
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Computer Science
Colorado State University

L6.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.2

Topics covered in this lecture

¨ Briefly, microkernels
¨ Inter Process Communications

¤ Messaging

¤ Pipes

¨ Threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MICROKERNELS
L6.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.4

The Microkernel Approach [1/2]

¨ Mid 1980’s at Carnegie Mellon University
¤ Mach

¨ Structure OS by removing non-essential components from the kernel
¤ Implement other things as system/user programs

¨ Provide minimal process and memory management

¨ Main function: Provide communication facility between client and
services
¤ Message passing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.5

The Microkernel Approach [2/2]

¨ Traditionally all the layers went in the kernel
¤ But this is not really necessary

¨ In fact, it may be best to put as little as possible in the kernel
¤ Bugs in the kernel can bring down the system instantly

¨ Contrast this with setting up user processes to have less power
¤ A bug may not be fatal

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.6

Getting there …

¨ Achieve high reliability by splitting OS in small, well-defined modules
¤ One of these, the microkernel, runs in the kernel mode
¤ The rest as relatively powerless ordinary user processes

¨ Running each device driver as a separate process?
¤ Bugs cannot crash the entire system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.7

Communications in the micro-kernel

¨ Client and service never interact directly

¨ Indirect communications by exchanging messages with the microkernel

¨ Advantages
¤ Easier to port to different hardware
¤ More security and reliability

n Most services run as user, rather than kernel

¨ Mac OS X kernel based on Mach microkernel
¤ XNU: 2.5 Mach, 4.3 BSD and Objective-C for device drivers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.8

Increased system function overhead can degrade
microkernel performance

¨ Windows NT: First release, layered microkernel
¤ Lower performance than Windows 95

¨ Windows NT 4.0 solution
¤ Move layers from user space to kernel space

¨ By the time Windows XP came around
¤ More monolithic than microkernel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.9

IPC communications: Mach

¨ Tasks are similar to processes
¤ Multiple threads of control

¨ Most communications in Mach use messages
¤ System calls
¤ Inter-task information
¤ Sent and received from mailboxes: ports

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.10

Mach: Task creation and mailboxes

¨ Task creation results in 2 more mailboxes
① Kernel mailbox: Used by kernel to communicate with task
② Notify mailbox: Notification of event occurrences

¨ System calls for communications
¤ msg_send(), msg_receive() and msg_rpc()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.11

Mach:
Mailbox creation

¨ Done using the port_allocate()
¤ Allocate space for message queue

n MAX_SIZE default is 8 messages

¨ Creator is owner and can also receive

¨ Only task can own/receive from mailbox
¤ BUT these rights can be sent to other tasks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.12

Mach:
Message queue ordering

¨ FIFO guarantees for messages from same sender

¨ Messages from multiple senders queued in any order

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.13

Mach: Send and receive operations

¨ If mailbox is not full, copy message

¨ If mailbox is FULL
① Wait indefinitely till there’s room
② Wait at most n milliseconds

n Don’t wait, simply return

③ Temporarily cache the message
n Only 1 message to a full mailbox can be pending for a given sending thread

¨ Receive can specify mailbox or mailbox set

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.14

Another idea related to microkernels

¨ Put mechanisms for doing something in the kernel
¤ But not the policy

¨ Example: Scheduling
¤ Policy of assigning priorities to processes can be done in the user-mode
¤ The mechanism to look for the highest priority process and schedule it is in

the kernel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MESSAGE PASSING IN WINDOWS XP
L6.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.16

Message passing in Windows XP

¨ Called the local procedure call (LPC) facility

¨ Communications provided by port objects
¤ Give applications a way to set up communication channels

¨ Uses two types of message passing
¤ Small messages (max 256 bytes)
¤ Large messages

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.17

Connection ports are named objects visible to all
processes [LPC in XP]

CLIENT SERVER

Connection
Port

Client Communication
Port

Server
Communication Port

Shared Section
Object

(<=256 bytes)

Connection
request Handle

Handle

Handle

Sets up a region of shared memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.18

Windows XP message passing
Small messages

¨ Use port’s internal message queue as intermediate
storage

¨ Copy messages from one process to another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.19

Windows XP message passing:
Large messages

¨ Send message through section object
¤ Sets up shared memory

¨ Section object info sent as a small message
¤ Contains pointer + size information about section object

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.20

Windows XP message passing:
Large messages

¨ 2 ends of communications set up section objects if the request or reply
is large

¨ Complicated, but avoids data copying

¨ Callbacks used if the endpoints are busy
¤ Allows delayed responses
¤ Allows asynchronous message handling

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PIPES
L6.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.22

Pipes

¨ Pipes serve as a conduit for communications between processes

¨ One of the first IPC implementation mechanisms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.23

Issues to consider when implementing a pipe

¨ Unidirectional or bidirectional
¨ If it is bidirectional

¤ Half duplex: Data can travel one way at a time
¤ Full duplex: Data traversal in both directions simultaneously

¨ Must a relationship exist between the endpoints?
¤ e.g parent-child

¨ Range of communications
¤ Intra-machine or Over the network

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.24

Pipes in practice

¨ Set up pipe between commands

ls | more

Output of ls delivered as input to more

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.25

Ordinary (anonymous) pipes

¨ Producer writes to one end of the pipe

¨ Consumer reads from the other end

¨ In UNIX: pipe(int fd[]) to create pipe
§ fd[0] is the read-end
§ fd[1] is the write-end
§ Treats a pipe as a special type of file

n Access with read() and write() system calls

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.26

A child inherits open files from its parent

¨ Since a pipe is a special type of file, the pipe is also
inherited.
¤ Parent and child close unused portions of the pipe

Parent

fd[0] is the read-end
fd[1] is the write-end

fd[0]

fd[1]
fd[0]

Child

fd[1]

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.27

Pipes: Example

if (pipe(fd) == -1) {
/* creation failed */

}
pid = fork();

if (pid > 0) {
close(fd[READ_END]);
write(fd[WRITE_END], write_msg,…);

}

if (pid == 0) {
close(fd[WRITE_END]);
read(fd[READ_END], …);

}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.28

Windows Ordinary Pipes:
These are unidirectional

¨ Anonymous Pipes

¨ Child does not automatically inherit pipe
¤ Programmer specifies attributes a child will inherit
¤ Initialize SECURITY_ATTRIBUTES to allow handles to be inherited
¤ Redirect child’s standard I/O handles to read/write handle of pipe
¤ Pipes are half duplex

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.29

Some other things about ordinary pipes on UNIX
and Windows

¨ Requires parent-child relationship
¤ MUST be on same machine

¨ Exist only when processes communicate with one another
¤ Upon termination, pipe ceases to exist

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.30

Named Pipes

¨ NO parent-child relationship needed

¨ Once named pipe is established
¤ Several processes can use it for communications

¨ Continues to exist after communicating processes have finished.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.31

Named Pipes on UNIX/Windows

¨ Referred to as FIFO on UNIX systems, manipulated like a file
¤ Created with mkfifo()
¤ Manipulated with open(), read(), write() etc

¨ FIFO: half-duplex transmissions on Linux
¤ If data must go both ways: use 2 FIFOs
¤ Sockets can be used for inter-machine communications

¨ Windows: Full duplex communications

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMMUNICATIONS IN CLIENT-SERVER
SYSTEMS

L6.32

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.33

Remote Procedure Calls

¨ Abstracts procedure call mechanisms for use with network endpoints

¨ Based on the request/reply model

¨ Message is addressed to the RPC daemon listening to a port for
incoming traffic
¤ Contains identifiers of function to execute
¤ Parameters to pass to the function

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.34

Remote Procedure Calls

¨ Application makes CALL into a procedure
¤ May be local or remote and

¤ BLOCKS until call returns

¨ Origins:
¤ RFC 707 (1976).
¤ First use by Xerox 1981 (Courier)
¤ 1984 paper by Birell and Nelson

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.35

RPCs are slightly more complicated than local
procedure calls

¨ Network between the Calling process and Called process can
¤ Limit message sizes,
¤ Reorder them or
¤ Lose them

¨ Computers hosting processes may differ
¤ Architectures and data representation formats.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.36

Resolving big-endian/little endian issues

¨ Big endian: Store MSB first

¨ Little endian: Store LSB first

¨ Machine independent data representation
¤ XDR: eXternal Data Representation

¤ Client side parameter marshalling
n Convert machine-dependent data to XDR

¤ Server side
n Convert XDR data to machine dependent representation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.37

RPC mechanism

Caller

Client
Stub

RPC
protocol

Callee

Server
Stub

RPC
Protocol

Arguments

Request Reply

Return
Value

Arguments
Return
Value

Request Reply

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.38

Distributed Objects

¨ RPC based on distributed objects with an inheritance mechanism

¨ Create, invoke or destroy remote objects, and interact as if they are
local objects

¨ Data sent over network:
¤ References: class, object and method
¤ Method arguments

¨ CORBA early1990s, RMI mid-late 90s

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.39

Distributed Objects in CORBA defined using the
Interface Definition Language

IDL Stub

CLIENT

IDL
Skeleton

Object
Implementation

OBJECT REQUEST BROKER (ORB)

IDL
Skeleton

Object
Implementation

OBJECT REQUEST BROKER
(ORB 2)

GIOP/IIOP
General Inter-ORB Protocol/Internet Inter-Orb Protocol

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREADS
L6.40

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.41

Some background on threading

¨ Exploited to make programs easier to write
¤ Split programs into separate tasks

¨ Took off when GUIs became standard
¤ User perceives better performance

n Programs did not run faster: this was an illusion
n Dedicated thread to service input OR display output

¨ Growing trend to exploit available processors on a machine

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.42

What are threads?

¨ Miniprocesses or lightweight processes

¨ Why would anyone want to have a kind of process within a process?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.43

The main reason for using threads

¨ In many applications multiple activities are going on at once
¤ Some of these may block from time to time

¨ Decompose application into multiple sequential threads
¤ Running in quasi-parallel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.44

Isn’t this precisely the argument for processes?

¨ Yes, but there is a new dimension …

¨ Threads have the ability to share the address space (and all of its
data) among themselves

¨ For several applications
¤ Processes (with their separate address spaces) don’t work

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.45

Threads are also lighter weight than processes

¨ Faster to create and destroy than processes

¨ In many systems thread creation is 10-100 times faster

¨ When number of threads needed changes dynamically and rapidly?
¤ Lightweight property is very useful

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.46

Threads:
The performance argument

¨ When all threads are CPU bound all the time?
¤ Additional threads would likely yield no performance gain

¨ But when there is substantial computing and substantial I/O
¤ Having threads allows activities to overlap

¤ Speeds up the application possibly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

AN EXAMPLE APPLICATION
WORD PROCESSOR

L6.47

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.48

Our Word Processor

¨ Displays document being created on the screen

¨ Document formatted exactly as it will appear on a printed page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.49

Let’s take a look at someone editing a 800-page
document

¨ User deletes one sentence from Page-1 of a
800-page document

¨ Now user wants to make a change on page 600
¤ Either go to that page or search for term that only appears there

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.50

Page 600 after the edit on Page 1

¨ Word processor does not know what’s the first line on page 600

¨ Word processor has to reformat entire book up to page 600

¨ Threads could help here …

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.51

Suppose the word processor is written as a 2-
threaded program

¨ One thread interacts with the user

¨ The second thread handles formatting in the background

¨ As soon as the sentence is deleted
¤ Interactive thread tells formatter thread to format the book

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.52

While we are at it, why not add a third thread?

¨ Automatically save file every few minutes

¨ Handle disk backups without interfering with the other 2 threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.53

What if the program were single threaded?

¨ Whenever disk backup started
¤ Commands from keyboard/mouse would be ignored till backup was finished
¤ User perceives sluggish performance

¨ Alternatively, keyboard/mouse events could interrupt the disk backup
¤ Good performance
¤ Complex, interrupt-driven programming

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.54

With 3 threads the programming model is simpler

¨ First thread interacts with the user

¨ Second thread reformats when told to

¨ Third thread writes contents of RAM on to disk periodically

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.55

Three separate processes WOULD work here

¨ All three threads need to operate on document

¨ By having 3 threads instead of 3 processes
① The threads share a common memory

② Have access to document being edited

¨ Using processes would require setting up shared memory space,
synchronizations, IPC etc. Doable, but much more tedious

¤ Tend to use threads when working on the same data within the process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.56

Applications are typically implemented as a process with
multiple threads of control

¨ Perform different tasks in the application
¤ Web browser

n Thread A: Render images and text
n Thread B: Fetch network data

¨ Assist in the performance of several similar tasks
¤ Web Server: Manages requests for web content

n Single threaded model: One client at a time
n Poor response times

n Multithreaded model: Multiple clients served concurrently

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L6.57

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 3, 4]

