CS 370: OPERATING SYSTEMS
[THREADS]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture
N

1 User- and kernel-level threads
1 Thread Models

- Thread Libraries

CS370: Operating Systems L8.2
Dept. Of Computer Science, Colorado State University

USER-LEVEL THREADS

User-level threads: Overview

User
—
space

Kernel
space

rocess rea

Runtime System

\

Kernel -\

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Thread
table

Process
table

L8.4

User threads are invisible to the kernel and have low
overhead

Compete among themselves for resources allocated to their
encapsulating process

Scheduled by a thread runtime system that is part of the process code

Programs link to a special library
Each library function is enclosed by a jacket

Jacket function calls thread runtime to do thread management

Before (and possibly after) calling jacketed library function.

CS370: Operating Systems L8.5
Dept. Of Computer Science, Colorado State University

User level thread libraries: Managing blocking calls

Replace potentially blocking calls with non-blocking ones
If a call does not block, the runtime invokes it

If the call may block
(1) Place thread on a list of waiting thread:s
(2) Add call to list of actions to try later
(3) Pick another thread to run

ALL control is invisible to user and OS

CS370: Operating Systems L8.6
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (1)

Assumes that the runtime will eventually regain control, this is
thwarted by:

CPU bound threads

Thread that rarely perform library calls ...

Runtime can’t regain control to schedule other threads

Programmer must avoid lockout situations
Force CPU-bound thread to yield control

CS370: Operating Systems L8.7
Dept. Of Computer Science, Colorado State University

Disadvantages of the user level threads model (2)

Can only share processor resources allocated to encapsulating process

Limits available parallelism

CS370: Operating Systems L8.8
Dept. Of Computer Science, Colorado State University

KERNEL THREADS

Kernel-level threads: Overview

]
s |
User
-
space
—
Kernel Thread

Process table
CS370: Operating Systems L8.10
Dept. Of Computer Science, Colorado State University

Kernel threads

Kernel is aware of kernel-level threads as schedulable entities

Kernel maintains a thread table to keep track of all threads in the system

Compete systemwide for processor resources

Can take advantage of multiple processors

CS370: Operating Systems L8.11
Dept. Of Computer Science, Colorado State University

Kernel threads:
Management costs

Scheduling is almost as expensive as processes

Synchronization and data sharing less expensive than processes

More expensive to manage than user-level threads

CS370: Operating Systems L8.12
Dept. Of Computer Science, Colorado State University

Hybrid thread models

Write programs in terms of user-level threads

Specify number of schedulable entities associated with process

Mapping at runtime to achieve parallelism

Level of user-control over mapping

Implementation dependent

CS370: Operating Systems L8.13
Dept. Of Computer Science, Colorado State University

THREAD MODELS

The Many-to-One threading model

§ § § § €&— User threads

€— Kernel thread

CS370: Operating Systems L8.15
Dept. Of Computer Science, Colorado State University

Many-to-One Model maps many user level threads
to 1 kernel thread
Thread management done by thread library in user-space

What happens when one thread makes a blocking system call?

The entire process blocks!

CS370: Operating Systems L8.16
Dept. Of Computer Science, Colorado State University

Many-to-One Model maps many user level threads
to 1 kernel thread

Only 1 thread can access kernel at a time

Multiple threads unable to run in parallel on multi-processor /core system

E.g.: Solaris Green threads, GNU Portable threads

CS370: Operating Systems L8.17
Dept. Of Computer Science, Colorado State University

The One-to-One threading model

233
vo®

CS370: Operating Systems L8.18
Dept. Of Computer Science, Colorado State University

One-t0-One Model:

Maps each user thread to a kernel thread

7 More concurrency

Another thread can continue to run, when a thread invokes a blocking system
call

o Threads run in parallel on multiprocessors

CS370: Operating Systems L8.19
Dept. Of Computer Science, Colorado State University

One-to-One Model:
Maps each user thread to a kernel thread

Disadvantages:

There is an overhead for kernel thread creation

Multiple user threads can degrade application performance

Uses more kernel threads so uses more resources

Supported by:

Linux
Windows family: NT/XP /2000
Solaris @ and up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.20

Many-to-Many threading Model:
2-level is a variant of this

gii 2223 3

wEw

Many-to-Many Two-level

CS370: Operating Systems L8.21
Dept. Of Computer Science, Colorado State University

Many-to-Many model

Multiplex many user-level threads on a smaller number of kernel
threads

Number of kernel threads may be specific to
Particular application

Particular machine

Supported in
IRIX, HP-US, and Solaris (prior to version 9)

CS370: Operating Systems L8.22
Dept. Of Computer Science, Colorado State University

A comparison of the three models

Many-to-one One-to-One Many-to-Many
Kernel NO YES if many YES
Concurrency threads
During bIOCking Process Blocks Process DOES NOT Process DOES NOT
system call? block if other threads block
Kern?| thread Kernel thread Kernel thread Kernel threads
creation already exists creation overhead available
Caveat Use system calls Don’t create too

(blocking) with care many threads to not

use too much resources

CS370: Operating Systems L8.23
Dept. Of Computer Science, Colorado State University

Provide an API for creating and managing threads

THREAD LIBRARIES

Thread libraries provide an APl for managing
threads

Includes functions for :
(1) Thread creation and destruction
(2) Enforcement of mutual exclusion

(3) Conditional waiting

Runtime system to manage threads

Users are not aware of this

CS370: Operating Systems L8.25
Dept. Of Computer Science, Colorado State University

User level thread libraries

Uses kernel support for mapping user threads to kernel ones
Library code & data structures reside in user space

Invoking a library function does not result in a system call

Local function call in user space

CS370: Operating Systems L8.26
Dept. Of Computer Science, Colorado State University

Kernel level thread libraries

Library code & data structures in kernel space

Invoking library function typically results in a system call

Typical approach: user-level thread libraries accesses kernel-level
thread library APl to map user threads to kernel threads, but this is

hidden in the user thread library runtime implementation

CS370: Operating Systems L8.27
Dept. Of Computer Science, Colorado State University

Thread libraries provide an API for creating and

manadging threads
-b

Library code and data Reside in Reside in
structures user space kernel space
Thread creation requires
a system call? NO YES
OS/Kernel support NO YES
CS370: Operating Systems L8.28

Dept. Of Computer Science, Colorado State University

Dominant thread libraries (1)

POSIX pthreads
Extends POSIX standard (IEEE 1003.1c¢)

Provided as user- or kernel-level library
Solaris, Mac OS X, Linux, ...

Win32 thread library

Kernel-level library

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.29

Dominant thread libraries (2)

Java threading API

Implemented using thread library on host system
On Windows: Threads use Win32 API
UNIX /Linux: Uses pthreads

CS370: Operating Systems L8.30
Dept. Of Computer Science, Colorado State University

POSIX THREADS

This is a specification for thread behavior,
not an implementation

POSIX thread management functions:
Return O if successful

pthread_cancel Terminate another thread
pthread_create Create a thread

pthread_detach Set thread to release resources
pthread_exit Exit a thread without exiting process
pthread_kill Send a signal to a thread
pthread_join Wait for a thread

pthread_self Find out own thread ID

Functions return a non-ZERO error code
Do NOT set errno

CS370: Operating Systems L8.32
Dept. Of Computer Science, Colorado State University

POSIX: Thread creation
pthread create()

Automatically makes the thread runnable

Takes 3 parameters:
(1) Points to ID of newly created thread

(2) Attributes for the thread

B Stack size, scheduling information, etc.

(3) Pointer to function that the thread calls when it begins execution

CS370: Operating Systems L8.33
Dept. Of Computer Science, Colorado State University

POSIX: Detaching and Joining

When a thread exits it does not release its resources

Unless it is a detached thread

pthread detach ()

Sets internal options to specify that storage for thread can be reclaimed
when it exits

1 parameter: Thread ID of the thread to detach

CS370: Operating Systems L8.34
Dept. Of Computer Science, Colorado State University

POSIX: Thread joins

Threads that are not detached are Jjoinable

Undetached threads don’t release resources until
Another thread calls pthread join for them

Process exits

pthread join
Takes ID of the thread to wait for
Suspends calling thread till target terminates
Similar to waitpid at the process level

pthread join(pthread self())?
Deadlock!

CS370: Operating Systems L8.35
Dept. Of Computer Science, Colorado State University

POSIX: Exiting and cancellation

If a function running calls exit, all threads terminate
Call to pthread exit causes only the calling thread to terminate

Threads can force other threads to return through a cancellation
mechanism

pthread cancel: takes thread ID of target
Depends on type and state of thread

CS370: Operating Systems L8.36
Dept. Of Computer Science, Colorado State University

More info on pthread_cancel

State: pthread setcancelstate to change state
PTHREAD CANCEL ENABLE
PTHREAD CANCEL DISABLE

Cancellation requests are held pending

Cancellation type allows thread to control when to exit
PTHREAD CANCEL ASYNCHRONOUGS
Any time
PTHREAD CANCEL DEFFERED

Only at specified cancellation points

CS370: Operating Systems L8.37
Dept. Of Computer Science, Colorado State University

Pthreads example

We will use a thread to perform summation of a
non-negative integer

N
SUm = Ei
=0

* |If N=5, we compute the sum of O through 5
*+ 0+1+2+3+4+5=15

CS370: Operating Systems L8.38
Dept. Of Computer Science, Colorado State University

Using Pthreads (1)
N

#include <pthread.h>
#include <stdio.h>

int sum; /% this data is shared by the thread(s) x/

void xrunner(void xparam); /*x the function to compute
sum >/

CS370: Operating Systems L8.39
Dept. Of Computer Science, Colorado State University

Using Pthreads (2)
—

int main(int argc, char xargv[]){

pthread_t tid; pthread_attr_t attr;
/* get the default attributes x/
pthread_attr_init(&attr);

/* create the thread *x/
pthread_create(&tid, &attr, runner, argvi[1]);

/* now walit for the thread to exit x/
pthread_join(tid, NULL);

printf("sum = %d\n",sum);

CS370: Operating Systems L8.40
Dept. Of Computer Science, Colorado State University

Using Pthreads (3)

/ k%
* The thread will begin control in this function
*/
void sxrunner(void xparam)
{
int i, upper = atoi(param);
sum = 0;

if (upper > 0) A
for (i = 1; i <= upper; i++)
sum += 1i;

}

pthread_exit(0);
I3

CS370: Operating Systems L8.41
Dept. Of Computer Science, Colorado State University

JAVA THREADS

Harnesses the thread model of the host OS

Java

Designed from the ground-up to support concurrent programming

Basic concurrency support in the language and class libraries

Java 1.5 and higher

Powerful high-level concurrency APls

CS370: Operating Systems L8.43
Dept. Of Computer Science, Colorado State University

JVMs harness the thread models of the host OS

Windows XP has a one-to-one model

So a thread maps to a kernel thread

Tru64 UNIX uses the many-to-many model

Java threads mapped accordingly

Solaris
Initially, used Green Threads = many-to-one

Version 9 onwards: one-to-one model

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.44

Creating Threads in Java

(1) Create a new class derived from Thread

Override its run () method

(2) More commonly used, Runnable interface
Has 1 method run ()

Create new Thread class by passing a Runnable
object to its constructor

(3) The Executor interface (java.util.concurrent)

Has 1 method execute ()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.45

Java Threads: Interrupts

Invoke interrupt () on the Thread
Threads must support their own interruption

An interruptible thread needs to
(1) Catch the InterruptedException

Methods such as sleep () throw this, and are designed to
cancel the operation and return

(2) Periodically invoke Thread.interrupted () to see if
it has been interrupted

CS370: Operating Systems L8.46
Dept. Of Computer Science, Colorado State University

Java Threads: Jo1ns

If thread object threadA is currently executing

Another thread can call threadA.join ()

Causes current thread to pause execution until threadA
terminates

Variants of join ()

Specify a waiting period

CS370: Operating Systems L8.47
Dept. Of Computer Science, Colorado State University

Java threads example

We will be performing the same summation operation that we did for
pThreads

CS370: Operating Systems L8.48
Dept. Of Computer Science, Colorado State University

Using Java Threads (1)

class Sum {
private int sum;

public int get() {

return sum,;
¥

public void set(int sum) {
this.sum = sum;
¥

CS370: Operating Systems L8.49
Dept. Of Computer Science, Colorado State University

Using Java Threads (2)
—

class Summation implements Runnable {
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() £
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += 1;

sumValue.set(sum);

CS370: Operating Systems L8.50
Dept. Of Computer Science, Colorado State University

Using Java Threads (3)

public class Driver {
public static void main(String[] args) {

Sum sumObject = new Sum();
int upper = Integer.parselnt(args[0]);

Thread worker = new Thread(new Summation(upper,
sumObject));

worker.start();

try o
worker.join();

} catch (InterruptedException ie) {
ie.printStacktrace()

¥

System.out.println("The sum of " + upper + " is " +

sumObject.get());

} CS370: Operating Systems L8.51
Dept. Of Computer Science, Colorado State University

Win32 Threads

CreateThread

Security Information, size of stack, flag (start in suspended state?)
WaitForSingleObject

CloseHandle

CS370: Operating Systems L8.52
Dept. Of Computer Science, Colorado State University

THREAD POOLS

Thread Pools

(1) Create a number of threads at start-up
(2) Place them into a pool

(3) These threads sit and wait for work

ADVANTAGES:
Servicing requests is faster with existing threads

Limits total number of threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.54

Thread Pools:

When work needs to be performed
—

(1) Awaken a thread from this pool
(2) Assign it work

(3) Once the worker thread completes, it returns itself to the pool

CS370: Operating Systems L8.55
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 12]

CS370: Operating Systems L8.56
Dept. Of Computer Science, Colorado State University

