CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[DEADLOCKS]

Crux of safe sequences

Is there a sequence

Of process completions
Where each one’s max needs are met
And their resources returned to the pool

If so
the system’s in a safe state

Inspect each request
See if the request leads to a safe state
If so, let it through

If not, delay

COMPUTER SCIENCE DEPARTMENT

Shrideep Pallickara

Computer Science

Colorado State University

COLORADO STATE UNIVERSITY

survey

sequences?

Conditions for starvation?

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Could there be a priority for resource preemption?

DEADLOCKS

Frequently asked questions from the previous class

If resources were hypothetically infinite, could deadlocks still occur?

Are particular deadlock prevention strategies better than others? Or is
it dependent on the circumstances?

Resource allocation graph: What if process needs to have a specific
resource instance?

In deadlock avoidance, are you always exploring all possible

L18.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Deadlock Avoidance
Banker’s Algorithm
Deadlock Detection

And ... recovery

Other issues relating to deadlocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.3

3

A deadlock-prone system can be in one of three
states: safe, unsafe, and deadlocked

Safe state: For any possible sequence of resource requests, there is at
least one safe sequence of processing the requests

That eventually succeeds in granting all pending and future requests

Unsafe state: There is at least one sequence of future resource requests
that leads to deadlock

In a deadlocked state, the system has at least one deadlock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

A system in a safe state controls its own destiny
|

01 For any workload, it can avoid deadlock by delaying the processing
of some requests

Once the system enters an unsafe state, it may not be able to avoid
deadlock

01 In particular, the Banker’s Algorithm (that we will look at next) delays
any request that takes it from a safe to an unsafe state.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.5

5

BANKER’S ALGORITHM

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm

Designed by Dijkstra

Modeled on a small-town banker
Customers have been extended lines of credit

Not ALL customers will need their maximum credit immediately

Customers make loan requests from time to time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.7

7

Crux of the Banker’s Algorithm

Consider each request as it occurs

See if granting it is safe
If safe: grant it; If unsafe: postpone

For safety: banker checks if there is enough to satisfy some customer
If so, that customer’s loans are assumed to be repaid
Customer closest to limit is checked next

If all loans can be repaid; state is safe: loan approved

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

only reserved 10 units instead of 22

Has Max Has Max
A O 6 A 1 6
B 0 5 B 1 5
c 0 4 cC 2 4
D 0 7 D 4 7
Free: 10 Free: 2
Delay all requests except C
SAFE SAFE

There is ONLY ONE resource - Credit

Has Max
A 1 6
B 2 5
C 2 4
D 4 7
Free: 1
UNSAFE

Banker’s Algorithm: Managing the customers. Banker has

A customer may not need the entire credit line.

But the banker cannot count on this behavior.

9
’ o
Banker’s algorithm: Crux
Declare maximum number of resource instances needed
Cannot exceed resource thresholds
Determine if resource allocations leave system in a safe state
DEADLOCKS L18.10

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Data Structures [Overview]

Allocation Max Available

A B Cc A B C A B Cc

PO 0 1 0 7 5 3 3 3 2
Pl 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

A, B, and C are different types of resources

11

Data Structures: n is the number of processes and m is the number
of resource types

1 Available: Vector of length m

Number of resources for each type
mAvailable[i] = k

0 Max: n X m matrix
Maximum demand for each process (in each row)
Max[i,J]l= k

W Process P; may request at most k instances of Ry

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Data Structures: n is the number of processes and m is the number

of resource types
(B

0 Allocation: n X m matrix

Resource instances allocated for each process (each row)
Allocation[i,jl=k

W Process P; currently allocated k instances of Ry

0 Need: n X m matrix

Resource instances needed for each process (each row)
Need[i, jl=k

¥ Process P; may need k more instances of R

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.13

13

Vectors identifying a process’ resource requirements:

Rows in the matrices
[

0 Allocation;

Resource instances allocated for process P;

0 Need;

Additional resource instances that process P; may still request

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm: Notations

X and Y are vectors of length m

X < Y if-and-only-if
X[1]1 <Y[i] foralli=1,2,...,m

X={1,7,3,2} and Y = {0,3,2,1}
So,¥Y<X
Also, Y <X ifY<Xand Y #X

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.15

15

Banker’s Algorithm: Resource-request

Request;: Request vector for process P;
Request;[j]=k

Process P; wants k instances of Ry

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Request;< Need;

l Yes

Banker’s Algorithm: Resource-request

NO
3 Error

Exceeded claim

Request;< Available

_Lo__>Wait for

availability

l Yes

Allocation;
Need; = Need; - Request;

Available = Available - Request;
= Allocation;

+ Request;

17
Bankers Algorithm: Safety
Initialize Work = Available
(B
Find i such that:
Finish[i]==false && Need;< Work
lYEs
NO _ .
Work = Work + Allocation;
Finish[i]=true
Y H0ks S _)NO Unsafe state
if (Finish[i] = true)
lYEs
Safe state
COLORADD STATE UNIVERSITY (arescr S o ervent DEADLOCKS L18.18
18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Example

Allocation Max Available

A B Cc A B Cc A B Cc

PO 0 1 0 7 5 3 3 3 2
Pl 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<P1, P3, P4, P2, PO> satisfies safety criteria

Suppose process P1 requests 1 A, and 2 Cs: Request; = (1,0,2)
Request < Available

Pretend request was fulfilled

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.19

19

Bankers Algorithm: Example

Allocation Max Available

A B Cc A B Cc A B Cc

PO 0 1 0 7 5 3 2 3 0
Pl 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<Pl, P3, P4, PO, P2> satisfies safety criteria

Request, = (3,3,0) from process P4 cannot be granted: resources unavailable

Request, = (0,2,0) from process PO cannot be granted: unsafe state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Example

Allocation Max Available

A B Cc A B Cc A B Cc

PO 0 3 0 7 5 3 2 1 0
Pl 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

None of the processes can now satisfy their max resource needs.

Request, = (0,2,0) from process PO cannot be granted: unsafe state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.21

21

Bankers Algorithm: Practical implications [1/2]

Understanding the Banker’s Algorithm can help in designing simple
solutions for specific problems

Banker’s Algorithm to devise a rule for thread safe acquisition of a
pair of locks, A and B, with mutually recursive locking?
Suppose a thread needs to acquire locks A and B, in that order, while

another thread needs to acquire lock B first, then A

RULE: A thread is always allowed to acquire its second lock
Acquire first lock provided the other thread does not already hold its first lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Practical implications [2/2]

Processes rarely know in advance about their maximum resource needs

Number of processes managed by the kernel is not fixed

Varies dynamically

Resources thought to be available can vanish

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.23

23

DEADLOCK DETECTION

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Single instance of EACH resource type

Use wait-for graph

Variant of the resource allocation graph
Deadlock exists if there is a cycle in the graph

Transformation
(D) Remove resource nodes

(@ Collapse appropriate edges

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.25

25

What the edges in the wait-for graph imply

P; 2 Py

Process P; is waiting for a resource held by P

P; = P, only if resource allocation graph has
(O P;> R, and
(2) Ry P; for some resource R,

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Transforming a resource allocation graph into a
wait-for graph

Rl R3 R4
R» Py Rs

27

Transforming a resource allocation graph into a
wait-for graph

Ry Rs Ry
Py P, P3
R2 P4 R5
fessor:
COLORADO STATE UNIVERSITY Cormonen Soenos Deparivens DEADLOCKS L18.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Transforming a resource allocation graph into a
wait-for graph

- e

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.29

29

Deadlock detection for multiple instances of a

resource type
[

T Wait-for graph is not applicable

11 Approach uses data structures similar to Banker’s algorithm

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Data Structures: n is number of processes
m is number Of resource Types
(B
o Available: Vector of length m
Number of resources for each type
0 Allocation: n X m matrix
Resource instances allocated for each process
Allocation[i, j]=k
w Process P; currently allocated k instances of R
0 Request: n X m matrix
Current request for each process
Request[i, jl=k
® Process P; requests k more instances of R;
31
Deadlock detection: Initialization
Work and Finish are vectors of lengthm & n
(B
Work = Available
if (Allocation; # 0) {
Finish[i] = false;
} else {
Finish[i] = true;
}
COLORADD STATE UNIVERSITY (arescr S o ervent DEADLOCKS L18.32
32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Deadlock detection

Find i such that:
| Finish[i]==false && Request;< Work

NO YES
v

Work = Work + Allocation;
Finish[i]=true

for all i NO Deadlock
=) if (Finish[i] = true) >
lYES
Safe state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS

L18.33

33

Deadlock detection: Usage

1 How often will the deadlock occur?

1 How many processes will be affected when it happens?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS

L18.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Frequency of invoking deadlock detection
s

01 Resources allocated to deadlocked process idle
1 Until the deadlock can be broken

01 Deadlocks occur only when process makes a request

o Significant overheads to run detection per request

01 Middle ground: Run at regular intervals

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.35

35

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Recovery from deadlock
Automated or manual

OPTIONS
Break the circular wait: Terminate processes

Preempt resources from deadlocked process(es)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GopmpyTER SCIENCE DEPARTMENT DeabLocks L18.37
37
Breaking circular wait:
Process termination
Terminate all deadlocked processes
Terminate processes one at a time
After each termination, check if deadlock persists
Reclaim all resources allocated to terminated process
Professor: SHRIDEEP PALLICKARA 118.38

COLORADO STATE UNIVERSITY Gouputer SOIENCE DepARTMENT — DEADLOCKS

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Terminating a Process

Process may be in the midst of something

Updating files, printing data, etc.

Terminate process whose termination will incur minimum costs

Policy decision similar to scheduling decisions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.39

39

Factors determining process termination

Priority

How long has the process been running?

How much longer?

Number and types of resources used

How many more needed?

Interactive or batch

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Deadlock recovery: Resource preemption

For a set of deadlocked processes

Preempt resources from
some process

o
sy

Deadlock persists
\ 4

Give resources to some
other process

Deadlock broken

DONE
41
L]
Resource preemption: Issues
Selecting a victim
Which resource and process
Order of preemption to minimize cost
Starvation
Process can be selected for preemption finite number of times
COLORADD STATE UNIVERSITY (arescr S o ervent DEADLOCKS L18.42
42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Deadlock recovery through rollbacks

Checkpoint process periodically

Contains memory image and resource state
Deadlock detection tells us which resources are needed

Process owning a needed resource
Rolled back to before it acquired needed resource
Work done since rolled back checkpoint discarded

Assign resource to deadlocked process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.43

43

OTHER ISSUES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two-phase locking

Used in database systems

Operation involves requesting locks on several records and updating
all the locked records

When multiple processes are running?

Possibility of deadlocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.45

45

Two-Phase Locking

First phase
Process tries to acquire all the locks it needs, one at time
If successful: start second-phase

If some record is already locked?

Release all locks and start the first phase all over

Second-phase

Perform updates and release the locks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Communication Deadlocks

Process A sends a request message to process B

Blocks until B sends a reply back

Suppose, that the request was lost
A is blocked waiting for a reply

B is blocked waiting for a request to do something

Communication deadlock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS

L18.47

47

Communication deadlocks

Cannot be prevented by ordering resources (there are none)

Or avoided by careful scheduling (no moments when a request can be
postponed)

Solution to breaking communication deadlocks?

Timeouts

Start a timer when you send a message to which a reply is expected.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS

L18.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L18.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Livelocks

Polling (busy waits) used to enter critical section or access a resource

Typically used for a short time when overhead for suspension is considered
greater

In a livelock two processes need each other’s resource
Both run and make no progress, but neither process blocks

Use CPU quantum over and over without making progress

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.49

49

Livelocks do occur

If fork fails because process table is full

Wait for some time and try again

But there could be a collection of processes each trying to do the same
thing

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DEADLOCKS L18.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 7]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4 Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 6]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2"
Edition. ISBN: 978-0985673529. [Chapter 6]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DEeADLOCKS L18.51

51

SLIDES CREATED BY: SHRIDEEP PALLICKARA L18.26

