
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[THREADS]

Computer Science
Colorado State University

L8.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.2

Topics covered in this lecture

¨ User- and kernel-level threads
¨ Thread Models
¨ Thread Libraries

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

USER-LEVEL THREADS
L8.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.4

User-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process
table

Runtime System

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.5

User threads are invisible to the kernel and have low
overhead

¨ Compete among themselves for resources allocated to their
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management

n Before (and possibly after) calling jacketed library function.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.6

User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.7

Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is
thwarted by:
¤ CPU bound threads
¤ Thread that rarely perform library calls …

n Runtime can’t regain control to schedule other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.8

Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

KERNEL THREADS
L8.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.10

Kernel-level threads: Overview

Kernel

User
space

Kernel
space

Process Thread

Thread
table

Process table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.11

Kernel threads

¨ Kernel is aware of kernel-level threads as schedulable entities
¤ Kernel maintains a thread table to keep track of all threads in the system

¨ Compete systemwide for processor resources
¤ Can take advantage of multiple processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.12

Kernel threads:
Management costs

¨ Scheduling is almost as expensive as processes
¤ Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.13

Hybrid thread models

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤ Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping
¤ Implementation dependent

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREAD MODELS
L8.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.15

The Many-to-One threading model

User threads

k Kernel thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.16

Many-to-One Model maps many user level threads
to 1 kernel thread

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.17

Many-to-One Model maps many user level threads
to 1 kernel thread

¨ Only 1 thread can access kernel at a time
¤ Multiple threads unable to run in parallel on multi-processor/core system

¨ E.g.: Solaris Green threads, GNU Portable threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.18

The One-to-One threading model

k k k

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.19

One-to-One Model:
Maps each user thread to a kernel thread

¨ More concurrency
¤ Another thread can continue to run, when a thread invokes a blocking system

call

¨ Threads run in parallel on multiprocessors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.20

One-to-One Model:
Maps each user thread to a kernel thread

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¤ Uses more kernel threads so uses more resources

¨ Supported by:
¤ Linux
¤ Windows family: NT/XP/2000
¤ Solaris 9 and up

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.21

Many-to-Many threading Model:
2-level is a variant of this

kk k kk k k

Many-to-Many Two-level

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.22

Many-to-Many model

¨ Multiplex many user-level threads on a smaller number of kernel
threads

¨ Number of kernel threads may be specific to
¤ Particular application
¤ Particular machine

¨ Supported in
¤ IRIX, HP-US, and Solaris (prior to version 9)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.23

A comparison of the three models

Many-to-one One-to-One Many-to-Many

Kernel
Concurrency

During blocking
system call?

Kernel thread
creation

Caveat

NO YES if many
threads

YES

Process Blocks Process DOES NOT
block if other threads

Process DOES NOT
block

Kernel thread
already exists

Kernel thread
creation overhead

Kernel threads
 available

Use system calls
(blocking) with care

Don’t create too
many threads to not
use too much resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREAD LIBRARIES

Provide an API for creating and managing threads

L8.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.25

Thread libraries provide an API for managing
threads

¨ Includes functions for :
① Thread creation and destruction
② Enforcement of mutual exclusion
③ Conditional waiting

¨ Runtime system to manage threads
¤ Users are not aware of this

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.26

User level thread libraries

¨ Uses kernel support for mapping user threads to kernel ones

¨ Library code & data structures reside in user space

¨ Invoking a library function does not result in a system call
¤ Local function call in user space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.27

Kernel level thread libraries

¨ Library code & data structures in kernel space

¨ Invoking library function typically results in a system call

¨ Typical approach: user-level thread libraries accesses kernel-level
thread library API to map user threads to kernel threads, but this is
hidden in the user thread library runtime implementation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.28

Thread libraries provide an API for creating and
managing threads

User level library Kernel level
library

Library code and data
structures

Thread creation requires
a system call?

OS/Kernel support

Reside in
user space

Reside in
kernel space

NO YES

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.29

Dominant thread libraries (1)

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤ Provided as user- or kernel-level library
¤ Solaris, Mac OS X, Linux, …

¨ Win32 thread library
¤ Kernel-level library

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.30

Dominant thread libraries (2)

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

POSIX THREADS
This is a specification for thread behavior,
not an implementation

L8.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.32

POSIX thread management functions:
Return 0 if successful

POSIX function Description

pthread_cancel Terminate another thread
pthread_create Create a thread
pthread_detach Set thread to release resources
pthread_exit Exit a thread without exiting process
pthread_kill Send a signal to a thread
pthread_join Wait for a thread
pthread_self Find out own thread ID

Functions return a non-ZERO error code
Do NOT set errno

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.33

POSIX: Thread creation
pthread_create()

¨ Automatically makes the thread runnable

¨ Takes 3 parameters:
① Points to ID of newly created thread

② Attributes for the thread
n Stack size, scheduling information, etc.

③ Pointer to function that the thread calls when it begins execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.34

POSIX: Detaching and Joining

¨ When a thread exits it does not release its resources
¤ Unless it is a detached thread

¨ pthread_detach()
¤ Sets internal options to specify that storage for thread can be reclaimed

when it exits
¤ 1 parameter: Thread ID of the thread to detach

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.35

POSIX: Thread joins

¨ Threads that are not detached are joinable

¨ Undetached threads don’t release resources until
¤ Another thread calls pthread_join for them
¤ Process exits

¨ pthread_join
¤ Takes ID of the thread to wait for
¤ Suspends calling thread till target terminates
¤ Similar to waitpid at the process level
¤ pthread_join(pthread_self())?

n Deadlock!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.36

POSIX: Exiting and cancellation

¨ If a function running calls exit, all threads terminate

¨ Call to pthread_exit causes only the calling thread to terminate

¨ Threads can force other threads to return through a cancellation
mechanism
¤ pthread_cancel: takes thread ID of target
¤ Depends on type and state of thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.37

More info on pthread_cancel

¨ State: pthread_setcancelstate to change state
§ PTHREAD_CANCEL_ENABLE
§ PTHREAD_CANCEL_DISABLE

n Cancellation requests are held pending

¨ Cancellation type allows thread to control when to exit
§ PTHREAD_CANCEL_ASYNCHRONOUS

n Any time
§ PTHREAD_CANCEL_DEFFERED

n Only at specified cancellation points

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.38

Pthreads example

¨ We will use a thread to perform summation of a
non-negative integer

€

sum = i
i=0

N

∑

• If N=5, we compute the sum of 0 through 5
• 0 + 1 + 2 + 3 + 4 + 5 = 15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.39

Using Pthreads (1)

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the function to compute
 sum */

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.40

Using Pthreads (2)

int main(int argc, char *argv[]){

 pthread_t tid; pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n",sum);
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.41

Using Pthreads (3)

/**
 * The thread will begin control in this function
 */
void *runner(void *param)
{
int i, upper = atoi(param);
sum = 0;

 if (upper > 0) {
 for (i = 1; i <= upper; i++)
 sum += i;
 }

 pthread_exit(0);
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

JAVA THREADS

Harnesses the thread model of the host OS

L8.42

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.43

Java

¨ Designed from the ground-up to support concurrent programming
¤ Basic concurrency support in the language and class libraries

¨ Java 1.5 and higher
¤ Powerful high-level concurrency APIs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.44

JVMs harness the thread models of the host OS

¨ Windows XP has a one-to-one model
¤ So a thread maps to a kernel thread

¨ Tru64 UNIX uses the many-to-many model
¤ Java threads mapped accordingly

¨ Solaris
¤ Initially, used Green Threads à many-to-one
¤ Version 9 onwards: one-to-one model

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.45

Creating Threads in Java

① Create a new class derived from Thread
¤ Override its run() method

② More commonly used, Runnable interface
¤ Has 1 method run()
¤ Create new Thread class by passing a Runnable

object to its constructor

③ The Executor interface (java.util.concurrent)
¤ Has 1 method execute()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.46

Java Threads: Interrupts

¨ Invoke interrupt() on the Thread

¨ Threads must support their own interruption

¨ An interruptible thread needs to
① Catch the InterruptedException

n Methods such as sleep() throw this, and are designed to
cancel the operation and return

② Periodically invoke Thread.interrupted() to see if
it has been interrupted

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.47

Java Threads: joins

¨ If thread object threadA is currently executing

¨ Another thread can call threadA.join()
¤ Causes current thread to pause execution until threadA

terminates

¨ Variants of join()
¤ Specify a waiting period

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.48

Java threads example

¨ We will be performing the same summation operation that we did for
pThreads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.49

Using Java Threads (1)

class Sum {
 private int sum;

 public int get() {
 return sum;
 }

 public void set(int sum) {
 this.sum = sum;
 }
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.50

Using Java Threads (2)

class Summation implements Runnable {
 private int upper;
 private Sum sumValue;

 public Summation(int upper, Sum sumValue) {
 this.upper = upper;
 this.sumValue = sumValue;
 }

 public void run() {
 int sum = 0;
 for (int i = 0; i <= upper; i++)
 sum += i;

 sumValue.set(sum);
 }
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.51

Using Java Threads (3)

public class Driver {
 public static void main(String[] args) {

 Sum sumObject = new Sum();
 int upper = Integer.parseInt(args[0]);

 Thread worker = new Thread(new Summation(upper,
sumObject));
 worker.start();
 try {
 worker.join();
 } catch (InterruptedException ie) {
 ie.printStacktrace()
 }
 System.out.println("The sum of " + upper + " is " +
 sumObject.get());
 }
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.52

Win32 Threads

¨ CreateThread
¤ Security Information, size of stack, flag (start in suspended state?)

¨ WaitForSingleObject

¨ CloseHandle

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THREAD POOLS
L8.53

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.54

Thread Pools

① Create a number of threads at start-up

② Place them into a pool

③ These threads sit and wait for work

¨ ADVANTAGES:
¤ Servicing requests is faster with existing threads
¤ Limits total number of threads

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.55

Thread Pools:
When work needs to be performed

① Awaken a thread from this pool

② Assign it work

③ Once the worker thread completes, it returns itself to the pool

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L8.56

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 12]

