CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science

Colorado State University
Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in the lecture
S S
1 Critical section
0 Critical section problem
11 Peterson’s solution

1 Hardware assists

CS370: Operating Systems L9.2
Dept. Of Computer Science, Colorado State University

A cooperating process can affect or be affected by
other processes within the system

PROCESS SYNCHRONIZATION

Process synchronization

How can processes pass information to one another?

Make sure two or more processes do not get in each other’s way

E.g., 2 processes in an airline reservation system, each trying to grab the
last seat for a different passenger

Ensure proper sequencing when dependencies are present

CS370: Operating Systems L9.4
Dept. Of Computer Science, Colorado State University

Applicability to threads

Passing information between threads is easy

They share the same address space of the parent process

Other two aspects of process synchronization are applicable to
threads

Keeping out of each other’s hair

Proper sequencing

CS370: Operating Systems L9.5
Dept. Of Computer Science, Colorado State University

A look at the producer consumer problem

while (true) {
while (counter == BUFFER SIZE) ({
; /*do nothing */
}

buffer[in] = nextProduced Producer
in = (in +1)%BUFFER_SIZE;
counter++;
}
while (true) {
while (counter == 0) {
; /*do nothing */
} Consumer
nextConsumed = buffer[out]
out = (out +1)% BUFFER SIZE;
counter--;
}
L3/ U: Uperating dystems L9.6

Dept. Of Computer Science, Colorado State University

Implementation of ++/-- in machine language
B

counter++
registerl = counter
registerl = registerl + 1
counter = registerl
counter--
register?2 = counter
register?2 = register2 - 1
counter = register?

CS370: Operating Systems L9.7
Dept. Of Computer Science, Colorado State University

Lower-level statements may be interleaved in any

order

Producer execute:

Producer execute:

Producer execute:

Consumer execute:
Consumer execute:

Consumer execute:

registerl = counter
registerl = registerl + 1
counter = registerl
register?2 = counter
register?2 = register?2 - 1
counter = register?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.8

Lower-level statements may be interleaved in any

order

Producer

Consumer
Producer

Consumer

Producer

Consumer

The order of statements within each high-level statement is preserved

execute:

execute:

execute:

execute:

execute:

execute:

registerl = counter
register?2 = counter
registerl = registerl + 1
register?2 = register?2 - 1
counter = registerl
counter = register?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.9

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: registerl = counter {register1 = 5}
Producer execute: registerl = registerl + 1 {register1 = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register?2 = register?2 - 1 {register2 = 4}
Producer execute: counter = registerl {counter = 6}
Consumer execute: counter = register?’? {counter = 4}

Counter has incorrect state of 4

CS370: Operating Systems L9.10
Dept. Of Computer Science, Colorado State University

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: registerl = counter {register1 = 5}
Producer execute: registerl = registerl + 1 {register1 = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register?2 = register?2 - 1 {register2 = 4}
Consumer execute: counter = register? {counter = 4}
Producer execute: counter = registerl {counter = 6}

Counter has incorrect state of 6

CS370: Operating Systems L9.11
Dept. Of Computer Science, Colorado State University

Race condition

Several processes access and manipulate data concurrently

Outcome of execution depends on

Particular order in which accesses takes place

Debugging programs with race conditions?
Painful!

Program runs fine most of the time, but once in a rare while something weird
and unexpected happens

CS370: Operating Systems L9.12
Dept. Of Computer Science, Colorado State University

Race condition: Example [1/3]

When process wants to print file, adds file to a special spooler
directory

Printer daemon periodically checks to see if there are files to be
printed

If there are, print them

In our example, spooler directory has a large number of slots

Two variables
in: Next free slot in directory
out: Next file to be printed

CS370: Operating Systems L9.13
Dept. Of Computer Science, Colorado State University

Race condition: Example [2/3]

In jurisdictions where Murphy’s Law hold ...

Process A reads 1n, and stores the value 7/, in local variable
next free slot

Context switch occurs

Process B also reads 1n, and stores the value 7/, in local variable
next free slot

Stores name of the file in slot 7

Process A context switches again, and stores the name of the file it
wants to print in slot 7/

CS370: Operating Systems L9.14
Dept. Of Computer Science, Colorado State University

Race condition: Example [3/3]

Spooler directory is internally consistent

But process B will never receive any output

User B loiters around printer room for years, wistfully hoping for an output
that never comes ...

CS370: Operating Systems L9.15
Dept. Of Computer Science, Colorado State University

The kernel is subject to several possible race
conditions

E.g.: Kernel maintains list of all open files
2 processes open files simultaneously

Separate updates to kernel list may result in a race condition

Other kernel data structures
Memory allocation
Process lists

Interrupt handling

CS370: Operating Systems L9.16
Dept. Of Computer Science, Colorado State University

Segment of code where processes change common variables

CRITICAL SECTION

Critical-Section

System of n processes {P,, P;, ..., P..1}

Each process has a segment of code (critical section) where it:

Changes common variables, updates a table, etc

No two processes can execute in their critical sections at the same time

CS370: Operating Systems L9.18
Dept. Of Computer Science, Colorado State University

The Critical-Section problem
Design a protocol that processes can use to cooperate

Each process must request permission to enter its critical section

The entry section

CS370: Operating Systems L9.19
Dept. Of Computer Science, Colorado State University

General structure of a participating process

do {
Request permission

: to ent
enfry section / o enter

critical section

exit section €—__ Housekeeping to let
other processes enter

remainder section

} while (TRUE) ;

CS370: Operating Systems L9.20
Dept. Of Computer Science, Colorado State University

REQUIREMENTS FOR A SOLUTION TO THE
CRITICAL SECTION PROBLEM

Requirements for a solution to the critical section

problem

(1) Mutual exclusion

(2) Progress
(3) Bounded wait

PROCESS SPEED

Each process operates at non-zero speed

Make no assumption about the relative speed of the n processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

19.22

Mutual Exclusion

Only one process can execute in its critical section

When a process executes in its critical section

No other process is allowed to execute in its critical section

CS370: Operating Systems L9.23
Dept. Of Computer Science, Colorado State University

Mutual Exclusion: Depiction
—

A enters

.) A exits
critical section

critical section
Process A

B enters

B attempts to enter B exits

critical section critical section

i o

Process B

S—

|
' B blocked

\n
a
=,
o)
g
(7]
4
Q
=.
(o)
=

Tl T2 T3 T4

CS370: Operating Systems L9.24
Dept. Of Computer Science, Colorado State University

Progress

{C1} If No process is executing in its critical section, and ...

{C2} Some processes wish to enter their critical sections

Decision on who gets to enter the critical section

Is made by processes that are NOT executing in their remainder
section

Selection cannot be postponed indefinitely

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.25

Bounded waiting

After a process has made a request to enter its critical section

AND before this request is granted

Limit number of times other processes are allowed to enter their
critical sections

CS370: Operating Systems L9.26
Dept. Of Computer Science, Colorado State University

Approaches to handling critical sections in the OS

Nonpreemptive kernel
If a process runs in kernel mode: no preemption

Free from race conditions on kernel data structures

Preemptive kernels
Must ensure shared kernel data is free from race conditions

Difficult on SMP (Symmetric Multi Processor) architectures

2 processes may run simultaneously on different processors

CS370: Operating Systems L9.27
Dept. Of Computer Science, Colorado State University

Kernels: Why preempt?

Suitable for real-time

A real-time process may preempt a kernel process

More responsive

Less risk that kernel mode process will run arbitrarily long

CS370: Operating Systems L9.28
Dept. Of Computer Science, Colorado State University

Software based solution

PETERSON’S SOLUTION

Peterson’s Solution

Software solution to the critical section problem

Restricted to two processes

No guarantees on modern architectures

Machine language instructions such as 1oad and store implemented
differently

Good algorithmic description

Shows how to address the 3 requirements

CS370: Operating Systems L9.30
Dept. Of Computer Science, Colorado State University

Peterson’s Solution: The components

Restricted to two processes in this example (but generalizable to n)

Pi and PJ

Share two data items

int turn

Indicates whose turn it is to enter the critical section

boolean flag[2]

Whether process is ready to enter the critical section

CS370: Operating Systems L9.31
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Structure of process P,

T,
do {

critical section

remainder section

} while (TRUE);

CS370: Operating Systems L9.32
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Structure of process P.

T,
do {

critical section

remainder section

} while (TRUE) ;

CS370: Operating Systems L9.33
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Mutual exclusion

while (flag[j] && turn==3) {;}
P, enters critical section only if

flag[j] == false OR turn == 1
If both processes try to execute in critical section at the
same time
flag[0] == flag[l] == true

But turn can be 0 or 1, not BOTH

|f Pj entered critical section

flag[j] == true AND turn ==]
Will persist as long as P;is in the critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.34

Peterson’s Solution:
Progress and Bounded wait

P;can be stuck only if flag[j]==true AND turn==j

If P;is not ready: flag[j]== false, and Pjcan enter
Once P;exits: it resets flag[j] to false

If P; resets f1lag[j] to true

Must set turn = 1i;

P; will enter critical section (progress) after at most one entry by P;
(bounded wait)

CS370: Operating Systems L9.35
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION HARDWARE

Solving the critical section problem using locks
N

do {

acquire lock
critical section
release lock

remainder section

} while (TRUE) ;

CS370: Operating Systems 19.37
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem

(1/2)

Uniprocessor environment

Prevent interrupts from occurring when shared variable is being modified

No unexpected modifications!

Multiprocessor environment

Disabling interrupts is time consuming

Message passed to ALL processors

CS370: Operating Systems L9.38
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem
(2/2)
-~ 1
o Special atomic hardware instructions
o Swap content of two words

o Modify word

CS370: Operating Systems L9.39
Dept. Of Computer Science, Colorado State University

Swap ()

void Swap (boolean *a, boolean *b) {

boolean temp = *a;
* a = *b ;
*b = temp;
}
CS370: Operating Systems L9.40

Dept. Of Computer Science, Colorado State University

Swap: Shared variable LOCK is initialized to false

do |
key = TRUE;
while (key == TRUE) { Cannot enter critical section
Swap (&lock, &key) UNLESS lock == FALSE

}

critical section

lock = FALSE;

remainder section lock is a SHARED variable
key is a LOCAL variable

} while (TRUE) ;

CS370: Operating Systems L9.41
Dept. Of Computer Science, Colorado State University

TestAndSet ()
T

boolean TestAndSet (boolean *target) {
boolean rv = *target;

*target = TRUE;
return rv;

CS370: Operating Systems L9.42
Dept. Of Computer Science, Colorado State University

TestAndSet: Shared boolean variable 1ock
initialized to false

do |

while (TestAndSet (&lock)) {;}

critical section \ To break out:
Return value of TestAndSet

hould be FALSE
lock = FALSE; Snovie be

remainder section

If two TestAndSet () are executed

simultaneously, they will be executed

} while (TRUE); sequentially in some arbitrary order

CS370: Operating Systems L9.43
Dept. Of Computer Science, Colorado State University

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter region:
TSL REGISTER, LOCK
CMP REGISTER, #0

JNE enter region
RET

leave region:
MOVE LOCK, #0
RET

enter region:
MOVE REGISTER, #1
XCHNG REGISTER, LOCK
CMP REGISTER, #0
JNE enter region
RET

leave region:
MOVE LOCK, #0
RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems L9.44

Dept. Of Computer Science, Colorado State University

The contents of this slide set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4 Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

CS370: Operating Systems L9.45
Dept. Of Computer Science, Colorado State University

