CS 370: OPERATING SYSTEMS
[PROCESSES]

Computer Science
Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture
N

71 Processes
0 Interrupts & Context switches

1 Operations on processes

=1 Creation

CS370: System Architecture & Software [Fall 2014] L3.2
Dept. Of Computer Science, Colorado State University

PROCESSES

Process

The oldest and most important abstraction that an operating system
provides

Support the ability to have (psuedo) concurrent operation
Even if there is only 1 CPU

CS370: System Architecture & Software [Fall 2014] L3.4
Dept. Of Computer Science, Colorado State University

All modern computers do several things at a time
S

-1 Browsing while e-mail client is fetching data

o Printing files while burning a CD-ROM

CS370: System Architecture & Software [Fall 2014] L3.5
Dept. Of Computer Science, Colorado State University

Multiprogramming

CPU switches from process-to-process quickly

Runs each process for 10s-100s of milliseconds

CS370: System Architecture & Software [Fall 2014] L3.6
Dept. Of Computer Science, Colorado State University

Multiprogramming and parallelism

At any instant of time the CPU is running only one process
In the course of 1 second, it is working on several of them

Gives the illusion of parallelism

Psuedoparallelism

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.7

A process is the unit of work in most systems

Arose out of a need to compartmentalize and control concurrent
program executions

A process is a program in execution

Essentially an activity of some kind

Has a program, input, output and a state.

CS370: System Architecture & Software [Fall 2014] L3.8
Dept. Of Computer Science, Colorado State University

A process is just an instance of an executing program

Conceptually each process has its own virtual CPU

In reality, the CPU switches back-and-forth from process to process

Processes are not affected by the multiprogramming

Or relative speeds of different processes

CS370: System Architecture & Software [Fall 2014] L3.9
Dept. Of Computer Science, Colorado State University

An example scenario: 4 processes

Four Program Counters

4 processes in
memory

CS370: System Architecture & Software [Fall 201 4] L3.10
Dept. Of Computer Science, Colorado State University

Example scenario: 4 processes

Processes

Time ==

* At any instant only one process executes

* Viewed over a long time, all processes have made
progress

CS370: System Architecture & Software [Fall 2014] L3.11
Dept. Of Computer Science, Colorado State University

PROGRAMS AND PROCESSES

Programs and processes

Programs are passive, processes are active

The difference between a program and a process is subtle, but crucial

CS370: System Architecture & Software [Fall 2014] L3.13
Dept. Of Computer Science, Colorado State University

Analogy of a culinary-minded computer
scientist baking cake for daughter

Analogy Mapping to real settings
: : Program (algorithm expressed
Alneay @i FAgle in a suitable notation)
Well-stocked ki’rchen:. Tnput Data
flour, eggs, sugar, vanilla extract, etc
Computer scientist Processor (CPU)

* Process is the activity of
@ Baker reading the recipe
@ Fetching the ingredients
@ Baking the cake

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.14

Scientist’s son comes in screaming about a bee sting

Scientist records where he was in the recipe

State of current process is saved

Gets out a first aid book, follows directions in it

CS370: System Architecture & Software [Fall 2014] L3.15
Dept. Of Computer Science, Colorado State University

In our example, the scientist has switched to a higher
priority process ...

FROM Baking

Program is cake recipe

TO administering medical care

Program is first-aid book

When the bee sting is taken care of

Scientist goes back to where he was in the baking

CS370: System Architecture & Software [Fall 2014] L3.16
Dept. Of Computer Science, Colorado State University

Key concepts

Process is an activity of some kind; it has a
Program
Input and Output
State

Single processor may be shared among several processes

Scheduling algorithm decides when to stop work on one, and start work on
another

CS370: System Architecture & Software [Fall 2014] L3.17
Dept. Of Computer Science, Colorado State University

HOW A PROGRAM BECOMES A PROCESS

How a program becomes a process

When a program is executed, the OS copies the program image into
main memory

Allocation of memory is not enough to make a program into a process
Must have a process ID

OS tracks IDs and process states to orchestrate system resources

CS370: System Architecture & Software [Fall 2014] L3.19
Dept. Of Computer Science, Colorado State University

A process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}

Low {Program code}

CS370: System Architecture & Software [Fall 201 4] L3.20
Dept. Of Computer Science, Colorado State University

Program in memory (I)

Program image appears to occupy contiguous blocks of memory

OS maps programs into non-contiguous blocks

CS370: System Architecture & Software [Fall 2014] L3.21
Dept. Of Computer Science, Colorado State University

Program in memory (ILI)

Mapping divides the program into equal-sized pieces: pages
OS loads pages into memory

When processor references memory on page

OS looks up page in table, and loads into memory

CS370: System Architecture & Software [Fall 2014] L3.22
Dept. Of Computer Science, Colorado State University

Advantages of the mapping process

Allows large logical address space for stack and heap

O No physical memory used unless actually needed

OS hides the mapping process
Programmer views program image as logically contiguous

Some pages may not reside in memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.23

Finite State Machine

An initial state

A set of possible input events

A finite number of states
Transitions between these states

Actions

CS370: System Architecture & Software [Fall 2014] L3.24
Dept. Of Computer Science, Colorado State University

Process state transition diagram: When a process
executes it changes state

interrupt
- new /\ terminated
ready ~ running

scheduler dispatch

I/0 or event
completion /0 or event wait
waiting

CS370: System Architecture & Software [Fall 2014] L3.25
Dept. Of Computer Science, Colorado State University

Each process is represented by a process control

block SPCBE
R

PCB is a repository for any
information that varies from
process to process.

CS370: System Architecture & Software [Fall 201 4] L3.26
Dept. Of Computer Science, Colorado State University

An example of CPU switching between processes
B

Process A Operating System Process B

—

r idle

| }idle

CS370: System Architecture & Software [Fall 201 4] L3.27
Dept. Of Computer Science, Colorado State University

Scheduling Queues

Job Quevue: Contains all processes

A newly created process enters here first

Ready Queue
Processes residing in main memory
Ready and waiting to execute

Typically a linked list

Device Queue

Processes waiting for a particular 1/O device

CS370: System Architecture & Software [Fall 2014] L3.28
Dept. Of Computer Science, Colorado State University

Process scheduling

/O Queue pumm

CS370: System Architecture & Software [Fall 201 4] L3.29
Dept. Of Computer Science, Colorado State University

Throughout its lifetime a process migrates
among various scheduling queues

Long-term scheduler: Batch systems
Executes much less frequently

Can take more time to decide what to select

Short-term scheduler
Select process for CPU frequently
Selected process executes for few milliseconds

Typically, execute once every 10-100 milliseconds

CS370: System Architecture & Software [Fall 2014] L3.30
Dept. Of Computer Science, Colorado State University

UNIX and Windows systems often have no long-term
scheduler

Put every new process in memory for the short-term scheduler

System stability depends on:
Physical limitations: Number of terminals

Self-adjusting nature of users

CS370: System Architecture & Software [Fall 2014] L3.31
Dept. Of Computer Science, Colorado State University

Somewhere in between: The medium term scheduler

PREMISE: It can be advantageous to reduce degree of
multiprogramming
Remove processes from memory

Reduce active contention for the CPU
Reintroduce processes later on: Swapping

Swapping improves the process mix

Cope with strains on resources such as memory

CS370: System Architecture & Software [Fall 2014] L3.32
Dept. Of Computer Science, Colorado State University

INTERRUPTS & CONTEXTS

Interrupts and Contexts

Interrupt causes the OS to change CPU from its
current task to run a kernel routine

Save current context so that suspend and resume are
possible

Context is represented in the PCB
Value of CPU registers
Process state

Memory management information

CS370: System Architecture & Software [Fall 2014] L3.34
Dept. Of Computer Science, Colorado State University

Context switch refers to switching from one process
to another

(1) Save state of current process
(2) Restore state of a different process

Context switch time is pure overhead

No useful work done while switching

CS370: System Architecture & Software [Fall 2014] L3.35
Dept. Of Computer Science, Colorado State University

Factors that impact the speed of the context switch

Memory speed
Number of registers to copy
Special instructions for loading /storing registers

Memory management: Preservation of address space

CS370: System Architecture & Software [Fall 2014] L3.36
Dept. Of Computer Science, Colorado State University

Processes execute concurrently
Can be created and deleted dynamically.

OPERATIONS ON PROCESSES

Process Creation: A process may create new
processes during its execution

Parent process: The creating process

Child process: New process that was created

May itself create processes: Process tree

All processes have unique identifiers

CS370: System Architecture & Software [Fall 2014] L3.38
Dept. Of Computer Science, Colorado State University

Example: Process tree in Solaris
—

CS370: System Architecture & Software [Fall 2014] L3.39
Dept. Of Computer Science, Colorado State University

Processes in UNIX

1nit : Root parent process for all user processes

Get a listing of processes with ps command
ps: List of all processes associated with user
ps —a : List of all processes associated with terminals

ps —A: List of all active processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.40

Resource sharing between a process and its
subprocess

Child process may obtain resources directly from OS

Child may be constrained to a subset of parent’s resources

Prevents any process from overloading system

Parent process also passes along initialization data to the child

Physical and logical resources

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.41

Parent /Child processes:

Execution possibilities
——

-1 Parent executes concurrently with children

1 Parent waits until some or all of its children terminate

CS370: System Architecture & Software [Fall 2014] L3.42

Dept. Of Computer Science, Colorado State University

Parent /Child processes:

Address space possibilities
—

o Child is a duplicate of the parent

Same program and data as parent

1 Child has a new program loaded into it

CS370: System Architecture & Software [Fall 2014] L3.43
Dept. Of Computer Science, Colorado State University

PROCESS CREATION

Process creation in UNIX

Process created using fork ()
fork () copies parent’s memory image

Includes copy of parent’s address space

Parent and child continue execution at instruction after
fork ()

Child: Return code for fork () is @

Parent: Return code for fork () is the non-ZERO process-I1D
of new child

CS370: System Architecture & Software [Fall 2014] L3.45
Dept. Of Computer Science, Colorado State University

fork () results in the creation of 2 distinct programs

Parent Child
PID=abc PID=xyz
id =fork() _Resu_l‘rsm) '-;d —fork () Child will
W execute
from here
id = xyz here id = 0 here
CS370: System Architecture & Software [Fall 2014] L3.46

Dept. Of Computer Science, Colorado State University

Simple example:

#include <stdio.h>
#include <unistd.h>

int main(void) {
int x;
x=0;
fork () ;
x=1; <

Both parent and child
execute this after
returning from fork()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.47

Another example

#include <stdio.h>
#include <unistd.h>

Hello World

int main () { Hello World
printf (“Hello World\n”); Hello World
fork();
printf (“Hello World\n”);

}

#include <stdio.h>

#include <unistd.h>

int main () { Hello World
printf (“Hello World\n”) ; Hello World
1f (fork()==0) {

printf (“Hello World\n”);

}

J CS370: System Architecture & Software [Fall 2014]

Dept. Of Computer Science, Colorado State University

L3.48

What happens when fork () fails?
N

1 No child is created

0 fork () returns =1 and sets errno

o errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014] L3.49
Dept. Of Computer Science, Colorado State University

If a system is short on resources OR
if limit on number of processes breached

fork () sets errno to EAGAIN

Some typical numbers for Solaris

maxusers: 2 less than number of MB of physical memory up to 1024
Set up to 2048 manually in /etc/system file

mx nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014] L3.50
Dept. Of Computer Science, Colorado State University

Take different paths depending on what happens

with fork ()
—

childpid = fork();

1f (childpid == -1) {
perror (“Falled to fork”);
return 1;

J

1f (childpid == 0) {
child specific processing
} else {

parent specific processing

Child (any process) can use
getpid () to retrieve

its process ID

CS370: System Architecture & Software [Fall 2014] L3.51
Dept. Of Computer Science, Colorado State University

Creating a chain of processes
B

for (int 1=1; i < 4; 1++) {
if (childid = fork()) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L3.52
Dept. Of Computer Science, Colorado State University

Creating a process fan
B

for (int i=1; 1 < 4; i++) {
if ((childid = fork()) <= 0) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L3.53
Dept. Of Computer Science, Colorado State University

Creation of a process tree
B

int 1=0;
for (i=1; i < 4; i++) {
if ((childid = fork()) == -1) {

o _

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same 1

CS370: System Architecture & Software [Fall 201 4] L3.54
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2].

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2.
[Chapter 2, 3]

CS370: System Architecture & Software [Fall 2014] L3.55
Dept. Of Computer Science, Colorado State University

