C2 5
C3 6

Processes A, Band C

Pages
Al
A2
A3
A5
BT
B2
B3
B4
Cl
C2
C3

Local Replacement

Dept. Of Computer Science, Colorado State University

Pages
Al
A2
A3
A4
B1
B2
A5
B4
Cl
C2
C3

CS370: Operating Systems

Process A has
page faulted
and needs to
bring in a page

Global Replacement

L29.380

Global vs Local Replacement

Local Global

Number of frames
S ° ° II
allocated to process Fixed Varies dynamically

Can process control its

own fault rate? YES NO
Can it use free frames NO YES
that are available?

I

ncreases system NO VES
throughput?

CS370: Operating Systems L29.381

Dept. Of Computer Science, Colorado State University

Locality of References

During any phase of execution a process references a relatively small
fraction of its pages

Set of pages that a process is currently using

Working set

Working set evolves during process execution

CS370: Operating Systems L29.382
Dept. Of Computer Science, Colorado State University

Implications of the working set

If the entire working set is in memory

Process will execute without causing many faults

Until it moves to another phase of execution

If the available memory is too small to hold the working set?
(1) Process will cause many faults

(2) Run very slowly

CS370: Operating Systems L29.383
Dept. Of Computer Science, Colorado State University

Characterizing the affect of multiprogramming on

thrashi
__ fhras mgﬁ

Thrashing
—

CPU Utilization

Degree of Multiprogramming

CS370: Operating Systems L29.384
Dept. Of Computer Science, Colorado State University

Mitigating the effects of thrashing

Using a local page replacement algorithm

One process thrashing does not cause cascading thrashing among other
processes

BUT if a process is thrashing

Average service time for a page fault increases

Best approach
(1) Track a process’ working set

(2) Make sure the working set is in memory before you let it run

CS370: Operating Systems L29.385
Dept. Of Computer Science, Colorado State University

Virtualization

Obijectives:
Explain Virtual Machine Monitors (VMM:s)
Justify the Popek and Goldberg requirements for virtualization
Explain how Virtualization works in the x86 architecture

Compare Type-1 and Type-2 Hypervisors

CS370: Operating Systems L29.386
Dept. Of Computer Science, Colorado State University

Firms often have multiple, dedicated servers: e-madil,
FTP, e-commerce, web, etc.

Load: May be one machine cannot handle all that load

Reliability: Management does not trust the OS to run 24 x 7 without
failures

By putting one server on a separate computer, if one of the server
crashes?

At least the other ones are not affected

If someone breaks into the web server, at least sensitive e-mails are
still protected

Sandboxing

CS370: Operating Systems L29.387
Dept. Of Computer Science, Colorado State University

But ...

While this approach achieves isolation and fault tolerance

This solution is expensive and hard to manage because so many machines
are also involved

Other reasons for having separate machines?

Organizations depend on more than one OS for their daily operations

Web server on Linux, mail server on Windows, e-commerce server on OS X, other
services on various flavors of UNIX

CS370: Operating Systems L29.388
Dept. Of Computer Science, Colorado State University

What to do?

A possible (and popular) solution is to use virtual machine technology

This sounds very hip and modern
But the idea is old ... dating back to the 1960s

Even so, the way we use it today is definitely new

CS370: Operating Systems L29.389
Dept. Of Computer Science, Colorado State University

Main idea

VMM (Virtual Machine Monitor) creates the illusion of multiple (virtual)
machines on the same physical hardware

VMM is also known as a hypervisor

We will look at type 1 hypervisors (bare metal) and type 2 hypervisors (use
services and abstractions offered by an underlying OS)

Virtualization allows a single computer to host multiple virtual
machines

Each potentially running a different OS

CS370: Operating Systems L29.390
Dept. Of Computer Science, Colorado State University

Failure in one virtual machines does not bring down
any others

Different servers run on different virtual machines

Maintains partial-failure model at a lower cost with easier maintainability

Also, we can run different OS on the same hardware
Benefit from virtual machine isolation in the face of attacks
Plus enjoy other good stuff: savings, real estate, etc.

Convenient for complex software stack with precise system dependencies

Think core libraries

CS370: Operating Systems L29.391
Dept. Of Computer Science, Colorado State University

Why virtualization works [1/2]

Service outages are due not to faulty hardware, but due to poor
software, emphatically including OSes

lll-designed, unreliable, buggy, and poorly configured software

Migration to another machine may be easier

CS370: Operating Systems L29.392
Dept. Of Computer Science, Colorado State University

Why virtualization works [2/2]

The only software running in the highest privilege is the hypervisor

Hypervisor has 2 orders of magnitude fewer lines of code than a full
operating system

Has 2 orders of magnitude fewer bugs

A hypervisor is simpler than an OS because it does only one thing

Emulate copies of the bare metal (most commonly the Intel x86 architecture)

CS370: Operating Systems L29.393
Dept. Of Computer Science, Colorado State University

Advantages to running software in VMs besides
strong isolation

Few physical machines
Saves money on hardware and electricity

Takes up less rack space

For companies such as Amazon or Microsoft
Reducing physical demands on data centers represents huge cost savings

Companies frequently locate their data centers in the middle of nowhere

Just to be close to hydroelectric dams (and cheap energy)

CS370: Operating Systems L29.394
Dept. Of Computer Science, Colorado State University

Hypervisors should score well on

Safety

Hypervisor should have full control of the virtualized resources

Fidelity
Behavior of program on a virtual machine should be identical to the same
program running on bare hardware

Efficiency

Much of the code in the virtual machine should run without intervention from
the hypervisor

CS370: Operating Systems L29.395
Dept. Of Computer Science, Colorado State University

Safety

Consider each instruction in turn in an interpreter (such as Bochs) and
perform exactly what is needed

May execute some instructions (INC) as is, but other instructions must be
simulated

We cannot allow the guest OS to disable interrupts for the entire
machine or modify page-table mappings

Trick is to make the guest OS believe that it has
Interpreter may be safe, even hi-fi, but performance is abysmal

So, VMMs try to execute most code directly

CS370: Operating Systems L29.396
Dept. Of Computer Science, Colorado State University

Fidelity [1/2]

Virtualization has long been a problem on x86

Defects in 386 carried forward into new CPUs for 20 years in the name of
backward compatibility

Every CPU with kernel mode and user mode has instructions that

behave differently
Depending on whether it is executed in kernel /user mode

Sensitive instructions
. . A machine is virtualizable
Some Instructions cause a ’rrap ma. n . r .UCl 24 .
only if sensitive instructions

when executed in user-mode are a subset of privileged

Privileged instructions instructions

CS370: Operating Systems L29.397

Dept. Of Computer Science, Colorado State University

Fidelity [2/2]

If you do something in user mode that you should not

The hardware should trap!
IBM /370 had this property, Intel’s 386 did not

Several sensitive 386 instructions were ignored if executed in user mode
Or executed with a different behavior

E.g. POPF instruction replaces flags register which changes the bit that
enables/disables interrupts

In user-mode this bit was simply not changed

Also, some instructions could read sensitive state in user mode without
causing a trap

CS370: Operating Systems L29.398
Dept. Of Computer Science, Colorado State University

Full virtualization

Trap all instructions
Fully simulate entire computer
Trade-off: High overhead

Benefit: Can virtualize any OS

CS370: Operating Systems L29.399
Dept. Of Computer Science, Colorado State University

Paravirtualization [1/2]

Never aims to present a virtual machine that looks just like the actual
underlying hardware

Present machine-line software interface that explicitly exposes that it
is a virtualized environment

Offers a set of hypercalls that allow the guest to send explicit requests to
the hypervisor

Similar to how a system call offers kernel services to applications

DRAWBACK: Guest OS has to be aware of the virtual machine API

CS370: Operating Systems L29.400
Dept. Of Computer Science, Colorado State University

Paravirtualization [2/2]

Guests use hypercalls for privileged, sensitive operations like updating
page tables

But they do it in cooperation with the hypervisor

Overall system can be simpler and faster

Paravirtualization was offered by IBM since 1972

ldea was revived by Denali (2002) and Xen (2003) hypervisors

CS370: Operating Systems L29.401
Dept. Of Computer Science, Colorado State University

Terms

Guest Operating System
The OS running on top of the hypervisor

Host Operating System
For a type 2 hypervisor: the OS that runs on the hardware

Safe executions
Execute the machine’s instruction set in a safe manner

Guest OSes may change or mess up its own page tables ... but not those of
others

CS370: Operating Systems L29.402
Dept. Of Computer Science, Colorado State University

Type 1 hypervisor

Only program running in the most privileged mode

Support multiple copies of the actual hardware
Virtual machines

Similar to processes a normal OS would run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.403

Location of Type-1 hypervisor
N

Excel Word Emacs
Control
Windows Linux on r?
Domain

Type 1 hypervisor

CS370: Operating Systems L29.404
Dept. Of Computer Science, Colorado State University

Type 2 hypervisor

Also referred to a hosted hypervisor

Relies on a host OS, say Windows or Linux, to allocate and schedule
resources

Still pretends to be a full computer with a CPU and other devices

CS370: Operating Systems L29.405
Dept. Of Computer Science, Colorado State University

Type 2: Running Guest OS

When it starts for the first time, acts like a newly booted computer
Expects to find a DVD, USB drive or CD-ROM containing an OS

The drive could be a virtual device

Store the image as an ISO file on the hard drive and have hypervisor pretend its
reading from proper DVD drive

Hypervisor installs the OS to its virtual disk (just a file) by running
installation that it found on DVD

Once guest OS is installed on virtual disk, it can be booted and run

CS370: Operating Systems L29.406
Dept. Of Computer Science, Colorado State University

Location of Type-2 hypervisor
N

Guest OS Processes
®

Guest OS
(e.g. Windows)

Host OS Process
|

°é

Type 2 hypervisor

Host OS

(e.g. Linux)

CS370: Operating Systems L29.407
Dept. Of Computer Science, Colorado State University

Examples of hypervisors [Partial List]

Virtualization without ESX Server 1.0 VMware workstation 1.0

hardware support

Paravirtualization Xen 1.0

Virtualization with vSphere, Xen, Hyper-V VMware Fusion, KVM,
hardware support Parallels

Process Virtualization WINE

CS370: Operating Systems L29.408
Dept. Of Computer Science, Colorado State University

Type-1 hypervisors

Virtual machine runs as a user-process in user mode

Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

But the virtual machine runs a Guest OS that thinks it is in kernel mode
(although, of course, it is not)

Virtual kernel mode

The virtual machine also runs user processes, which think they are in the
user mode

And really are in user mode

CS370: Operating Systems L29.409
Dept. Of Computer Science, Colorado State University

Modes

User processes

‘ ‘ Virtual user mode

Guest Operating Systenmy”™ Virtual kernel mode

- User mode

Type 1 hypervisor Trap on privileged instruction Kernel Mode

Hardware

CS370: Operating Systems L29.410
Dept. Of Computer Science, Colorado State University

Execution of kernel model instructions

What if the Guest OS executes an instruction that is allowed only when
the CPU is really in kernel mode?
On CPUs without VT (Intel: Virtualization Technology)?

Instruction fails and the OS crashes

On CPUs with VT2

A trap to the hypervisor does occur

Hypervisor can inspect instruction to see if it was issued:
By Guest OS: Arrange for the instruction to be carried out

By user-process in that VM: Emulate what hardware would do when confronted with sensitive
instruction executed in user-mode

CS370: Operating Systems L29.411
Dept. Of Computer Science, Colorado State University

What if the guest is running and an interrupt
arrives from an external device?

Type 2 hypervisor depends on host’s device drivers to handle to the
interrupt

So, the hypervisor reconfigures hardware to to run the host OS
system code

When the device driver runs, it finds everything just as it expected it to be

Hypervisor behaves just like teenagers throwing a party when parents
are away

It's OK to rearrange furniture completely, as long as they put it back as they
found it before parents get home

CS370: Operating Systems L29.412
Dept. Of Computer Science, Colorado State University

Why do hypervisors work even on unvirtualizable
hardware?

Sensitive instructions in the guest kernel replaced by calls to
procedures that emulate these instructions

No sensitive instructions issued by the guest OS are ever executed
directly by true hardware

Turned into calls to the hypervisor, which emulates them

CS370: Operating Systems L29.413
Dept. Of Computer Science, Colorado State University

Cost of virtualization

We expect CPUs with VT would greatly outperform software
techniques

Trap-and-emulate approach used by VT hardware generates a lot of
traps ... and these are expensive

Ruin CPU caches, TLBs, and branch predictions

In contrast, when sensitive instructions are replaced by calls to
hypervisor procedures

None of this context-switching overhead is incurred

CS370: Operating Systems L29.414
Dept. Of Computer Science, Colorado State University

True virtualization & paravirtualization
N

True virtualization Paravirtualization
(\ (|
Trap due
Unmodified Wind to sensitive Modified Li Trap due to
nmoditie inaows / instruction odimed Linux / hypervisor
I —— call
l
Type 1 hypervisor : Microkernel
I
Hardware
CS370: Operating Systems L29.415

Dept. Of Computer Science, Colorado State University

x86 privilege level architecture without virtualization

]
Ring 3 User Apps
Ring 2
Direct execution of
Ring 1 User and OS Requests

Ring O oS r\

Host Computer System Hardware

CS370: Operating Systems L29.416
Dept. Of Computer Science, Colorado State University

Full Virtualization: Binary translation approach to

x86 virtualization

User Apps

Guest OS

VMM

Host Computer System Hardware

CS370: Operating Systems

Direct execution of
User and OS Requests

Binary Translation
of OS Requests

Dept. Of Computer Science, Colorado State University

L29.417

Paravirtualization approach to x86 virtualization

Ring 3 User Apps
Ring 2

Direct execution of
Ring 1 User and OS Requests

“Hypercalls” to the

Ring O Paravirtualized Guest OS Virtualization Layer
replace non-virtualizable
OS instructions

Virtualization Layer

Host Computer System Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.418

Hardware assisted virtualization

Ring 3 User Apps
Ring 2
Direct execution of
Ring 1 User and OS Requests
| OS Requests trap to VMM

Ring O Guest OS without Binary Translation
___________ or Paravirtualization
Root Mode

Privilege Levels

Host Computer System Hardware

CS37 0T Uperaring Systems
Dept. Of Computer Science, Colorado State University

L29.419

Contrasting the virtualization approaches

Technique Binary Translation Exit to Root Mode Hypercalls
and Direct Execution on privileged
instructions
Guest Unmodified Guest Unmodified Guest GuestOS codified
Modification/ oS oS to issue Hypercalls
Compatibility so it can’t run on
Excellent Excellent native hardware.
compatibility compatibility
Compatibility is
lacking
CS370: Operating Systems L29.420

Dept. Of Computer Science, Colorado State University

Installing application software

VMs offer a solution to a problem that has long plagued users
(especially open source)

How to install application programs

Applications are dependent on numerous other applications and
libraries

Which themselves depend on a host of software packages
Plus there are dependencies on particular versions of compilers,

scripting languages, OS etc.

CS370: Operating Systems L29.421
Dept. Of Computer Science, Colorado State University

With VMs ...

Developer can carefully construct a virtual machine
Load it with required OS, compiler, libraries, and application code

Freeze the entire unit ... ready to run

Only the software developer has to understand the dependencies

CS370: Operating Systems L29.422
Dept. Of Computer Science, Colorado State University

Licensing Issues

Some software is licensed on a per-CPU basis
Especially, software for companies

When they buy a program they have the right to run it on just one CPU
What is a CPU anyway?

Can we run multiple VMs all running on the same physical hardware?

Problem is even worse, when companies have licenses for N machines
running the software

VMs come and go on demand

CS370: Operating Systems L29.423
Dept. Of Computer Science, Colorado State University

File Systems

Obijectives:
Summarize file system structure
Contrast contiguous allocation vs indexed allocations

Explain the Unix File System

[° [] [] []
- A -

- - - - - - W - - - -
w W W W ot W WAYA'A' ° w A W A NJ

emne-NFES

CS370: Operating Systems L29.424
Dept. Of Computer Science, Colorado State University

Files are an abstraction mechanism

Provide a way to store information and read it back later

Do this is an way that shields the user from
How and where information is stored on disk

How disks really work

CS370: Operating Systems L29.425
Dept. Of Computer Science, Colorado State University

Files can be structured in many ways:
Unstructured sequence of bytes

The OS does not know or care what is in the file

Maximum flexibility
OS does not help, but does not get in the way either
Meaning is imposed by programs

Most OS support this

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.426

Mounting file systems

Many systems have more than one disk

How do you handle them?

S1:Keep self contained file system on each disk

And keep them separate

$2: Allow one disk to be mounted in another disk’s file tree

CS370: Operating Systems L29.427
Dept. Of Computer Science, Colorado State University

Mounting file systems
—

Hard Drive Diskette Hard Drive

cp D:/x /a/d/x cp /b/x /a/d/x
H is default

CS370: Operating Systems L29.428
Dept. Of Computer Science, Colorado State University

Checks performed during mounting

OS verifies that the device contains a valid file system

Read device directory

Make sure that the format is an expected one

Windows mounting
Each device in a separate name space

{Letter followed by a colon e.g. G:}

CS370: Operating Systems L29.429
Dept. Of Computer Science, Colorado State University

There are many levels that comprise a file system
0 Application

Programs

v

Logical
File System

v

File Organization
Module

v

Basic
File System

CS370: Operating Systems L29.430
Dept. Of Computer Science, Colorado State University

| /O Control consists of device drivers

Transfers information between main memory and disk

Receives high-level commands
Retrieve block 123, etc

Outputs low-level, hardware-specific instructions
Used by the hardware controller

Writes bit patterns into specific locations of the |/O
controller

CS370: Operating Systems L29.431
Dept. Of Computer Science, Colorado State University

There are many levels that comprise a file system
0 Application

Programs

v

Logical
File System

v

File Organization
Module

v

Basic
File System

CS370: Operating Systems L29.432
Dept. Of Computer Science, Colorado State University

Basic file system issues commands to the device
driver

Read and write physical blocks on disk
E.g. Drive 1, cylinder 73, sector 10

Manages buffers and caches
(1) To hold file system, directory and data blocks

(2) Improves performance

CS370: Operating Systems L29.433
Dept. Of Computer Science, Colorado State University

There are many levels that comprise a file system
0 Application

Programs

v

Logical
File System

v
File Organization
. —
v

Basic
File System

CS370: Operating Systems L29.434
Dept. Of Computer Science, Colorado State University

File organization module

Knows about files

Logical and physical blocks

Translate logical addresses to physical ones

Needed for every block

Includes a free space manager

Tracks unallocated blocks and allocates as needed

CS370: Operating Systems L29.435
Dept. Of Computer Science, Colorado State University

There are many levels that comprise a file system
0 Application

Programs

v
Logical
File System —
v

File Organization
Module

v

Basic
File System

CS370: Operating Systems L29.436
Dept. Of Computer Science, Colorado State University

The logical file system

Manages metadata information
Metadata is data describing the data

Maintains file structure via file control blocks

Info about the file
Ownership and permissions

Location of file contents

inode in UNIX file systems

CS370: Operating Systems L29.437
Dept. Of Computer Science, Colorado State University

Several file systems are in use

CD-ROMs written in ISO 9660 format

Designed by CD manufacturers

UNIX
Unix file system (UFS)
Berkley Fast File System (FFS)

Windows: FAT, FAT32 and NTFS

Linux
Supports 40 different file systems
Extended file system: ext2, ext3 and ext4

CS370: Operating Systems L29.438
Dept. Of Computer Science, Colorado State University

On-disk structures used to implement a file system
(1)

Boot conirol block

Information needed to boot an OS from that volume

Volume control block: Volume information
Number of blocks in the partition
Size of the blocks
Free-block count/pointers

Free file-control-block count/pointers
UFS: super-block Windows: Master file table

CS370: Operating Systems L29.439
Dept. Of Computer Science, Colorado State University

On-disk structures used to implement a file system
(2)

Directory structure to organize files

One per file system

Per file file-control-block

Contains details about individual files

CS370: Operating Systems L29.440
Dept. Of Computer Science, Colorado State University

In memory structures used to improve performance
via caching

Mount table

Information about each mounted volume

Directory structure cache

Holds information about recently accessed directories

System-wide open file table

File control block of each open file

Buffers to hold file-system blocks

To read and write to storage

CS370: Operating Systems L29.441
Dept. Of Computer Science, Colorado State University

Creation of a new file

Allocate a file-control block (FCB)

Read appropriate directory into memory

Directory is just a file in UNIX
Special type field

Update directory with new file name and FCB

Write directory back to disk

CS370: Operating Systems L29.442
Dept. Of Computer Science, Colorado State University

Directory implementation:
Hash table

Linear list and a hash table is maintained

Key computed from file name

Hash table value returns pointer to entry in linear list

Things to consider
(1) Account for collisions in the hash space

(2) Need to rehash the hash table when the number of
entries exceed the limit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.443

Contiguous Allocation

Each file occupies a set of contiguous blocks on the disk

If file is of size n blocks and starts at location b
Occupies blocks b, b+1, ..., b+n-1

Disk head movements
None for moving from block b to (b+1)

Only when moving to a different track

CS370: Operating Systems 129.444
Dept. Of Computer Science, Colorado State University

Sequential and direct access in contiguous
allocations

Sequential accesses
Remember disk address of the last referenced block

When needed, read the next block

Direct access to block 1 of file that starts at block b
b+1i

CS370: Operating Systems L29.445
Dept. Of Computer Science, Colorado State University

Contiguous allocations suffer from external
fragmentation

Free space is broken up into chunks

Space is fragmented into holes
Largest continuous chunk may be insufficient for meeting request

Compaction is very slow on large disks

Needs several hours

CS370: Operating Systems L29.446
Dept. Of Computer Science, Colorado State University

Linked Allocation: Each file is a linked list of disk

blocks
I

Pointer to next block File A
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block
File B
CS370: Operating Systems L29.447

Dept. Of Computer Science, Colorado State University

Linked List Allocations:
Advantages

Every disk block can be used

No space is lost in external fragmentation

Sufficient for directory entry to merely store disk address of first block

Rest can be found starting there

CS370: Operating Systems L29.448
Dept. Of Computer Science, Colorado State University

Linked List Allocation:
Disadvantages

Used effectively only for sequential accesses

Extremely slow random access

Space in each block set aside for pointers

Each file requires slightly more space

Reliability
What if a pointer is lost or damaged?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.449

Linked list allocation: Take pointers from disk block

_— and Eu’r in table

1

2 10

3 11

4 7 File File File File File
5 block block block block block
6 3 0 1 2 3 4

7 2 4 7 2 10 12
8

9

10 12 - |

11 14

12l o Table tracks EVERY disk block in the system
13

CS370: Operating Systems L29.450
Dept. Of Computer Science, Colorado State University

Linked list allocation using an index

Entire disk block is available for data

Random access is much easier

Chain must still be followed

But this chain could be cached in memory

MS-DOS and OS/2 operating systems
Use such a file allocation table (FAT)

CS370: Operating Systems L29.451
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

inode

Fixed-length data structure

One per file

Contains information about
File attributes

Size, owner, creation/modification time etc.

Disk addresses

File blocks that comprise file

CS370: Operating Systems L29.453
Dept. Of Computer Science, Colorado State University

inode

The inode is used to encapsulate information about a large number of
file blocks.

For e.g.
Block size = 8 KB, and file size = 8 GB

There would be a million file-blocks
inode will store info about the pointers to these blocks

inode allows us to access info for all these blocks

Storing pointers to these file blocks also takes up storage

CS370: Operating Systems L29.454
Dept. Of Computer Science, Colorado State University

Managing information about data blocks in the
inode

First few data blocks of the file stored in the inode

If the file is large: Indirect pointer

To a block of pointers that point to additional data blocks

If the file is larger: Double indirect pointer

Pointer to a block of indirect pointers

If the file is huge: Triple indirect pointer

Pointer to a block of double-indirect pointers

CS370: Operating Systems L29.455
Dept. Of Computer Science, Colorado State University

Schematic structure of the inode

Address of
disk block

File Attributes:

Size (bytes)

Owner UID/GID
Relevant times

Link and Block counts
Permissions

Direct pointers to first

few file blocks
Pointers
Single indirect pointer —> to next

file blocks

Double indirect
pointer

Triple indirect pointer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.456

i-Node: How the pointers to the file blocks are
rganized

O

Single indirect
block

Double indirect

Triple indirect E
block CS370: Operating Systems L29.457

Dept. Of Computer Science, Colorado State University

Disk Layout in traditional UNIX systems

i1-Nodes Data Blocks

Boot Super
Block Block

An integral number of inodes fit in a single data block

CS370: Operating Systems L29.458
Dept. Of Computer Science, Colorado State University

Super Block describes the state of the file system

Total size of partition

Block size and number of disk blocks
Number of inodes

List of free blocks

inode number of the root directory

Destruction of super block?

Will render file system unreadable

CS370: Operating Systems L29.459
Dept. Of Computer Science, Colorado State University

A linear array of inodes follows the data block

inodes are numbered from 1 to some max

Each inode is identified by its inode number

inode number contains info needed to locate
inode on the disk

Users think of files as filenames

UNIX thinks of files in terms of inodes

CS370: Operating Systems L29.460
Dept. Of Computer Science, Colorado State University

UNIX directory structure

Contains only file names and the corresponding inode
numbers

i-node

Fil
N er ile name

Use 1s -1 to retrieve inode numbers of the files in the
directory

CS370: Operating Systems L29.461
Dept. Of Computer Science, Colorado State University

Directory entry, inode and data block for a simple
file

] :
i-node
Nu:mber Fi 1e name
12345 namel

inode 12345
Block 23567

Fragment of the

23567 _/—) text in the file

CS370: Operating Systems L29.462
Dept. Of Computer Science, Colorado State University

Two hard links to the same file

Directory entry

Directory entry
in /dirB
i-node

12345

Block 23567

in /dirA
i-node File name
12345 namel
2

23567 o~

Fragment of the
text in the file

inode 12345

Dept. Of Computer Science, Colorado State University

CS370: Operating Systems

File name

name?2

L29.463

File with a symbolic link

Directory entry Directory entry
in /dirA in /dirB
i-node File name i-node File name
12345 namel 13579 name2
Block 23567 J
1 .
Fragment of the 1 “/dirA /name1”
23567 f text in the file

15213 /Block 15213

inode 12345

inode 13579

CS370: Operating Systems L29.464
Dept. Of Computer Science, Colorado State University

Limitations of a file system based on inodes
—

o File must fit in a single disk partition

o Partition size and number of files are fixed when system is set up

CS370: Operating Systems L29.465
Dept. Of Computer Science, Colorado State University

Memory mapped files

open (), read(),write ()

Requires system calls and disk access

Allow part of the virtual address space to be logically associated with
the file

Memory mapping

CS370: Operating Systems L29.466
Dept. Of Computer Science, Colorado State University

Memory-mapping maps a disk block to a page (or

pages) in memory

Manipulate files through memory
Multiple processes may map file concurrently

Enables data sharing

Since JVM 1.4, Java supports memory-mapped files
FileChannel

Writes to files in memory are not necessarily
immediate

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L29.467

