CS 370: OPERATING SYSTEMS
[PROCESSES]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Operd’rions on processes
Creation

Termination
Process groups

Buffer Overflows

One of the greatest security violations of all time

CS370: System Architecture & Software [Fall 2014] L4.2
Dept. Of Computer Science, Colorado State University

FORK()

All processes in UNIX are created using the fork() system call.

fork () results in the creation of 2 distinct programs

Parent Child
PID=abc PID=xyz
ld =fork () _Resu_l‘rsm) '-;d —fork () Child will
W execute
from here
id = xyz here id = 0 here
CS370: System Architecture & Software [Fall 2014] L4.4

Dept. Of Computer Science, Colorado State University

What happens when fork () fails?
N

1 No child is created

0 fork () returns =1 and sets errno

o errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014] L4.5
Dept. Of Computer Science, Colorado State University

If a system is short on resources OR
if limit on number of processes breached

fork () sets errno to EAGAIN

Some typical numbers for Solaris

maxusers: 2 less than number of MB of physical memory up to 1024
Set up to 2048 manually in /etc/system file

mx nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014] L4.6
Dept. Of Computer Science, Colorado State University

Take different paths depending on what happens

with fork ()
—

childpid = fork();

1f (childpid == -1) {
perror (“Falled to fork”);
return 1;

J

1f (childpid == 0) {
child specific processing
} else {

parent specific processing

Child (any process) can use
getpid () to retrieve

its process ID

CS370: System Architecture & Software [Fall 2014] L4.7
Dept. Of Computer Science, Colorado State University

Creating a chain of processes
B

for (int 1=1; i < 4; 1++) {
if ((childid = fork())) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 201 4] L4.8
Dept. Of Computer Science, Colorado State University

Creating a process fan
B

for (int i=1; 1 < 4; i++) {
if ((childid = fork()) <= 0) {
break;

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 2014] L4.9
Dept. Of Computer Science, Colorado State University

Creation of a process tree
B

int 1=0;
for (i=1; i < 4; i++) {
if ((childid = fork()) == -1) {

o _

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same 1

CS370: System Architecture & Software [Fall 201 4] L4.10
Dept. Of Computer Science, Colorado State University

Replacing a process’s memory space with a new
program

Use exec () after the fork () in one of the two
processes

exec () does the following:

(1) Destroys memory image of program containing the
call

(2) Replaces the invoking process’s memory space with
new program

(3) Allows processes to go their separate ways

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.11

Replacing a process’s memory space with a new

Erogram
I

-1 TRADITION:
o1 Child executes new program

o1 Parent executes original code

CS370: System Architecture & Software [Fall 2014] L4.12
Dept. Of Computer Science, Colorado State University

Launching programs using the shell is a two-step

process
—

1 Example: user types sort on the shell

(1) Shell forks off a child process

(2) Child executes sort

CS370: System Architecture & Software [Fall 2014] L4.13
Dept. Of Computer Science, Colorado State University

But why is this the case?

Allows the child to manipulate its file descriptors
After the fork ()

But before the exec ()

Accomplish redirection of standard input, standard
output, and standard error

CS370: System Architecture & Software [Fall 2014] L4.14
Dept. Of Computer Science, Colorado State University

A parent can move itself from off the

ready queue and await child’s termination
-b

1 Done using the wait () system call.

1 When child process completes, parent process

parent
resumes
Return value = Non-ZERO

child PID

resumes

Return value=ZERO

CS370: System Architecture & Software [Fall 201 4] L4.15
Dept. Of Computer Science, Colorado State University

wait/waitpid allows caller to suspend
execution till a child’s status is available

Process status availability
Most commonly after termination

Also available if process is stopped

waltpid(pid, *stat loc, options)
pid== -1 : any child
pid > 0 :specific child
pid == : any child in the same process group

pid < -1 :any child in process group abs(pid)

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.16

Process creation in Windows

CreateProcess handles
(1) Process creation

(2) Loading in a new program

Parent and child’s address spaces are different from
the start

CS370: System Architecture & Software [Fall 2014] L4.17
Dept. Of Computer Science, Colorado State University

CreateProcess takes up to 10 parameters

Program to be executed

Command line parameters that feed program
Security attributes

Bits that control whether files are inherited
Priority information

Window to be created?

CS370: System Architecture & Software [Fall 2014] L4.18
Dept. Of Computer Science, Colorado State University

Process Management on Windows

WIN 32 has about 100 other functions

Managing & Synchronizing processes

CS370: System Architecture & Software [Fall 2014] L4.19
Dept. Of Computer Science, Colorado State University

PROCESS GROUPS

Process groups

Process group is a collection of processes
Each process has a process group ID

Process group leader?

Process with p1d==pgid

kill treats negative pid as pgid

Sends signal to all constituent processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.21

Process Group IDs:
When a child is created with fork ()

(1) Inherits parent’s process group 1D

(2) Parent can change group ID of child by using
setpgid

(3) Child can give itself new process group 1D

Set process group ID = its process ID

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.22

Process groups

It can contain processes which are:

(1) Parent (and further ancestors)

(2) Siblings
(3) Children (and further descendants)

A process can only send signals to members of its process group

CS370: System Architecture & Software [Fall 2014] L4.23
Dept. Of Computer Science, Colorado State University

Example: Process tree in Solaris
—

CS370: System Architecture & Software [Fall 2014] L4.24
Dept. Of Computer Science, Colorado State University

Windows has no concept of a process hierarchy

The only hint of a hierarchy?

When a process is created, parent is given a special token (called handle)
Use this to control the child

However, parent is free to pass this token to some other process

Invalidates hierarchy

CS370: System Architecture & Software [Fall 2014] L4.25
Dept. Of Computer Science, Colorado State University

PROCESS TERMINATIONS

Process terminations

Normal exit (voluntary)

E.g. successful compilation of a program

Error exit (voluntary)

E.g. trying to compile a file that does not exist

CS370: System Architecture & Software [Fall 2014] L4.27
Dept. Of Computer Science, Colorado State University

Process terminations

Fatal error (involuntary)

Program bug

Referencing non-existing memory, dividing by zero, etc

Killed by another process (involuntary)

Execute system call telling OS to kill some other process

Killer must be authorized to do the killing of the killee
Unix: kill Win32: TerminateProcess

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.28

Process terminations:
This can be either normal or abnormal

OS deallocates the process resources
Cancel pending timers and signals

Release virtual memory resources and locks

Close any open files

Updates statistics

Process status and resource usage

Notifies parent in response to a wait ()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.29

On termination a UNIX process DOES NOT fully release resources
until a parent execute a wait() for it

When the parent is not waiting when the child terminates?

The process becomes a zombie

Zombie is an inactive process
Still has an entry in the process table

But is already dead, so cannot be killed easily!l ©

ZLombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still
active, etc.

CS370: System Architecture & Software [Fall 2014] L4.30
Dept. Of Computer Science, Colorado State University

Zombies and termination

When a process terminates, its orphaned children and
are adopted by a special process

This special system process is init

Some more about the special process 1nit
(1) Hasapidof1

(2) Periodically executes wait() for children

(3) Children without a parent are adopted by init

B Zombie processes are adopted by init after killing their
parent, then cleaned by the periodic wait()

CS370: System Architecture & Software [Fall 2014] L4.31
Dept. Of Computer Science, Colorado State University

Normal termination of processes

S S
1 Return from main

o Implicit return from main

= Function falls off the end

0 Callto exit, Exitor exit

CS370: System Architecture & Software [Fall 2014] L4.32
Dept. Of Computer Science, Colorado State University

The C ex it function

Call user-defined exit handlers that were registered by the atexit

Invocation is in reverse order of registration

Execute the function pointed by func when process terminates

#include <stdlib.h>

int atexit (void (*func) ())

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.33

Other things that the ex1t function does

Flushes any open streams that have unwritten buffered data
Closes all open streams

Remove all temporary files
Created by tmpfile ()

CS370: System Architecture & Software [Fall 2014] L4.34
Dept. Of Computer Science, Colorado State University

More info about the exit functions

_Exit and exit do not call user-defined exit handlers

POSIX does not specify what happens

All functions (exit, Exit and exit)take a parameter: status
Indicates termination status of program

0 is a successful termination

Non-ZERO values: Programmer defined errors

CS370: System Architecture & Software [Fall 2014] L4.35
Dept. Of Computer Science, Colorado State University

Abnormal termination

Call abort

Process signal that causes termination
Generated by an external event: keyboard Ctr1-C

Internal errors: Access illegal memory location

Consequences
Core dump

User-installed exit handler not called

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.36

PROTECTION & SECURITY

Protection and Security

Control access to system resources

Improve reliability

Defend against use (misuse) by unauthorized or
incompetent users

Examples

Ensure process executes within its own space
Force processes to relinquish control of CPU

Device-control registers accessible only to the OS

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.38

Buffer overflows:

When¢ Program copies data into variable for which it has not
allocated enough space

char buf[380];
printf (“Enter your first name:”");

scant (“ss”, buf);

If user enters string > 79 bytes ¢
- The string AND string terminator do not fit.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.39

Buffer Overflows:

Fixing th | bl
__ Fixing the example problem

char buf[80];
printf (“Enter your first name:”);
scanf (“79%s”, Dbuf);

Program now reads at most 79 characters into buf

CS370: System Architecture & Software [Fall 2014] L4.40
Dept. Of Computer Science, Colorado State University

Automatic variables (local variables)

Allocated /deallocated automatically when program
flow enters or leaves the variable’s scope

Allocated on the program stack

Stack grows from high-memory to low-memory

CS370: System Architecture & Software [Fall 2014] L4.41
Dept. Of Computer Science, Colorado State University

A process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtimes}

{Global variables}

{Program code}

CS370: System Architecture & Software [Fall 201 4] L4.42
Dept. Of Computer Science, Colorado State University

A rough anatomy of the program stack
N

base 1024

To align things on the

& word boundary

top 1000

CS370: System Architecture & Software [Fall 201 4] L4.43
Dept. Of Computer Science, Colorado State University

A function that checks password: Susceptible to

buffer overflow
e

int checkpass (void) {
int x;
char al9];
x =0;
printf (“Enter a short word: ”);
scanf (“%$s”, a);

1f (strcmp(a, “mypass”) == 0)
x =1;
return x;
}
CS370: System Architecture & Software [Fall 2014] L4.44

Dept. Of Computer Science, Colorado State University

Stack layout for our unsafe function
B

1024
base A long password may

1020 overwrite this too

1016

Overflow can
change the value of x 1012
1009
top 1000

CS370: System Architecture & Software [Fall 201 4]

L4.45
Dept. Of Computer Science, Colorado State University

Problems with buffer overflow

Function will try to return to address space outside the program
Segmentation fault or core dump
Programs may lose unsaved data

In the OS, such a function can cause the OS to crash!

CS370: System Architecture & Software [Fall 2014] L4.46
Dept. Of Computer Science, Colorado State University

One of the greatest security violations of all time:

November 2, 1988

Exploited 2 bugs in Berkeley UNIX

Worm: Self replication program

Bought down most of the Sun and VAX systems on the internet within a

few hours

CS370: System Architecture & Software [Fall 2014] L4.47
Dept. Of Computer Science, Colorado State University

Worm had two programs

(1) Booftstrap (99 lines of C, 11.c)
(2) Worm proper

Both these programs compiled and executed on the system under
attack

CS370: System Architecture & Software [Fall 2014] L4.48
Dept. Of Computer Science, Colorado State University

Synopsis of the worm’s modus operandi

(1) Spread the bootstrap to machines

(2) Once the bootstrap runs:
Connects back to its origins
Download worm proper

Execute worm

(3) Worm then attempts to spread bootstrap

CS370: System Architecture & Software [Fall 2014] L4.49
Dept. Of Computer Science, Colorado State University

Infecting new machines: Method 1 & 2
Violate trust

Method 1: Run the remote shell rsh

Machines used to trust each other, and would willingly run it

Use this to upload the worm

Method 2: sendmail

CS370: System Architecture & Software [Fall 2014] L4.50
Dept. Of Computer Science, Colorado State University

Method 3: Buffer overflow in the f1nger daemon
(finger name @site)
finger daemon runs all the time on sites, and responds to queries

The worm called £inger with a handcrafted 536-byte string as a
parameter.

Overflowed daemon’s buffer & overwrote its stack

Daemon did not return to main (), but to a procedure in the 536-bit
string on stack

Next try to get a shell by executing /bin/sh

CS370: System Architecture & Software [Fall 2014] L4.51
Dept. Of Computer Science, Colorado State University

Far too many worms can grind things to a halt

Break user passwords

Check for copies of worm on machine

Exit if there is a copy 6 out of 7 times

This is in place to cope with a situation where sys admin starts fake worm to fool the
real one

Use of 1 in 7 caused far too worms

Machines ground to a halt

CS370: System Architecture & Software [Fall 2014] L4.52
Dept. Of Computer Science, Colorado State University

Consequences

$10K fine, 3 years probation and 400 hours community service

Legal costs $150,000

CS370: System Architecture & Software [Fall 2014] L4.53
Dept. Of Computer Science, Colorado State University

The contents of the slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620 [Chapter 2]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C

by Rink Dewri. Feb 1, 2010. Spring 2010: Instructor: Shrideep Pallickara, GTA: Rinku
Dewri

CS370: System Architecture & Software [Fall 2014] L4.54
Dept. Of Computer Science, Colorado State University

