CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

There is nothing wrong with your television set. Do not attempt to adjust
the picture. We are controlling transmission. If we wish to make it louder,
we will bring up the volume. If we wish to make it softer, we will tune it to
a whisper. We will control the horizontal. We will control the vertical.
We can roll the image, make it flutter. We can change the focus to a soft
blur or sharpen it to crystal clarity. For the next hour, sit quietly and we
will control all that you see and hear. We repeat: there is nothing wrong
with your television set.

— Opening narration, The Outer Limits

Broadcast on ABC from 1963 to 1965 at 7:30 PM ET on Mondays

MEMORY MANAGEMENT

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Frequently asked questions from the previous class
survey

What do modern OS use more for deadlocks? Ostrich, Prevention,
avoidance, detection/recovery?
Bankers Algorithm

Say we have a set of N processes making requests that will always be less
than their max; do we still run Bankers for every request?

How does it determine the max need for each process?
Can a safe sequence become unsafe with the introduction of a new process?

Can a process know if its request is going to cause problems?

Do you have to terminate a process to preempt its resources?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.3

3

i-REU Workshop for Undergraduates in Computer
Science

Sponsored by the U.S. National Science Foundation

When: Noon — 3PM, April 4, 2025 (Friday) [In-person only]
Where: CSB 130, Computer Science @ CSU

Registration: https: //forms.gle /MHgfzJiXLQAW5N098

Lunch will be provided.
Research Hackathon: No coding
Developing a project plan for an interdisciplinary research effort

Note: this is an ideation exercise where you brainstorm with students who may be
from other colleges at CSU (especially, Engineering and Agricultural Sciences).

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.2

https://forms.gle/MHgfzJiXLQAW5No98

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory Management

Why?
Virtual Memory
[Page faults, l
thrashing] \
Hard t Memor
ar wq're Suppor : Y
for paging (TLB) ~ Management

Paging

Segmentation

Address Translation

/

€— Base/limit registers

Swapping

5
L] L] L]
Topics covered in this lecture

Address Translation
Address binding

Address spaces

Swapping

MEMORY MANAGEMENT L19.6

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory is an important resource that must be
managed carefully

Memory capacities have been increasing

But programs are getting bigger faster

Parkinson’s Law

Programs expand to fill the memory available to hold them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L1e.7

7

You were taught in an early programming class that a
memory address is just an address

A pointer in a linked list contains the actual memory address of what it
is pointing to

Jump instructions contain memory address of the next instruction to be
executed

This is useful fiction!

Programmer is better off not thinking about how each memory reference is
converted into the data/instruction being referenced

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Several features enabled by putting OS in control of
address translation

Address translation

Conversion of memory addresses the program thinks it is referencing to the
physical location of memory cell

From the programmer’s perspective
Address translation occurs transparently

Program behaves correctly despite the fact that memory is stored
somewhere completely different from where it thinks it’s stored

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.9

9

Address translation in the abstract

Virtual address Invalid: Raise Exception
Processor Translation ——
Valid
Physical
L
Physical Memory
Address

Instructions or Data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Address translation concept

Translator takes each instruction and data memory reference
generated by a process

Checks whether the address is legal

Converts it to a physical memory address that can be used to store or fetch
instructions or data

The data itself — whatever is stored in memory — is returned as is; it is not
transformed in any way

Translation usually implemented in hardware

The kernel configures the hardware to accomplish this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.11

11

Address translation is a simple concept but turns out
to be incredibly powerful

What does it allow the OS to do?
Process isolation
IPC via shared memory
Share code segments
Program initialization
Dynamic memory allocations
Cache management
Program debugging
Virtual memory

Efficient 1/O ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

A pen — to register; a key —
That winds through secret wards
Are well assigned to Memory
By allegoric Bards.

Memory, William Wordsworth

MEMORY MANAGEMENT: WHY?

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

13

Memory Management: Why?

Main objective of system is to execute programs

Programs and data must be in memory (at least partially) during
execution

To improve CPU utilization and response times
Several processes need to be memory resident

Memory needs to be shared

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory

Large array of words or bytes

Each word/byte has its own address

Typical execution cycle:
@ Fetch instruction from memory
(2) Decode

Operands may be fetched from memory

(3) Results of execution may be stored back

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Goypyter SciENCE DEPARTMENT ~ MIEMORY MANAGEMENT L19.15
15
L]
Memory Unit
Sees only a stream of memory addresses
Oblivious to
How these addresses are generated
Instruction counter, indexing, indirection, etc.
What they are for
Instructions or data
Professor: SHRIDEEP PALLICKARA MEMORY MANAGEMENT L19.16

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Why processes must be memory resident

Storage that the CPU can access directly
@ Registers in the processor
(2) Main memory

Machine instructions take memory addresses as arguments

None operate on disk addresses

Any instructions in execution plus needed data

Must be in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L19.17

17

Overheads in direct-access storage devices

CPUs can decode instructions and perform simple operations on
register contents

1 or more per clock cycle
Registers accessible in 1 clock cycle

Main memory access is a transaction on the memory bus

Takes several cycles to complete

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L19.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Coping with the speed differential
[
1 Introduce fast memory between CPU and main memory
Cache
19
Besides coping with the speed differential, correct
operation needed
[
1 OS must be protected from accesses by user processes
11 User processes must be protected from one another
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT 119.20
20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

memory spaces
Determine range of legal addresses for process

Ensure that process can access only those

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

Protection: Making sure each process has separate

L19.21

21

Providing protection with registers

Base

Smallest legal physical address

Limit

Size of the range of physical address

E.g.: Base = 300040 and limit = 120900

Legal: 300040 €<-> (300040 + 120900 -1) = 420939

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L19.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Base and limit registers loaded only by the OS

Privileged instructions needed to load registers
Executed ONLY in kernel mode

User programs cannot change these registers’ contents

OS is given unrestricted access to OS and user’s memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.23

23

CPU hardware compares every address generated
in user mode

base base + limit

address
CPU —— P
l/ \J memory
TRAP to OS: Addressing ERROR
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Trap?

Interrupt generated by the CPU when there is
An attempt to execute a privileged instruction
Divide by zero

Illegal memory access

Causes the OS to switch over to kernel mode

25
Processes and memory
To execute, a program needs to be placed inside a process
When process executes
Access instructions and data from memory
When process terminates
Memory reclaimed and declared available
L19.26

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Binding is a mapping from one address space to the
next

Processes can reside in any part of the physical memory
First address of process need not be 9x0000

Addresses in source program are symbolic
Compiler binds symbolic addresses to relocatable addresses

Loader binds relocatable addresses to absolute addresses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.27

27

Binding can be done at ... [1/2]

Compile time

Known that the process will reside at location R

If location changes? recompile

MS-DOS .COM programs were bound this way

Load time

Based on compiler generated relocatable code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Binding can be done at ... [2/2]
Execution-time

Process can be moved around during execution
Binding delayed until run time
Special hardware needed

Supported by most OS

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.29

29

ADDRESS SPACES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Address spaces

Logical
Addresses generated by the CPU

Physical

Addresses seen by the memory unit

Logical address space
Set of logical addresses generated by program

Physical address space
Set of physical addresses corresponding to the logical address space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.31

31

Generation of physical and logical addresses

Compile-time and load-time bindings

Identical logical and physical addresses

Execution time bindings
Logical addresses differ from physical addresses

Logical address referred to as virtual address

Runtime mapping performed in hardware

Memory management unit (MMU)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory management unit

Mapping converts logical to physical addresses

User program never sees real physical address
Create pointer to location

Store in memory, manipulate and compare

When used as a memory address (load/store)

Relocated to physical memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.33

33

Dynamic relocation using a relocation register

Relocation
Register
14000
Logical Physical
Address
Address
CPU v - + — —>

346 N4 14346

memory
MMU
User program never sees the real physical addresses
fessor:
COLORADD STATE UNIVERSITY (arer e e emrment MEMORY MANAGEMENT 119.34
34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

But ...

Do we need to load the entire program in memory?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.35

35

In dynamic loading an unused routine is never
loaded into memory

Routine is not loaded until it is called

Kept on disk in relocatable load format

When routine calls another one

If routine not present?

Load routine and update address tables

Does not require special support from OS

Design programs appropriately

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Contrasting Loading and Linking

Loading

Load executable into memory prior to execution

Linking
Takes some smaller executables and joins them together as a single larger
executable

37

Static linking

Language libraries treated as other modules

Combined by loader into program image

Each program includes a copy of language library in its executable
image

Woastes disk and memory space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L19.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Dynamic linking is similar to dynamic loading

Stub included for each library reference; includes information about
How to locate memory resident routine

How to load routine if not in memory

After routine is loaded, stub replaces itself with address of routine

Subsequent accesses to code-segment do not incur dynamic linking costs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.39

39

Unlike dynamic loading, dynamic linking needs
support from the OS
Only the OS can allow multiple processes to access the same memory

region

Shared Pages

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SWAPPING
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
41
Swapping: Temporarily moving a process out of
memory into a backing store
(e
Operating
System
Swap out Process
P1
Swap in
< Process
- P2
User space _—
_/
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L19.42
42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Swapping and memory space restrictions: Effects of
binding

Process may or may not be swapped back into the same space that it
occupied

Binding at compile or load time?

Difficult to relocate

Execution-time binding
Process can be swapped into different memory space

Physical addresses computed at run-time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.43

43

When a CPU scheduler decides to execute a
process, it calls the dispatcher

Check whether the next process is in memory

If it is not & there is no free memory?
Swap out a process that is memory resident

Swap in the desired process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Overheads in swapping: Context switch time

User process size: 100 MB
Transfer rate: 50 MB/sec
Transfer time = 2 seconds
Average latency [disk seeks]: 8 milliseconds

Swap out = transfer time + latency
2000 + 8 = 2008 milliseconds

Total swap time = swap in + swap out
4016 milliseconds

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.45

45

Factors constraining swapping besides swap time

Process must be completely idle
No pending 1/O

Device is busy so | /O is queuved
Swap out Py and swap in P,
|/O operation may attempt to use P,’s memory

Solution 1: Never swap process with pending |/O

Solution 2: Execute |1/O operations into OS buffers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Swapping is not a reasonable memory management
solution

Too much swapping time; too little execution time

Modification of swapping exists in many versions of UNIX
Swapping is normally disabled
Starts if many processes are running, and a set threshold is breached

Halted when system load reduces

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.47

47

Summarizing the pure Swapping based approach

Bring in each process, in its entirety, into memory

Run process for a while before eviction due to:
Space being needed for another process

Process becomes idle

Idle processes should not take up space in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 8]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L19.49

49

SLIDES CREATED BY: SHRIDEEP PALLICKARA L19.25

