
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESSES]

Computer Science
Colorado State University

L4.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.2

Topics covered in this lecture

¨ Operations on processes
¤ Creation
¤ Termination

¨ Process groups

¨ Buffer Overflows
¤ One of the greatest security violations of all time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FORK()
All processes in UNIX are created using the fork() system call.

L4.3

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.4

fork() results in the creation of 2 distinct programs

Parent
PID=abc

…
…
id =fork()
…
…

Child
PID=xyz

…
…
id =fork()
…
…

Results in

id = xyz here id = 0 here

Child will
execute
from here

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.5

What happens when fork() fails?

¨ No child is created

¨ fork() returns -1 and sets errno
¤ errno is a global variable in errno.h

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.6

If a system is short on resources OR
if limit on number of processes breached

¨ fork() sets errno to EAGAIN

¨ Some typical numbers for Solaris
§ maxusers: 2 less than number of MB of physical memory up to 1024

n Set up to 2048 manually in /etc/system file

§ mx_nprocs: Default: 16 x maxusers + 10
min = 138, max = 30,000

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.7

Take different paths depending on what happens
with fork()
childpid = fork();
if (childpid == -1) {

perror(“Failed to fork”);
return 1;

}
if (childpid == 0) {

….. child specific processing
} else {

….. parent specific processing
}

Child (any process) can use
getpid() to retrieve
its process ID

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.8

Creating a chain of processes

for (int i=1; i < 4; i++) {
 if ((childid = fork())) {
 break;
 }
}

For each iteration:
Parent has non-ZERO childid
 So it breaks out

Child process
 Parent in NEXT iteration

1

2

3

4

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.9

Creating a process fan

for (int i=1; i < 4; i++) {
 if ((childid = fork()) <= 0) {
 break;
 }
}

Newly created process breaks out
Original process continues

4

1 2 3

value of i
when process leaves loop

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.10

Creation of a process tree
int i=0;
for (i=1; i < 4; i++) {
 if ((childid = fork()) == -1) {
 break;
 }
}

Original process has a 0 label
Value of i when created
Lower case letters: Process created with same i

Both parent and child
 go on to create processes in the next iteration0

2a 2b

1

3d3c3a 3b

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.11

Replacing a process’s memory space with a new
program

¨ Use exec() after the fork() in one of the two
processes

¨ exec() does the following:
① Destroys memory image of program containing the

call
② Replaces the invoking process’s memory space with a

new program
③ Allows processes to go their separate ways

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.12

Replacing a process’s memory space with a new
program

¨ TRADITION:
¤ Child executes new program
¤ Parent executes original code

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.13

Launching programs using the shell is a two-step
process

¨ Example: user types sort on the shell

① Shell forks off a child process

② Child executes sort

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.14

But why is this the case?

¨ Allows the child to manipulate its file descriptors
¤ After the fork()
¤ But before the exec()

¨ Accomplish redirection of standard input, standard
output, and standard error

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.15

A parent can move itself from off the
ready queue and await child’s termination

¨ Done using the wait() system call.
¨ When child process completes, parent process

resumes

fork()

wait()

exec(
)

exit()

resumes
parent

child

Return value = Non-ZERO
 child PID

Return value=ZERO

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.16

wait/waitpid allows caller to suspend
execution till a child’s status is available

¨ Process status availability
¤ Most commonly after termination
¤ Also available if process is stopped

¨ waitpid(pid, *stat_loc, options)
§ pid== -1 : any child
§ pid > 0 : specific child
§ pid == 0 : any child in the same process group
§ pid < -1 :any child in process group abs(pid)

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.17

Process creation in Windows

¨ CreateProcess handles

① Process creation

② Loading in a new program

¨ Parent and child’s address spaces are different from
the start

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.18

CreateProcess takes up to 10 parameters

¨ Program to be executed
¨ Command line parameters that feed program
¨ Security attributes
¨ Bits that control whether files are inherited
¨ Priority information
¨ Window to be created?

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.19

Process Management on Windows

¨ WIN 32 has about 100 other functions
¤ Managing & Synchronizing processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESS GROUPS
L4.20

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.21

Process groups

¨ Process group is a collection of processes

¨ Each process has a process group ID

¨ Process group leader?
¤ Process with pid==pgid

¨ kill treats negative pid as pgid
¤ Sends signal to all constituent processes

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.22

Process Group IDs:
When a child is created with fork()

① Inherits parent’s process group ID

② Parent can change group ID of child by using
setpgid

③ Child can give itself new process group ID
¤ Set process group ID = its process ID

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.23

Process groups

¨ It can contain processes which are:
① Parent (and further ancestors)

② Siblings

③ Children (and further descendants)

¨ A process can only send signals to members of its process group

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.24

Example: Process tree in Solaris
Sched
pid=0

pageout
pid=2

init
pid=1

fsflush
pid=3

inetd

Xsession
telnet

csh

emacschrome

sdt_shel

csh

catls

dtlogin

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.25

Windows has no concept of a process hierarchy

¨ The only hint of a hierarchy?
¤ When a process is created, parent is given a special token (called handle)

n Use this to control the child

¨ However, parent is free to pass this token to some other process
¤ Invalidates hierarchy

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESS TERMINATIONS
L4.26

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.27

Process terminations

¨ Normal exit (voluntary)
¤ E.g. successful compilation of a program

¨ Error exit (voluntary)
¤ E.g. trying to compile a file that does not exist

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.28

Process terminations

¨ Fatal error (involuntary)
¤ Program bug

n Referencing non-existing memory, dividing by zero, etc

¨ Killed by another process (involuntary)
¤ Execute system call telling OS to kill some other process
¤ Killer must be authorized to do the killing of the killee
¤ Unix: kill Win32: TerminateProcess

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.29

Process terminations:
This can be either normal or abnormal

¨ OS deallocates the process resources
¤ Cancel pending timers and signals
¤ Release virtual memory resources and locks
¤ Close any open files

¨ Updates statistics
¤ Process status and resource usage

¨ Notifies parent in response to a wait()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.30

On termination a UNIX process DOES NOT fully release resources
until a parent execute a wait() for it

¨ When the parent is not waiting when the child terminates?
¤ The process becomes a zombie

¨ Zombie is an inactive process
¤ Still has an entry in the process table
¤ But is already dead, so cannot be killed easily!! J

¨ Zombie processes often come from error in programming: not properly
waiting on all children created, changing the parent while children still
active, etc.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.31

Zombies and termination

¨ When a process terminates, its orphaned children and
are adopted by a special process
¤ This special system process is init

¨ Some more about the special process init
① Has a pid of 1

② Periodically executes wait() for children

③ Children without a parent are adopted by init
n Zombie processes are adopted by init after killing their

parent, then cleaned by the periodic wait()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.32

Normal termination of processes

¨ Return from main

¨ Implicit return from main
¤ Function falls off the end

¨ Call to exit, _Exit or _exit

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.33

The C exit function

¨ Call user-defined exit handlers that were registered by the atexit
¤ Invocation is in reverse order of registration
¤ Execute the function pointed by func when process terminates

#include <stdlib.h>

int atexit(void (*func)())

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.34

Other things that the exit function does

¨ Flushes any open streams that have unwritten buffered data

¨ Closes all open streams

¨ Remove all temporary files
¤ Created by tmpfile()

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.35

More info about the exit functions

¨ _Exit and _exit do not call user-defined exit handlers
¤ POSIX does not specify what happens

¨ All functions (exit, _Exit and _exit) take a parameter: status
¤ Indicates termination status of program
¤ 0 is a successful termination
¤ Non-ZERO values: Programmer defined errors

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.36

Abnormal termination

¨ Call abort

¨ Process signal that causes termination
¤ Generated by an external event: keyboard Ctrl-C
¤ Internal errors: Access illegal memory location

¨ Consequences
¤ Core dump
¤ User-installed exit handler not called

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROTECTION & SECURITY
L4.37

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.38

Protection and Security

¨ Control access to system resources
¤ Improve reliability

¨ Defend against use (misuse) by unauthorized or
incompetent users

¨ Examples
¤ Ensure process executes within its own space
¤ Force processes to relinquish control of CPU
¤ Device-control registers accessible only to the OS

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.39

Buffer overflows:

¨ When? Program copies data into variable for which it has not
allocated enough space

char buf[80];
printf(“Enter your first name:”);
scanf(“%s”, buf);

If user enters string > 79 bytes ?
- The string AND string terminator do not fit.

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.40

Buffer Overflows:
Fixing the example problem

char buf[80];
printf(“Enter your first name:”);
scanf(“79%s”, buf);

Program now reads at most 79 characters into buf

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.41

Automatic variables (local variables)

¨ Allocated/deallocated automatically when program
flow enters or leaves the variable’s scope

¨ Allocated on the program stack

¨ Stack grows from high-memory to low-memory

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.42

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

0

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.43

A rough anatomy of the program stack

base

top

1024

1000
{Local variables}

{Unused gaps may exist}

{return address}

To align things on the
word boundary

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.44

A function that checks password: Susceptible to
buffer overflow

int checkpass(void) {
int x;
char a[9];
x =0;
printf(“Enter a short word: ”);
scanf(“%s”, a);
if (strcmp(a, “mypass”) == 0)

x =1;
return x;

}

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.45

Stack layout for our unsafe function

base

top

1024

1000

a

Unused

return address

saved frame pointer
1020

1016
x

1012

1009

Overflow can
change the value of x

A long password may
overwrite this too

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.46

Problems with buffer overflow

¨ Function will try to return to address space outside the program
¤ Segmentation fault or core dump
¤ Programs may lose unsaved data
¤ In the OS, such a function can cause the OS to crash!

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.47

One of the greatest security violations of all time:
November 2, 1988

¨ Exploited 2 bugs in Berkeley UNIX

¨ Worm: Self replication program

¨ Bought down most of the Sun and VAX systems on the internet within a
few hours

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.48

Worm had two programs

① Bootstrap (99 lines of C, l1.c)

② Worm proper

¨ Both these programs compiled and executed on the system under
attack

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.49

Synopsis of the worm’s modus operandi

① Spread the bootstrap to machines

② Once the bootstrap runs:
¤ Connects back to its origins
¤ Download worm proper
¤ Execute worm

③ Worm then attempts to spread bootstrap

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.50

Infecting new machines: Method 1 & 2
Violate trust

¨ Method 1: Run the remote shell rsh
¤ Machines used to trust each other, and would willingly run it
¤ Use this to upload the worm

¨ Method 2: sendmail

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.51

Method 3: Buffer overflow in the finger daemon
(finger name@site)

¨ finger daemon runs all the time on sites, and responds to queries

¨ The worm called finger with a handcrafted 536-byte string as a
parameter.
¤ Overflowed daemon’s buffer & overwrote its stack

¨ Daemon did not return to main(), but to a procedure in the 536-bit
string on stack

¨ Next try to get a shell by executing /bin/sh

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.52

Far too many worms can grind things to a halt

¨ Break user passwords

¨ Check for copies of worm on machine
¤ Exit if there is a copy 6 out of 7 times

n This is in place to cope with a situation where sys admin starts fake worm to fool the
real one

¨ Use of 1 in 7 caused far too worms
¤ Machines ground to a halt

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.53

Consequences

¨ $10K fine, 3 years probation and 400 hours community service

¨ Legal costs $150,000

CS370: System Architecture & Software [Fall 2014]
Dept. Of Computer Science, Colorado State University

L4.54

The contents of the slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620 [Chapter 2]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapters 2 & 3]

¨ CS 451: Operating Systems (Colorado State University) Help Session 2B: Forking in C
by Rink Dewri. Feb 1, 2010. Spring 2010: Instructor: Shrideep Pallickara, GTA: Rinku
Dewri

