
SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Shrideep Pallickara
Computer Science

Colorado State University

1

L19.2COMPUTER SCIENCE DEPARTMENT

MEMORY MANAGEMENT

There is nothing wrong with your television set. Do not attempt to adjust
the picture. We are controlling transmission. If we wish to make it louder,
we will bring up the volume. If we wish to make it softer, we will tune it to
a whisper. We will control the horizontal. We will control the vertical.
We can roll the image, make it flutter. We can change the focus to a soft
blur or sharpen it to crystal clarity. For the next hour, sit quietly and we
will control all that you see and hear. We repeat: there is nothing wrong
with your television set.
 — Opening narration, The Outer Limits
 Broadcast on ABC from 1963 to 1965 at 7:30 PM ET on Mondays

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.3

Frequently asked questions from the previous class
survey

¨ What do modern OS use more for deadlocks? Ostrich, Prevention,
avoidance, detection/recovery?

¨ Bankers Algorithm
¤ Say we have a set of N processes making requests that will always be less

than their max; do we still run Bankers for every request?
¤ How does it determine the max need for each process?
¤ Can a safe sequence become unsafe with the introduction of a new process?
¤ Can a process know if its request is going to cause problems?

¨ Do you have to terminate a process to preempt its resources?

3

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.4

i-REU Workshop for Undergraduates in Computer
Science
¨ Sponsored by the U.S. National Science Foundation
¨ When: Noon – 3PM, April 4, 2025 (Friday) [In-person only]
¨ Where: CSB 130, Computer Science @ CSU
¨ Registration: https://forms.gle/MHgfzJiXLQAW5No98

¨ Lunch will be provided.
¨ Research Hackathon: No coding

¤ Developing a project plan for an interdisciplinary research effort
¤ Note: this is an ideation exercise where you brainstorm with students who may be

from other colleges at CSU (especially, Engineering and Agricultural Sciences).

4

https://forms.gle/MHgfzJiXLQAW5No98

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.5

Memory Management

Memory
Management

Address Translation

Base/limit registers

Segmentation

Hardware Support
for paging (TLB)

Paging

Virtual Memory
[Page faults,
thrashing]

Why?

Swapping

5

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.6

Topics covered in this lecture

¨ Address Translation

¨ Address binding
¨ Address spaces

¨ Swapping

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.7

Memory is an important resource that must be
managed carefully

¨ Memory capacities have been increasing
¤ But programs are getting bigger faster

¨ Parkinson’s Law
Programs expand to fill the memory available to hold them

7

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.8

You were taught in an early programming class that a
memory address is just an address

¨ A pointer in a linked list contains the actual memory address of what it
is pointing to

¨ Jump instructions contain memory address of the next instruction to be
executed

¨ This is useful fiction!
¤ Programmer is better off not thinking about how each memory reference is

converted into the data/instruction being referenced

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.9

Several features enabled by putting OS in control of
address translation

¨ Address translation
¤ Conversion of memory addresses the program thinks it is referencing to the

physical location of memory cell

¨ From the programmer’s perspective
¤ Address translation occurs transparently
¤ Program behaves correctly despite the fact that memory is stored

somewhere completely different from where it thinks it’s stored

9

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.10

Address translation in the abstract

Processor Translation

Physical
Memory

Invalid: Raise Exception

Valid

Physical
Address

Instructions or Data

Virtual address

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.11

Address translation concept

¨ Translator takes each instruction and data memory reference
generated by a process
¤ Checks whether the address is legal
¤ Converts it to a physical memory address that can be used to store or fetch

instructions or data
¤ The data itself – whatever is stored in memory – is returned as is; it is not

transformed in any way

¨ Translation usually implemented in hardware
¤ The kernel configures the hardware to accomplish this

11

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.12

Address translation is a simple concept but turns out
to be incredibly powerful
¨ What does it allow the OS to do?

¤ Process isolation
¤ IPC via shared memory
¤ Share code segments
¤ Program initialization
¤ Dynamic memory allocations
¤ Cache management
¤ Program debugging
¤ Virtual memory
¤ Efficient I/O …

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.13COMPUTER SCIENCE DEPARTMENT

MEMORY MANAGEMENT: WHY?

A pen – to register; a key –
That winds through secret wards
Are well assigned to Memory
By allegoric Bards.
…

Memory, William Wordsworth

13

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.14

Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least partially) during
execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.15

Memory

¨ Large array of words or bytes
¤ Each word/byte has its own address

¨ Typical execution cycle:
① Fetch instruction from memory
② Decode

n Operands may be fetched from memory

③ Results of execution may be stored back

15

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.16

Memory Unit

¨ Sees only a stream of memory addresses

¨ Oblivious to
¤ How these addresses are generated

n Instruction counter, indexing, indirection, etc.

¤What they are for
n Instructions or data

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.17

Why processes must be memory resident

¨ Storage that the CPU can access directly
① Registers in the processor
② Main memory

¨ Machine instructions take memory addresses as arguments
¤ None operate on disk addresses

¨ Any instructions in execution plus needed data
¤ Must be in memory

17

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.18

Overheads in direct-access storage devices

¨ CPUs can decode instructions and perform simple operations on
register contents
¤ 1 or more per clock cycle

¨ Registers accessible in 1 clock cycle

¨ Main memory access is a transaction on the memory bus
¤ Takes several cycles to complete

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.19

Coping with the speed differential

¨ Introduce fast memory between CPU and main memory
¤ Cache

19

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.20

Besides coping with the speed differential, correct
operation needed

¨ OS must be protected from accesses by user processes

¨ User processes must be protected from one another

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.21

Protection: Making sure each process has separate
memory spaces

¨ Determine range of legal addresses for process

¨ Ensure that process can access only those

21

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.22

Providing protection with registers

¨ Base
¤ Smallest legal physical address

¨ Limit
¤ Size of the range of physical address

¨ E.g.: Base = 300040 and limit = 120900
§ Legal: 300040 ßà (300040 + 120900 -1) = 420939

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.23

Base and limit registers loaded only by the OS

¨ Privileged instructions needed to load registers
¤ Executed ONLY in kernel mode

¨ User programs cannot change these registers’ contents

¨ OS is given unrestricted access to OS and user’s memory

23

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.24

CPU hardware compares every address generated
in user mode

≥
YES

base base + limit

<

memory

CPU

NO NO

TRAP to OS: Addressing ERROR

address YES

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.25

Trap?

¨ Interrupt generated by the CPU when there is
¤ An attempt to execute a privileged instruction
¤ Divide by zero
¤ Illegal memory access

¨ Causes the OS to switch over to kernel mode

25

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.26

Processes and memory

¨ To execute, a program needs to be placed inside a process

¨ When process executes
¤ Access instructions and data from memory

¨ When process terminates
¤ Memory reclaimed and declared available

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.27

Binding is a mapping from one address space to the
next

¨ Processes can reside in any part of the physical memory
¤ First address of process need not be 0x0000

¨ Addresses in source program are symbolic

¨ Compiler binds symbolic addresses to relocatable addresses

¨ Loader binds relocatable addresses to absolute addresses

27

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.28

Binding can be done at … [1/2]

¨ Compile time
¤ Known that the process will reside at location R

n If location changes? recompile

¤ MS-DOS .COM programs were bound this way

¨ Load time
¤ Based on compiler generated relocatable code

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.29

Binding can be done at … [2/2]
Execution-time

¨ Process can be moved around during execution
¤ Binding delayed until run time
¤ Special hardware needed
¤ Supported by most OS

29

L19.30COMPUTER SCIENCE DEPARTMENT

ADDRESS SPACES

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.31

Address spaces

¨ Logical
¤ Addresses generated by the CPU

¨ Physical
¤ Addresses seen by the memory unit

¨ Logical address space
¤ Set of logical addresses generated by program

¨ Physical address space
¤ Set of physical addresses corresponding to the logical address space

31

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.32

Generation of physical and logical addresses

¨ Compile-time and load-time bindings
¤ Identical logical and physical addresses

¨ Execution time bindings
¤ Logical addresses differ from physical addresses
¤ Logical address referred to as virtual address

¨ Runtime mapping performed in hardware
¤ Memory management unit (MMU)

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.33

Memory management unit

¨ Mapping converts logical to physical addresses

¨ User program never sees real physical address
¤ Create pointer to location
¤ Store in memory, manipulate and compare

¨ When used as a memory address (load/store)
¤ Relocated to physical memory

33

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.34

Dynamic relocation using a relocation register

memory

CPU

MMU

+
Logical
Address

Physical
Address

346

Relocation
Register
14000

14346

User program never sees the real physical addresses

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.35

But …

¨ Do we need to load the entire program in memory?

35

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.36

In dynamic loading an unused routine is never
loaded into memory

¨ Routine is not loaded until it is called
¤ Kept on disk in relocatable load format

¨ When routine calls another one
¤ If routine not present?

n Load routine and update address tables

¨ Does not require special support from OS
¤ Design programs appropriately

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.37

Contrasting Loading and Linking

¨ Loading
¤ Load executable into memory prior to execution

¨ Linking
¤ Takes some smaller executables and joins them together as a single larger

executable

37

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.38

Static linking

¨ Language libraries treated as other modules
¤ Combined by loader into program image

¨ Each program includes a copy of language library in its executable
image
¤ Wastes disk and memory space

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.39

Dynamic linking is similar to dynamic loading

¨ Stub included for each library reference; includes information about
¤ How to locate memory resident routine
¤ How to load routine if not in memory

¨ After routine is loaded, stub replaces itself with address of routine
¤ Subsequent accesses to code-segment do not incur dynamic linking costs

39

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.40

Unlike dynamic loading, dynamic linking needs
support from the OS

¨ Only the OS can allow multiple processes to access the same memory
region
¤ Shared Pages

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.41COMPUTER SCIENCE DEPARTMENT

SWAPPING

41

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.42

Swapping: Temporarily moving a process out of
memory into a backing store

Process
P1

Process
P2

Operating
System

User space

Swap out

Swap in

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.43

Swapping and memory space restrictions: Effects of
binding

¨ Process may or may not be swapped back into the same space that it
occupied

¨ Binding at compile or load time?
¤ Difficult to relocate

¨ Execution-time binding
¤ Process can be swapped into different memory space
¤ Physical addresses computed at run-time

43

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.44

When a CPU scheduler decides to execute a
process, it calls the dispatcher

¨ Check whether the next process is in memory

¨ If it is not & there is no free memory?
¤ Swap out a process that is memory resident
¤ Swap in the desired process

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.45

Overheads in swapping: Context switch time

¨ User process size: 100 MB

¨ Transfer rate: 50 MB/sec

¨ Transfer time = 2 seconds

¨ Average latency [disk seeks]: 8 milliseconds

¨ Swap out = transfer time + latency
¤ 2000 + 8 = 2008 milliseconds

¨ Total swap time = swap in + swap out
¤ 4016 milliseconds

45

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.46

Factors constraining swapping besides swap time

¨ Process must be completely idle
¤ No pending I/O

¨ Device is busy so I/O is queued
¤ Swap out P1 and swap in P2

¤ I/O operation may attempt to use P2’s memory
n Solution 1: Never swap process with pending I/O
n Solution 2: Execute I/O operations into OS buffers

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.47

Swapping is not a reasonable memory management
solution

¨ Too much swapping time; too little execution time

¨ Modification of swapping exists in many versions of UNIX

¤ Swapping is normally disabled
¤ Starts if many processes are running, and a set threshold is breached

¤ Halted when system load reduces

47

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.48

Summarizing the pure Swapping based approach

¨ Bring in each process, in its entirety, into memory

¨ Run process for a while before eviction due to:
¤ Space being needed for another process
¤ Process becomes idle

n Idle processes should not take up space in memory

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L19.49

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 8]

49

