
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESSES]

Computer Science
Colorado State University

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.2

Topics covered in this lecture

¨ Processes

¨ Interrupts & Context switches
¨ Operations on processes

¤ Creation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESSES

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.4

Process

¨ The oldest and most important abstraction that an operating system
provides

¨ Support the ability to have (psuedo) concurrent operation
¤ Even if there is only 1 CPU

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.5

All modern computers do several things at a time

¨ Browsing while e-mail client is fetching data

¨ Printing files while burning a CD-ROM

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.6

Multiprogramming

¨ CPU switches from process-to-process quickly

¨ Runs each process for 10s-100s of milliseconds

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.7

Multiprogramming and parallelism

¨ At any instant of time the CPU is running only one process

¨ In the course of 1 second, it is working on several of them

¨ Gives the illusion of parallelism
¤ Psuedoparallelism

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.8

A process is the unit of work in most systems

¨ Arose out of a need to compartmentalize and control concurrent
program executions

¨ A process is a program in execution

¨ Essentially an activity of some kind
¤ Has a program, input, output and a state.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.9

A process is just an instance of an executing program

¨ Conceptually each process has its own virtual CPU

¨ In reality, the CPU switches back-and-forth from process to process

¨ Processes are not affected by the multiprogramming
¤ Or relative speeds of different processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.10

An example scenario: 4 processes

A

B

C

D

A

B C

D

Four Program Counters

4 processes in
memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.11

Example scenario: 4 processes

Pr
oc

es
se

s

A

B

C

D

Time

• At any instant only one process executes
• Viewed over a long time, all processes have made
progress

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROGRAMS AND PROCESSES

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.13

Programs and processes

¨ Programs are passive, processes are active

¨ The difference between a program and a process is subtle, but crucial

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.14

Analogy of a culinary-minded computer
scientist baking cake for daughter

Analogy Mapping to real settings

Birthday cake recipe

Well-stocked kitchen:
flour, eggs, sugar, vanilla extract, etc

Computer scientist

Program (algorithm expressed
in a suitable notation)

Input Data

Processor (CPU)

• Process is the activity of
① Baker reading the recipe
② Fetching the ingredients
③ Baking the cake

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.15

Scientist’s son comes in screaming about a bee sting

¨ Scientist records where he was in the recipe
¤ State of current process is saved

¨ Gets out a first aid book, follows directions in it

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.16

In our example, the scientist has switched to a higher
priority process …

¨ FROM Baking
¤ Program is cake recipe

¨ TO administering medical care
¤ Program is first-aid book

¨ When the bee sting is taken care of
¤ Scientist goes back to where he was in the baking

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.17

Key concepts

¨ Process is an activity of some kind; it has a
¤ Program
¤ Input and Output
¤ State

¨ Single processor may be shared among several processes
¤ Scheduling algorithm decides when to stop work on one, and start work on

another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

HOW A PROGRAM BECOMES A PROCESS

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.19

How a program becomes a process

¨ When a program is executed, the OS copies the program image into
main memory

¨ Allocation of memory is not enough to make a program into a process

¨ Must have a process ID

¨ OS tracks IDs and process states to orchestrate system resources

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.20

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.21

Program in memory (I)

¨ Program image appears to occupy contiguous blocks of memory

¨ OS maps programs into non-contiguous blocks

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.22

Program in memory (II)

¨ Mapping divides the program into equal-sized pieces: pages

¨ OS loads pages into memory

¨ When processor references memory on page
¤ OS looks up page in table, and loads into memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.23

Advantages of the mapping process

¨ Allows large logical address space for stack and heap
¤ No physical memory used unless actually needed

¨ OS hides the mapping process
¤ Programmer views program image as logically contiguous

¤ Some pages may not reside in memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.24

Finite State Machine

¨ An initial state

¨ A set of possible input events

¨ A finite number of states

¨ Transitions between these states

¨ Actions

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.25

Process state transition diagram: When a process
executes it changes state

new

ready running

waiting

terminated

I/O or event wait

scheduler dispatch

interrupt

exitadmitted

I/O or event
completion

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.26

Each process is represented by a process control
block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

PCB is a repository for any
information that varies from
process to process.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.27

An example of CPU switching between processes

Save state into PCBA

Reload state from PCBB

Save state into PCBB

Reload state from PCBA

Process A Operating System Process B

idle

idle

idle

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.28

Scheduling Queues

¨ Job Queue: Contains all processes
¤ A newly created process enters here first

¨ Ready Queue
¤ Processes residing in main memory
¤ Ready and waiting to execute
¤ Typically a linked list

¨ Device Queue
¤ Processes waiting for a particular I/O device

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.29

Process scheduling

CPUReady
queue

I/O QueueI/O
I/O
request

Time slice
expired

Fork a
child

Wait for an
interrupt

interrupt
occurs

child
executes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.30

Throughout its lifetime a process migrates
among various scheduling queues

¨ Long-term scheduler: Batch systems
¤ Executes much less frequently
¤ Can take more time to decide what to select

¨ Short-term scheduler
¤ Select process for CPU frequently
¤ Selected process executes for few milliseconds
¤ Typically, execute once every 10-100 milliseconds

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.31

UNIX and Windows systems often have no long-term
scheduler

¨ Put every new process in memory for the short-term scheduler

¨ System stability depends on:
¤ Physical limitations: Number of terminals
¤ Self-adjusting nature of users

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.32

Somewhere in between: The medium term scheduler

¨ PREMISE: It can be advantageous to reduce degree of
multiprogramming
¤ Remove processes from memory
¤ Reduce active contention for the CPU

¨ Reintroduce processes later on: Swapping

¨ Swapping improves the process mix
¤ Cope with strains on resources such as memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTERRUPTS & CONTEXTS

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.34

Interrupts and Contexts

¨ Interrupt causes the OS to change CPU from its
current task to run a kernel routine

¨ Save current context so that suspend and resume are
possible

¨ Context is represented in the PCB
¤ Value of CPU registers
¤ Process state
¤ Memory management information

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.35

Context switch refers to switching from one process
to another

① Save state of current process

② Restore state of a different process

¨ Context switch time is pure overhead
¤ No useful work done while switching

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.36

Factors that impact the speed of the context switch

¨ Memory speed

¨ Number of registers to copy

¨ Special instructions for loading/storing registers

¨ Memory management: Preservation of address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

OPERATIONS ON PROCESSES

Processes execute concurrently
Can be created and deleted dynamically.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.38

Process Creation: A process may create new
processes during its execution

¨ Parent process: The creating process

¨ Child process: New process that was created
¤ May itself create processes: Process tree

¨ All processes have unique identifiers

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.39

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.40

Processes in UNIX

¨ init : Root parent process for all user processes

¨ Get a listing of processes with ps command
§ ps: List of all processes associated with user
§ ps –a : List of all processes associated with terminals
§ ps –A : List of all active processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.41

Resource sharing between a process and its
subprocess

¨ Child process may obtain resources directly from OS

¨ Child may be constrained to a subset of parent’s resources
¤ Prevents any process from overloading system

¨ Parent process also passes along initialization data to the child
¤ Physical and logical resources

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.42

Parent/Child processes:
Execution possibilities

¨ Parent executes concurrently with children

¨ Parent waits until some or all of its children terminate

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.43

Parent/Child processes:
Address space possibilities

¨ Child is a duplicate of the parent
¤ Same program and data as parent

¨ Child has a new program loaded into it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESS CREATION

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.45

Process creation in UNIX

¨ Process created using fork()
¤ fork() copies parent’s memory image

¤ Includes copy of parent’s address space

¨ Parent and child continue execution at instruction after
fork()
¤ Child: Return code for fork() is 0
¤ Parent: Return code for fork() is the non-ZERO process-ID

of new child

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.46

fork() results in the creation of 2 distinct programs

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will
execute
from here

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.47

Simple example:

#include <stdio.h>
#include <unistd.h>

int main(void) {
int x;
x=0;
fork();
x=1;
…

}

Both parent and child
execute this after
returning from fork()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.48

Another example
#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 fork();
 printf(“Hello World\n”);
 }

#include <stdio.h>
#include <unistd.h>

int main () {
 printf(“Hello World\n”);
 if (fork()==0) {
 printf(“Hello World\n”);
 }
}

Hello World
Hello World
Hello World

Hello World
Hello World

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.49

What happens when fork() fails?

¨ No child is created

¨ fork() returns -1 and sets errno
¤ errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.50

If a system is short on resources OR
if limit on number of processes breached

¨ fork() sets errno to EAGAIN

¨ Some typical numbers for Solaris
§ maxusers: 2 less than number of MB of physical memory up to 1024

n Set up to 2048 manually in /etc/system file

§ mx_nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.51

Take different paths depending on what happens
with fork()
childpid = fork();
if (childpid == -1) {

perror(“Failed to fork”);
return 1;

}
if (childpid == 0) {

….. child specific processing
} else {

….. parent specific processing
}

Child (any process) can use
getpid() to retrieve
its process ID

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.52

Creating a chain of processes

for (int i=1; i < 4; i++) {
 if (childid = fork()) {
 break;
 }
}

For each iteration:
Parent has non-ZERO childid
 So it breaks out

Child process
 Parent in NEXT iteration

1

2

3

4

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.53

Creating a process fan

for (int i=1; i < 4; i++) {
 if ((childid = fork()) <= 0) {
 break;
 }
}

Newly created process breaks out
Original process continues

4

1 2 3

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.54

Creation of a process tree
int i=0;
for (i=1; i < 4; i++) {
 if ((childid = fork()) == -1) {
 break;
 }
}

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same i

Both parent and child
 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L3.55

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2.
[Chapter 2, 3]

