

CS 370: OPERATING SYSTEMS

[PROCESSES]

Instructor: Louis-Noel Pouchet
Spring 2024

Computer Science
Colorado State University

** Lecture slides created by: SHRIDEEP PALICKARA

Topics covered in this lecture

- Operations on processes
 - Creation
 - Termination
- Process groups
- Buffer Overflows
 - One of the greatest security violations of all time

FORK()

All processes in UNIX are created using the fork() system call.

fork() results in the creation of 2 distinct programs

What happens when `fork()` fails?

- No child is created
- `fork()` returns **-1** and sets `errno`
 - `errno` is a global variable in `errno.h`

If a system is short on resources OR if limit on number of processes breached

- `fork()` sets `errno` to `EAGAIN`
- Some typical numbers for Solaris
 - `maxusers`: 2 less than number of MB of physical memory up to 1024
 - Set up to 2048 manually in `/etc/system` file
 - `mx_nprocs`: Default: $16 \times \text{maxusers} + 10$
 $\text{min} = 138, \text{max} = 30,000$

Take different paths depending on what happens with `fork()`

```
childpid = fork();
if (childpid == -1) {
    perror("Failed to fork");
    return 1;
}
if (childpid == 0) {
    .... child specific processing
} else {
    .... parent specific processing
}
```

Child (any process) can use **getpid()** to retrieve its process ID

Creating a chain of processes

```
for (int i=1; i < 4; i++) {  
    if ((childid = fork()) != 0) {  
        break;  
    }  
}
```

value of **i**
when process leaves loop

For each iteration:

Parent has non-ZERO childid
So it breaks out

Child process

Parent in NEXT iteration

Creating a process fan

```
for (int i=1; i < 4; i++) {  
    if ((childid = fork()) <= 0) {  
        break;  
    }  
}
```

Newly created process breaks out
Original process continues

value of **i**
when process leaves loop

Creation of a process tree

```
int i=0;  
for (i=1; i < 4; i++) {  
    if ((childid = fork()) == -1) {  
        break;  
    }  
}
```


Replacing a process's memory space with a new program

- Use `exec()` after the `fork()` in **one** of the two processes
- `exec()` does the following:
 - ① **Destroys** memory image of program containing the call
 - ② **Replaces** the invoking process's memory space with a new program
 - ③ Allows processes to go their **separate** ways

Replacing a process's memory space with a new program

- TRADITION:

- Child executes **new** program
 - Parent executes **original** code

Launching programs using the shell is a two-step process

- Example: user types **sort** on the shell

- ① Shell **forks** off a child process
- ② Child executes **sort**

But why is this the case?

- Allows the child to manipulate its file descriptors
 - After the `fork()`
 - But before the `exec()`
- Accomplish **redirection** of standard input, standard output, and standard error

A parent can move itself from off the ready queue and await child's termination

- Done using the `wait()` system call.
- When child process completes, parent process resumes

wait/waitpid allows caller to suspend execution till a child's status is available

- Process status availability
 - Most commonly after termination
 - Also available if process is stopped
- `waitpid(pid, *stat_loc, options)`
 - `pid == -1` : any child
 - `pid > 0` : specific child
 - `pid == 0` : any child in the same **process group**
 - `pid < -1` : any child in process group $abs(pid)$

Process creation in Windows

- **CreateProcess** handles
 - ① Process creation
 - ② Loading in a new program
- Parent and child's address spaces are **different** from the start

CreateProcess takes up to 10 parameters

- Program to be executed
- Command line parameters that feed program
- Security attributes
- Bits that control whether files are inherited
- Priority information
- Window to be created?

Process Management on Windows

- **WIN 32** has about 100 other functions
 - Managing & Synchronizing processes

PROCESS GROUPS

Process groups

- Process group is a **collection** of processes
- Each process has a **process group ID**
- Process group leader?
 - Process with `pid==pgid`
- `kill` treats negative `pid` as `pgid`
 - Sends signal to all constituent processes

Process Group IDs:

When a child is created with `fork()`

- ① **Inherits** parent's process group ID
- ② **Parent can change** group ID of child by using `setpgid`
- ③ **Child can give itself** new process group ID
 - ❑ Set process group ID = its process ID

Process groups

- It can contain processes which are:
 - ① Parent (and further ancestors)
 - ② Siblings
 - ③ Children (and further descendants)
- A process can only send **signals** to members of its process group

Example: Process tree in Solaris

Windows has no concept of a process hierarchy

- The only hint of a hierarchy?
 - When a process is created, parent is given a special *token* (called **handle**)
 - Use this to control the child
- However, parent is free to **pass** this token to some other process
 - Invalidates hierarchy

PROCESS TERMINATIONS

Process terminations

- Normal exit (voluntary)
 - E.g. successful compilation of a program
- Error exit (voluntary)
 - E.g. trying to compile a file that does not exist

Process terminations

- Fatal error (involuntary)
 - Program bug
 - Referencing non-existing memory, dividing by zero, etc
- Killed by another process (involuntary)
 - Execute system call telling OS to kill some other process
 - *Killer* must be authorized to do the *killing of the killee*
 - Unix: **kill** Win32: **TerminateProcess**

Process terminations:

This can be either normal or abnormal

- OS **deallocates** the process resources
 - Cancel pending timers and signals
 - Release virtual memory resources and locks
 - Close any open files
- Updates statistics
 - Process status and resource usage
- Notifies parent in response to a `wait()`

On termination a UNIX process DOES NOT fully release resources until a parent execute a `wait()` for it

- When the parent is not waiting when the child terminates?
 - The process becomes a **zombie**
- Zombie is an *inactive* process
 - Still has an entry in the process table
 - But is already dead, so cannot be killed easily!! ☺
- Zombie processes often come from error in programming: not properly waiting on all children created, changing the parent while children still active, etc.

Zombies and termination

- When a process terminates, its **orphaned** children and are **adopted** by a special process
 - This special system process is **init**
- Some more about the special process **init**
 - ① Has a pid of 1
 - ② Periodically executes `wait()` for children
 - ③ Children without a parent are adopted by init
 - Zombie processes are adopted by **init** after killing their parent, then cleaned by the periodic `wait()`

Normal termination of processes

- Return from main
- Implicit return from main
 - Function **falls off the end**
- Call to `exit`, `_Exit` or `_exit`

The C exit function

- Call user-defined exit handlers that were registered by the `atexit`
 - Invocation is in reverse order of registration
 - Execute the function pointed by `func` when process terminates

```
#include <stdlib.h>

int atexit(void (*func)())
```

Other things that the exit function does

- **Flushes** any open streams that have unwritten buffered data
- **Closes** all open streams
- **Remove** all temporary files
 - Created by `tmpfile()`

More info about the exit functions

- ❑ `_Exit` and `_exit` do not call user-defined exit handlers
 - ❑ POSIX does not specify what happens
- ❑ All functions (`exit`, `_Exit` and `_exit`) take a parameter: **status**
 - ❑ Indicates termination status of program
 - ❑ **0** is a **successful** termination
 - ❑ **Non-ZERO** values: Programmer defined **errors**

Abnormal termination

- Call abort
- Process signal that causes termination
 - Generated by an external event: keyboard Ctrl-C
 - Internal errors: Access illegal memory location
- Consequences
 - Core dump
 - User-installed exit handler not called

PROTECTION & SECURITY

Protection and Security

- Control access to system resources
 - Improve reliability
- Defend against use (misuse) by unauthorized or incompetent users
- Examples
 - Ensure process executes within its own space
 - Force processes to relinquish control of CPU
 - Device-control registers accessible only to the OS

Buffer overflows:

- When? Program copies data into variable for which it **has not allocated enough space**

```
char buf[80];
printf("Enter your first name:");
scanf("%s", buf);
```

If user enters string > 79 bytes ?

- The string AND string terminator do not fit.

Buffer Overflows: Fixing the example problem

```
char buf[80];
printf("Enter your first name:");
scanf("%79s", buf);
```

Program now reads at most 79 characters into buf

Automatic variables (local variables)

- Allocated/deallocated automatically when program flow enters or leaves the variable's scope
- Allocated on the program stack
- Stack grows from high-memory to low-memory

A process in memory

A rough anatomy of the program stack

A function that checks password: Susceptible to buffer overflow

```
int checkpass(void) {  
    int x;  
    char a[9];  
    x =0;  
    printf("Enter a short word: ");  
    scanf("%s", a);  
    if (strcmp(a, "mypass") == 0)  
        x =1;  
    return x;  
}
```

Stack layout for our unsafe function

Problems with buffer overflow

- Function will try to return to address space **outside** the program
 - Segmentation fault or core dump
 - Programs may lose unsaved data
 - In the OS, such a function can cause the OS to crash!

One of the greatest security violations of all time: November 2, 1988

- Exploited 2 bugs in Berkeley UNIX
- Worm: Self replication program
- Brought down most of the Sun and VAX systems on the internet within a few hours

Worm had two programs

- ① Bootstrap (99 lines of C, 11.c)
- ② Worm proper

- Both these programs compiled and executed on the system under attack

Synopsis of the worm's modus operandi

- ① Spread the bootstrap to machines
- ② Once the bootstrap runs:
 - Connects back to its origins
 - Download worm proper
 - Execute worm
- ③ Worm then attempts to spread bootstrap

Infecting new machines: Method 1 & 2

Violate trust

- Method 1: Run the remote shell *rsh*
 - Machines used to trust each other, and would willingly run it
 - Use this to upload the worm
- Method 2: *sendmail*

Method 3: Buffer overflow in the finger daemon (finger name@site)

- **finger** daemon runs all the time on sites, and responds to queries
- The worm called **finger** with a handcrafted 536-byte string as a parameter.
 - Overflowed daemon's buffer & overwrote its stack
- Daemon did not return to `main()`, but to a procedure in the 536-bit string on stack
- Next try to get a shell by executing `/bin/sh`

Far too many worms can grind things to a halt

- Break user passwords
- Check for copies of worm on machine
 - Exit if there is a copy 6 out of 7 times
 - This is in place to cope with a situation where sys admin starts fake worm to fool the real one
- Use of 1 in 7 caused far too worms
 - Machines ground to a halt

Consequences

- \$10K fine, 3 years probation and 400 hours community service
- Legal costs \$150,000

The contents of the slide-set are based on the following references

- *Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition. John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]*
- *Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall. ISBN: 013359162X/ 978-0133591620 [Chapter 2]*
- *Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]*
- *CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C by Rink Dewri. Feb 1, 2010. Spring 2010: Instructor: Shrideep Pallickara, GTA: Rinku Dewri*