
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science
Colorado State University

L9.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.2

Topics covered in the lecture

¨ Critical section
¨ Critical section problem
¨ Peterson’s solution
¨ Hardware assists

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PROCESS SYNCHRONIZATION

A cooperating process can affect or be affected by
other processes within the system

L9.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.4

Process synchronization

¨ How can processes pass information to one another?

¨ Make sure two or more processes do not get in each other’s way
¤ E.g., 2 processes in an airline reservation system, each trying to grab the

last seat for a different passenger

¨ Ensure proper sequencing when dependencies are present

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.5

Applicability to threads

¨ Passing information between threads is easy
¤ They share the same address space of the parent process

¨ Other two aspects of process synchronization are applicable to
threads
¤ Keeping out of each other’s hair
¤ Proper sequencing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.6

A look at the producer consumer problem

while (true) {
 while (counter == BUFFER_SIZE) {
 ; /*do nothing */
 }
 buffer[in] = nextProduced
 in = (in +1)%BUFFER_SIZE;
 counter++;
}

while (true) {
 while (counter == 0) {
 ; /*do nothing */
 }
 nextConsumed = buffer[out]
 out = (out +1)% BUFFER_SIZE;
 counter--;
}

Producer

Consumer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.7

Implementation of ++/-- in machine language

counter++
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter--
 register2 = counter
 register2 = register2 - 1
 counter = register2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.8

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: register1 = register1 + 1

Producer execute: counter = register1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.9

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

The order of statements within each high-level statement is preserved

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.10

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter {register1 = 5}

Producer execute: register1 = register1 + 1 {register1 = 6}

Consumer execute: register2 = counter {register2 = 5}

Consumer execute: register2 = register2 - 1 {register2 = 4}

Producer execute: counter = register1 {counter = 6}

Consumer execute: counter = register2 {counter = 4}

Counter has incorrect state of 4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.11

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 6}

{counter = 4}

Counter has incorrect state of 6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.12

Race condition

¨ Several processes access and manipulate data concurrently

¨ Outcome of execution depends on
¤ Particular order in which accesses takes place

¨ Debugging programs with race conditions?
¤ Painful!
¤ Program runs fine most of the time, but once in a rare while something weird

and unexpected happens

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.13

Race condition: Example [1/3]

¨ When process wants to print file, adds file to a special spooler
directory

¨ Printer daemon periodically checks to see if there are files to be
printed
¤ If there are, print them

¨ In our example, spooler directory has a large number of slots

¨ Two variables
¤ in: Next free slot in directory
¤ out: Next file to be printed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.14

Race condition: Example [2/3]

¨ In jurisdictions where Murphy’s Law hold …

¨ Process A reads in, and stores the value 7, in local variable
next_free_slot

¨ Context switch occurs

¨ Process B also reads in, and stores the value 7, in local variable
next_free_slot
¤ Stores name of the file in slot 7

¨ Process A context switches again, and stores the name of the file it
wants to print in slot 7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.15

Race condition: Example [3/3]

¨ Spooler directory is internally consistent

¨ But process B will never receive any output
¤ User B loiters around printer room for years, wistfully hoping for an output

that never comes ...

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.16

The kernel is subject to several possible race
conditions

¨ E.g.: Kernel maintains list of all open files
¤ 2 processes open files simultaneously
¤ Separate updates to kernel list may result in a race condition

¨ Other kernel data structures
¤ Memory allocation
¤ Process lists
¤ Interrupt handling

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CRITICAL SECTION

Segment of code where processes change common variables

L11.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.18

Critical-Section

¨ System of n processes {P0, P1, …, Pn-1}

¨ Each process has a segment of code (critical section) where it:
¤ Changes common variables, updates a table, etc

¨ No two processes can execute in their critical sections at the same time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.19

The Critical-Section problem

¨ Design a protocol that processes can use to cooperate

¨ Each process must request permission to enter its critical section
¤ The entry section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.20

General structure of a participating process

do {

 critical section

 remainder section

} while (TRUE);

entry section

exit section

Request permission
to enter

Housekeeping to let
other processes enter

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

REQUIREMENTS FOR A SOLUTION TO THE
CRITICAL SECTION PROBLEM

L11.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.22

Requirements for a solution to the critical section
problem

① Mutual exclusion

② Progress

③ Bounded wait

¨ PROCESS SPEED

¤ Each process operates at non-zero speed
¤ Make no assumption about the relative speed of the n processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.23

Mutual Exclusion

¨ Only one process can execute in its critical section

¨ When a process executes in its critical section
¤ No other process is allowed to execute in its critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.24

Mutual Exclusion: Depiction

Process A

Process B

A enters
critical section

T1 T2 T3 T4

B attempts to enter
critical section

B enters
critical section

B blocked

A exits
critical section

B exits
critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.25

Progress

¨ {C1} If No process is executing in its critical section, and …
¨ {C2} Some processes wish to enter their critical sections

¨ Decision on who gets to enter the critical section
¤ Is made by processes that are NOT executing in their remainder

section
¤ Selection cannot be postponed indefinitely

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.26

Bounded waiting

¨ After a process has made a request to enter its critical section
¤ AND before this request is granted

¨ Limit number of times other processes are allowed to enter their
critical sections

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.27

Approaches to handling critical sections in the OS

¨ Nonpreemptive kernel
¤ If a process runs in kernel mode: no preemption
¤ Free from race conditions on kernel data structures

¨ Preemptive kernels
¤ Must ensure shared kernel data is free from race conditions
¤ Difficult on SMP (Symmetric Multi Processor) architectures

n 2 processes may run simultaneously on different processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.28

Kernels: Why preempt?

¨ Suitable for real-time
¤ A real-time process may preempt a kernel process

¨ More responsive
¤ Less risk that kernel mode process will run arbitrarily long

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PETERSON’S SOLUTION

Software based solution

L11.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.30

Peterson’s Solution

¨ Software solution to the critical section problem
¤ Restricted to two processes

¨ No guarantees on modern architectures
¤ Machine language instructions such as load and store implemented

differently

¨ Good algorithmic description
¤ Shows how to address the 3 requirements

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.31

Peterson’s Solution: The components

¨ Restricted to two processes in this example (but generalizable to n)

§ Pi and Pj

¨ Share two data items
§ int turn

n Indicates whose turn it is to enter the critical section

§ boolean flag[2]
n Whether process is ready to enter the critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.32

Peterson’s solution: Structure of process Pi

do {

 critical section

 remainder section

} while (TRUE);

flag[0] = TRUE;
turn = 1;
while (flag[0] && turn==1) {;}

flag[0] = FALSE;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.33

Peterson’s solution: Structure of process Pj

do {

 critical section

 remainder section

} while (TRUE);

flag[1] = TRUE;
turn = 0;
while (flag[0] && turn==0) {;}

flag[0] = FALSE;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.34

Peterson’s solution: Mutual exclusion

¨ Pi enters critical section only if
flag[j] == false OR turn == i

¨ If both processes try to execute in critical section at the
same time
§ flag[0] == flag[1] == true
§ But turn can be 0 or 1, not BOTH

¨ If Pj entered critical section
§ flag[j] == true AND turn == j
§ Will persist as long as Pj is in the critical section

while (flag[j] && turn==j) {;}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.35

Peterson’s Solution:
Progress and Bounded wait

¨ Pi can be stuck only if flag[j]==true AND turn==j
¤ If Pj is not ready: flag[j]== false, and Pi can enter
¤ Once Pj exits: it resets flag[j] to false

¨ If Pj resets flag[j] to true
¤ Must set turn = i;

¨ Pi will enter critical section (progress) after at most one entry by Pj
(bounded wait)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION HARDWARE
L11.36

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.37

Solving the critical section problem using locks

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.38

Possible assists for solving critical section problem
(1/2)

¨ Uniprocessor environment
¤ Prevent interrupts from occurring when shared variable is being modified

n No unexpected modifications!

¨ Multiprocessor environment
¤ Disabling interrupts is time consuming

n Message passed to ALL processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.39

Possible assists for solving critical section problem
(2/2)

¨ Special atomic hardware instructions
¤ Swap content of two words
¤ Modify word

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.40

Swap()

void Swap(boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp;
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.41

Swap: Shared variable LOCK is initialized to false

do {

 critical section

 remainder section

} while (TRUE);

key = TRUE;
while (key == TRUE) {
 Swap(&lock, &key)
}

lock = FALSE;

lock is a SHARED variable
key is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.42

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.43

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.44

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region:
 TSL REGISTER, LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

enter_region:
 MOVE REGISTER, #1
 XCHNG REGISTER,LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.45

The contents of this slide set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

