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Topics covered in this lecture

¨ User- and kernel-level threads
¨ Thread Models
¨ Thread Libraries
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User-level threads: Overview
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User threads are invisible to the kernel and have low 
overhead

¨ Compete among themselves for resources allocated to their 
encapsulating process

¨ Scheduled by a thread runtime system that is part of the process code

¨ Programs link to a special library
¤ Each library function is enclosed by a jacket
¤ Jacket function calls thread runtime to do thread management 

n Before (and possibly after) calling jacketed library function.
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User level thread libraries: Managing blocking calls

¨ Replace potentially blocking calls with non-blocking ones

¨ If a call does not block, the runtime invokes it

¨ If the call may block
① Place thread on a list of waiting threads
② Add call to list of actions to try later
③ Pick another thread to run

¨ ALL control is invisible to user and OS
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Disadvantages of the user level threads model (1)

¨ Assumes that the runtime will eventually regain control, this is 
thwarted by: 
¤ CPU bound threads
¤ Thread that rarely perform library calls … 

n Runtime can’t regain control to schedule  other threads

¨ Programmer must avoid lockout situations
¤ Force CPU-bound thread to yield control 
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Disadvantages of the user level threads model (2)

¨ Can only share processor resources allocated to encapsulating process
¤ Limits available parallelism



CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

KERNEL THREADS
L8.9



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L8.10

Kernel-level threads: Overview
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Kernel threads 

¨ Kernel is aware of kernel-level threads as schedulable entities
¤ Kernel maintains a thread table to keep track of all threads in the system

¨ Compete systemwide for processor resources
¤ Can take advantage of multiple processors
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Kernel threads:
Management costs

¨ Scheduling is almost as expensive as processes
¤ Synchronization and data sharing less expensive than processes

¨ More expensive to manage than user-level threads 



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L8.13

Hybrid thread models

¨ Write programs in terms of user-level threads

¨ Specify number of schedulable entities associated with process
¤ Mapping at runtime to achieve parallelism

¨ Level of user-control over mapping 
¤ Implementation dependent
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The Many-to-One threading model
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Many-to-One Model maps many user level threads 
to 1 kernel thread

¨ Thread management done by thread library in user-space

¨ What happens when one thread makes a blocking system call?
¤ The entire process blocks!
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Many-to-One Model maps many user level threads 
to 1 kernel thread

¨ Only 1 thread can access kernel at a time
¤ Multiple threads unable to run in parallel on multi-processor/core system

¨ E.g.: Solaris Green threads, GNU Portable threads
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The One-to-One threading model
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One-to-One Model:
Maps each user thread to a kernel thread

¨ More concurrency
¤ Another thread can continue to run, when a thread invokes a blocking system 

call

¨ Threads run in parallel on multiprocessors
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One-to-One Model:
Maps each user thread to a kernel thread

¨ Disadvantages:
¤ There is an overhead for kernel thread creation

n Multiple user threads can degrade application performance

¤ Uses more kernel threads so uses more resources

¨ Supported by: 
¤ Linux
¤ Windows family: NT/XP/2000 
¤ Solaris 9 and up
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Many-to-Many threading Model:  
2-level is a variant of this

kk k kk k k
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Many-to-Many model

¨ Multiplex many user-level threads on a smaller number of kernel 
threads

¨ Number of kernel threads may be specific to
¤ Particular application
¤ Particular machine

¨ Supported in 
¤ IRIX, HP-US, and Solaris (prior to version 9)
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A comparison of the three models

Many-to-one One-to-One Many-to-Many
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Thread libraries provide an API for managing 
threads

¨ Includes functions for :
① Thread creation and destruction
② Enforcement of mutual exclusion
③ Conditional waiting

¨ Runtime system to manage threads
¤ Users are not aware of this
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User level thread libraries

¨ Uses kernel support for mapping user threads to kernel ones

¨ Library code & data structures reside in user space

¨ Invoking a library function does not result in a system call
¤ Local function call in user space
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Kernel level thread libraries

¨ Library code & data structures in kernel space

¨ Invoking library function typically results in a system call

¨ Typical approach: user-level thread libraries accesses kernel-level 
thread library API to map user threads to kernel threads, but this is 
hidden in the user thread library runtime implementation
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Thread libraries provide an API for creating and 
managing threads
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Dominant thread libraries (1)

¨ POSIX pthreads
¤ Extends POSIX standard (IEEE 1003.1c)
¤ Provided as user- or kernel-level library
¤ Solaris, Mac OS X, Linux, …

¨ Win32 thread library
¤ Kernel-level library
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Dominant thread libraries (2)

¨ Java threading API
¤ Implemented using thread library on host system

n On Windows: Threads use Win32 API
n UNIX/Linux: Uses pthreads
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POSIX THREADS
This is a specification for thread behavior, 
not an implementation
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POSIX thread management functions:
Return 0 if successful

POSIX function Description

pthread_cancel Terminate another thread
pthread_create Create a thread
pthread_detach Set thread to release resources
pthread_exit Exit a thread without exiting process
pthread_kill Send a signal to a thread
pthread_join Wait for a thread
pthread_self Find out own thread ID

Functions return a non-ZERO error code
Do NOT set errno
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POSIX: Thread creation 
pthread_create()

¨ Automatically makes the thread runnable

¨ Takes 3 parameters: 
① Points to ID of newly created thread

② Attributes for the thread
n Stack size, scheduling information, etc.

③ Pointer to function that the thread calls when it begins execution
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POSIX: Detaching and Joining

¨ When a thread exits it does not release its resources
¤ Unless it is a detached thread

¨ pthread_detach()
¤ Sets internal options to specify that storage for thread can be reclaimed

when it exits
¤ 1 parameter: Thread ID of the thread to detach



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L8.35

POSIX: Thread joins

¨ Threads that are not detached are joinable

¨ Undetached threads don’t release resources until 
¤ Another thread calls pthread_join for them 
¤ Process exits

¨ pthread_join
¤ Takes ID of the thread to wait for
¤ Suspends calling thread till target terminates
¤ Similar to waitpid at the process level
¤ pthread_join(pthread_self())?

n Deadlock!
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POSIX: Exiting and cancellation

¨ If a function running calls exit, all threads terminate

¨ Call to pthread_exit causes only the calling thread to terminate

¨ Threads can force other threads to return through a cancellation
mechanism
¤ pthread_cancel: takes thread ID of target
¤ Depends on type and state of thread
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More info on pthread_cancel

¨ State:  pthread_setcancelstate to change state
§ PTHREAD_CANCEL_ENABLE
§ PTHREAD_CANCEL_DISABLE

n Cancellation requests are held pending

¨ Cancellation type allows thread to control when to exit
§ PTHREAD_CANCEL_ASYNCHRONOUS

n Any time
§ PTHREAD_CANCEL_DEFFERED

n Only at specified cancellation points
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Pthreads example

¨ We will use a thread to perform summation of a 
non-negative integer

€ 

sum = i
i=0

N

∑

• If N=5, we compute the sum of 0 through 5
• 0 + 1 + 2 + 3 + 4 + 5 = 15
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Using Pthreads (1)

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the function to compute            
           sum */
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Using Pthreads (2)

int main(int argc, char *argv[]){

   pthread_t tid;    pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n",sum);
}
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Using Pthreads (3)

/**
 * The thread will begin control in this function
 */
void *runner(void *param) 
{
int i, upper = atoi(param);
sum = 0;

 if (upper > 0) {
  for (i = 1; i <= upper; i++)
   sum += i;
 }

 pthread_exit(0);
}
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Harnesses the thread model of the host OS
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Java

¨ Designed from the ground-up to support concurrent programming
¤ Basic concurrency support in the language and class libraries

¨ Java 1.5 and higher
¤ Powerful high-level concurrency APIs



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L8.44

JVMs harness the thread models of the host OS

¨ Windows XP has a one-to-one model
¤ So a thread maps to a kernel thread

¨ Tru64 UNIX uses the many-to-many model
¤ Java threads mapped accordingly

¨ Solaris
¤ Initially, used Green Threads à many-to-one
¤ Version 9 onwards: one-to-one model
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Creating Threads in Java

① Create a new class derived from Thread
¤ Override its run() method

② More commonly used, Runnable interface
¤ Has 1 method run()
¤ Create new Thread class by passing a Runnable

object to its constructor

③ The Executor interface (java.util.concurrent)
¤ Has 1 method execute()
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Java Threads: Interrupts

¨ Invoke interrupt() on the Thread

¨ Threads must support their own interruption

¨ An interruptible thread needs to 
① Catch the InterruptedException

n Methods such as sleep() throw this, and are designed to 
cancel the operation and return

② Periodically invoke Thread.interrupted() to see if 
it has been interrupted
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Java Threads: joins

¨ If thread object threadA is currently executing

¨ Another thread can call threadA.join()
¤ Causes current thread to pause execution until threadA

terminates

¨ Variants of join()
¤ Specify a waiting period 
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Java threads example

¨ We will be performing the same summation operation that we did for 
pThreads
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Using Java Threads (1)

class Sum {
 private int sum;

 public int get() {
  return sum;
 }

 public void set(int sum) {
  this.sum = sum;
 }
}
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Using Java Threads (2)

class Summation implements Runnable {
 private int upper;
 private Sum sumValue;

 public Summation(int upper, Sum sumValue) {
  this.upper = upper;
  this.sumValue = sumValue;
 }

 public void run() {
  int sum = 0;
  for (int i = 0; i <= upper; i++)
   sum += i;

  sumValue.set(sum);
 }
}
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Using Java Threads (3)

public class Driver {
 public static void main(String[] args) {
  
  Sum sumObject = new Sum();
  int upper = Integer.parseInt(args[0]);
  
  Thread worker = new Thread(new Summation(upper, 
sumObject));
  worker.start();
  try {
   worker.join();
  } catch (InterruptedException ie) {
          ie.printStacktrace() 
       }
  System.out.println("The sum of " + upper + " is " +
                          sumObject.get());
 }
}
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Win32 Threads

¨ CreateThread
¤ Security Information, size of stack, flag (start in suspended state?)

¨ WaitForSingleObject

¨ CloseHandle
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Thread Pools

① Create a number of threads at start-up

② Place them into a pool

③ These threads sit and wait for work

¨ ADVANTAGES:
¤ Servicing requests is faster with existing threads
¤ Limits total number of threads 
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Thread Pools:
When work needs to be performed

① Awaken a thread from this pool

② Assign it work

③ Once the worker thread completes, it  returns itself to the pool
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The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014. 
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2].

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall 
ISBN-13: 978-0-13-042411-2. [Chapter 12]


