CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture
N

- Briefly, microkernels

1 Inter Process Communications

o Messaging

o Pipes

- Threads

CS370: Operating Systems L6.2
Dept. Of Computer Science, Colorado State University

MICROKERNELS

The Microkernel Approach [1/2]

Mid 1980’s at Carnegie Mellon University
Mach

Structure OS by removing non-essential components from the kernel

Implement other things as system /user programs

Provide minimal process and memory management

Main function: Provide communication facility between client and
services

Message passing

CS370: Operating Systems L6.4
Dept. Of Computer Science, Colorado State University

The Microkernel Approach [2/2]

Traditionally all the layers went in the kernel

But this is not really necessary

In fact, it may be best to put as little as possible in the kernel

Bugs in the kernel can bring down the system instantly

Contrast this with setting up user processes to have less power

A bug may not be fatal

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.5

Getting there ...

Achieve high reliability by splitting OS in small, well-defined modules
One of these, the microkernel, runs in the kernel mode

The rest as relatively powerless ordinary user processes

Running each device driver as a separate process?

Bugs cannot crash the entire system

CS370: Operating Systems L6.6
Dept. Of Computer Science, Colorado State University

Communications in the micro-kernel

Client and service never interact directly
Indirect communications by exchanging messages with the microkernel

Advantages
Easier to port to different hardware

More security and reliability

Most services run as user, rather than kernel

Mac OS X kernel based on Mach microkernel
XNU: 2.5 Mach, 4.3 BSD and Obijective-C for device drivers

CS370: Operating Systems L6.7
Dept. Of Computer Science, Colorado State University

Increased system function overhead can degrade
microkernel performance

Windows NT: First release, layered microkernel

Lower performance than Windows 95

Windows NT 4.0 solution

Move layers from user space to kernel space

By the time Windows XP came around

More monolithic than microkernel

CS370: Operating Systems L6.8
Dept. Of Computer Science, Colorado State University

IPC communications: Mach

Tasks are similar to processes

Multiple threads of control

Most communications in Mach use messages
System calls
Inter-task information

Sent and received from mailboxes: ports

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.9

Mach: Task creation and mailboxes

Task creation results in 2 more mailboxes
(1) Kernel mailbox: Used by kernel to communicate with task

(2) Notify mailbox: Notification of event occurrences

System calls for communications

msg send (), msg receive () and msg rpc ()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.10

Mach:
Mailbox creation

Done using the port allocate ()

Allocate space for message queue
MAX_SIZE default is 8 messages

Creator is owner and can also receive

Only task can own/receive from mailbox

BUT these rights can be sent to other tasks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.11

Mach:
Message queue ordering

FIFO guarantees for messages from same sender

Messages from multiple senders queued in any order

CS370: Operating Systems L6.12
Dept. Of Computer Science, Colorado State University

Mach: Send and receive operations

If mailbox is not full, copy message

If mailbox is FULL

(1 Wait indefinitely till there’s room
2 Woait at most n milliseconds

Don’t wait, simply return
3) Temporarily cache the message

Only 1 message to a full mailbox can be pending for a given sending thread

Receive can specify mailbox or mailbox set

CS370: Operating Systems L6.13
Dept. Of Computer Science, Colorado State University

Another idea related to microkernels

Put mechanisms for doing something in the kernel

But not the policy

Example: Scheduling
Policy of assigning priorities to processes can be done in the user-mode

The mechanism to look for the highest priority process and schedule it is in
the kernel

CS370: Operating Systems L6.14
Dept. Of Computer Science, Colorado State University

MESSAGE PASSING IN WINDOWS XP

Message passing in Windows XP

Called the local procedure call (LPC) facility

Communications provided by port objects

Give applications a way to set up communication channels

Uses two types of message passing
Small messages (max 256 bytes)

Large messages

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.16

Connection ports are named objects visible to all

processes [LPC in XP]

CLIENT

Connection
request > Connection Handle >
Port
EHandle Client Communication
Port
T ‘1' Handl
Server ancie >
Communication Port
Shared Section
<= —> Object <= —=>

(«<=256 bytes)

SERVER

Sets up a region of shared memory

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

L6.17

Windows XP message passing
Small messages

Use port’s internal message queue as intermediate
storage

Copy messages from one process to another

CS370: Operating Systems L6.18
Dept. Of Computer Science, Colorado State University

Windows XP message passing:
Large messages

Send message through section object

Sets up shared memory

Section object info sent as a small message

Contains pointer + size information about section object

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.19

Windows XP message passing:
Large messages

2 ends of communications set up section objects if the request or reply
is large

Complicated, but avoids data copying

Callbacks used if the endpoints are busy

Allows delayed responses

Allows asynchronous message handling

CS370: Operating Systems L6.20
Dept. Of Computer Science, Colorado State University

PIPES

Pipes

Pipes serve as a conduit for communications between processes

One of the first IPC implementation mechanisms

CS370: Operating Systems L6.22
Dept. Of Computer Science, Colorado State University

Issues to consider when implementing a pipe

Unidirectional or bidirectional

If it is bidirectional
Half duplex: Data can travel one way at a time

Full duplex: Data traversal in both directions simultaneously

Must a relationship exist between the endpoints?

e.g parent-child

Range of communications

Intra-machine or Over the network

CS370: Operating Systems L6.23
Dept. Of Computer Science, Colorado State University

Pipes in practice
Set up pipe between commands

ls | more

Output of 1s delivered as input to more

CS370: Operating Systems L6.24
Dept. Of Computer Science, Colorado State University

Ordinary (anonymous) pipes

Producer writes to one end of the pipe

Consumer reads from the other end

In UN
fd
fd

X: pipe (1nt fd[]) to create pipe

(0] is the read-end

[1] is the write-end

Treats a pipe as a special type of file

Access with read () and write () system calls

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.25

A child inherits open files from its parent

Since a pipe is a special type of file, the pipe is also
inherited.

Parent and child close unused portions of the pipe

Child
Parent £d[0]
fd[1l]
fd[1l]
£d[0] E— —
—>
<€
fd[0] is the read-end
fd[1l] is the write-end
CS370: Operating Systems L6.26

Dept. Of Computer Science, Colorado State University

Pipes: Example

TR,
if (pipe(fd) == -1) {
/* creation failed */

}
pid = fork();

if (pid > 0) {
close (fd[READ END]) ;
write (fd[WRITE END], write msg,..);

4

if (pid == 0) {
close (£d[WRITE END]) ;
read (£fd[READ END], ..);

CS370: Operating Systems L6.27
Dept. Of Computer Science, Colorado State University

Windows Ordinary Pipes:
These are unidirectional

Anonymous Pipes

Child does not automatically inherit pipe
Programmer specifies attributes a child will inherit
Initialize SECURITY ATTRIBUTES to allow handles to be inherited
Redirect child’s standard | /O handles to read /write handle of pipe
Pipes are half duplex

CS370: Operating Systems L6.28
Dept. Of Computer Science, Colorado State University

Some other things about ordinary pipes on UNIX
and Windows

Requires parent-child relationship

MUST be on same machine

Exist only when processes communicate with one another

Upon termination, pipe ceases to exist

CS370: Operating Systems L6.29
Dept. Of Computer Science, Colorado State University

Named Pipes

NO parent-child relationship needed

Once named pipe is established

Several processes can use it for communications

Continues to exist after communicating processes have finished.

CS370: Operating Systems L6.30
Dept. Of Computer Science, Colorado State University

Named Pipes on UNIX/Windows

Referred to as FIFO on UNIX systems, manipulated like a file
Created with mkfifo ()

Manipulated with open (), read (), write () etc

FIFO: half-duplex transmissions on Linux
If data must go both ways: use 2 FIFOs

Sockets can be used for inter-machine communications

Windows: Full duplex communications

CS370: Operating Systems L6.31
Dept. Of Computer Science, Colorado State University

COMMUNICATIONS IN CLIENT-SERVER
SYSTEMS

Remote Procedure Calls

Abstracts procedure call mechanisms for use with network endpoints
Based on the request/reply model

Message is addressed to the RPC daemon listening to a port for
incoming traffic

Contains identifiers of function to execute

Parameters to pass to the function

CS370: Operating Systems L6.33
Dept. Of Computer Science, Colorado State University

Remote Procedure Calls

Application makes CALL into a procedure

May be local or remote and
BLOCKS until call returns

Origins:
RFC 707 (1976).
First use by Xerox 1981 (Courier)
1984 paper by Birell and Nelson

CS370: Operating Systems L6.34
Dept. Of Computer Science, Colorado State University

RPCs are slightly more complicated than local
procedure calls

Network between the Calling process and Called process can
Limit message sizes,
Reorder them or

Lose them

Computers hosting processes may differ

Architectures and data representation formats.

CS370: Operating Systems L6.35
Dept. Of Computer Science, Colorado State University

Resolving big-endian/little endian issues

Big endian: Store MSB first
Little endian: Store LSB first

Machine independent data representation

XDR: eXternal Data Representation

Client side parameter marshalling
Convert machine-dependent data to XDR

Server side

Convert XDR data to machine dependent representation

CS370: Operating Systems L6.36
Dept. Of Computer Science, Colorado State University

RPC mechanism
—

aller
Return A Return
rguments
Arguments Valve 9 Value
/
Client
Request Request Reply
CS370: Operating Systems L6.37

Dept. Of Computer Science, Colorado State University

Distributed Objects

RPC based on distributed objects with an inheritance mechanism

Create, invoke or destroy remote objects, and interact as if they are
local objects

Data sent over network:
References: class, object and method

Method arguments
CORBA early1990s, RMI mid-late 90s

CS370: Operating Systems L6.38
Dept. Of Computer Science, Colorado State University

Distributed Objects in CORBA defined using the

Interface Definition Language
-*

CLIENT Obiject ' Obiject .
Implementation Implementati
IDL IDL
L Skeleton Skeleton
OBJECT REQUEST BROKER (ORB) OBJECT R(EC?R%E;T BRC%Q

GIOP/IIOP

General Inter-ORB Protocol/Internet Inter-Orb Protocol

CS370: Operating Systems L6.39
Dept. Of Computer Science, Colorado State University

THREADS

Some background on threading

Exploited to make programs easier to write

Split programs into separate tasks

Took off when GUIs became standard

User perceives better performance

Programs did not run faster: this was an illusion

Dedicated thread to service input OR display output

Growing trend to exploit available processors on a machine

CS370: Operating Systems L6.41
Dept. Of Computer Science, Colorado State University

What are threads?

Miniprocesses or lightweight processes

Why would anyone want to have a kind of process within a process?

CS370: Operating Systems L6.42
Dept. Of Computer Science, Colorado State University

The main reason for using threads

In many applications multiple activities are going on at once

Some of these may block from time to time

Decompose application into multiple sequential threads

Running in quasi-parallel

CS370: Operating Systems L6.43
Dept. Of Computer Science, Colorado State University

Isn’t this precisely the argument for processes?

Yes, but there is a new dimension ...

Threads have the ability to share the address space (and all of its
data) among themselves

For several applications

Processes (with their separate address spaces) don’t work

CS370: Operating Systems L6.44
Dept. Of Computer Science, Colorado State University

Threads are also lighter weight than processes

Faster to create and destroy than processes
In many systems thread creation is 10-100 times faster

When number of threads needed changes dynamically and rapidly?
Lightweight property is very useful

CS370: Operating Systems L6.45
Dept. Of Computer Science, Colorado State University

Threads:
The performance argument

When all threads are CPU bound all the time?

Additional threads would likely yield no performance gain

But when there is substantial computing and substantial I/O
Having threads allows activities to overlap

Speeds up the application possibly

CS370: Operating Systems L6.46
Dept. Of Computer Science, Colorado State University

AN EXAMPLE APPLICATION
WORD PROCESSOR

Our Word Processor

Displays document being created on the screen

Document formatted exactly as it will appear on a printed page

CS370: Operating Systems L6.48
Dept. Of Computer Science, Colorado State University

Let’s take a look at someone editing a 800-page
document

User deletes one sentence from Page-1 of a
800-page document

Now user wants to make a change on page 600

Either go to that page or search for term that only appears there

CS370: Operating Systems L6.49
Dept. Of Computer Science, Colorado State University

Page 600 after the edit on Page 1

Word processor does not know what’s the first line on page 600
Word processor has to reformat entire book up to page 600

Threads could help here ...

CS370: Operating Systems L6.50
Dept. Of Computer Science, Colorado State University

Suppose the word processor is written as a 2-
threaded program

One thread interacts with the user

The second thread handles formatting in the background

As soon as the sentence is deleted

Interactive thread tells formatter thread to format the book

CS370: Operating Systems L6.51
Dept. Of Computer Science, Colorado State University

While we are at it, why not add a third thread?
—

o Automatically save file every few minutes

1 Handle disk backups without interfering with the other 2 threads

CS370: Operating Systems L6.52
Dept. Of Computer Science, Colorado State University

What if the program were single threaded?

Whenever disk backup started
Commands from keyboard /mouse would be ignored till backup was finished

User perceives sluggish performance

Alternatively, keyboard /mouse events could interrupt the disk backup
Good performance

Complex, interrupt-driven programming

CS370: Operating Systems L6.53
Dept. Of Computer Science, Colorado State University

With 3 threads the programming model is simpler

First thread interacts with the user
Second thread reformats when told to

Third thread writes contents of RAM on to disk periodically

CS370: Operating Systems L6.54
Dept. Of Computer Science, Colorado State University

Three separate processes WOULD work here

All three threads need to operate on document

By having 3 threads instead of 3 processes

(1) The threads share a common memory

(2) Have access to document being edited

Using processes would require setting up shared memory space,
synchronizations, IPC etc. Doable, but much more tedious

O Tend to use threads when working on the same data within the process

CS370: Operating Systems L6.55
Dept. Of Computer Science, Colorado State University

Applications are typically implemented as a process with

multiple threads of control

Perform different tasks in the application
Web browser

Thread A: Render images and text
Thread B: Fetch network data

Assist in the performance of several similar tasks

Web Server: Manages requests for web content

Single threaded model: One client at a time

Poor response times

Multithreaded model: Multiple clients served concurrently

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.56

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 3, 4]

CS370: Operating Systems L6.57
Dept. Of Computer Science, Colorado State University

