CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Segmentation
A process is broken up
into segments

Each with its base and bounds
and different lengths

Shrideep Pallickara

Each segment’s .
Stored contiguously Compu’rer Science
Though scattered

In physical memory

Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Frequently asked questions from the previous class
survey
How do threads impact memory management?
Address translation
Was address translation being performed even memory capacities were low?
Is address translation deterministic?
Does it need to be as fast as the CPU?
How does the kernel decide where to place a process?
What does “managed by hardware” (e.g. cache) mean?
Can the memory being referenced be in the cache?
If two processes write to the same logical address, how are the accesses
kept separate?
Is having the OS reside in known regions of physical memory a security risk?
COLORADO STATE UNIVERSITY (oo o o oRvENT MEMORY MANAGEMENT 1202
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Logical address spaces in action

#include <stdio.h>
#include <stdlib.h>
int main (int argc, char xargv[]) ({
printf ("location of code : %$p\n", main);

int x = 3;
printf ("location of stack: %$p\n", &x);
return Xx;

O ® N @ A W N =

Output when run on a 64-bit Mac

location of code : 0x1095afe50
location of heap : 0x1096008c0O
location of stack: 0x7fff69laeat64

printf ("location of heap : %$p\n", malloc (100e6));

3
L] L] L]
Topics covered in this lecture
Contiguous memory allocations
Fragmentations
External and Internal
Segmentation
Paging
L20.4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

WRAP-UP OF SWAPPING

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Factors constraining swapping besides swap time

Process must be completely idle
No pending I/O

Consider the case where the device is busy, so 1/O is queved
Next, you swap out P; and swap in P,
|/O operation may attempt to use P,’s memory

Solution 1: Never swap process with pending |/O

Solution 2: Execute |1/O operations into OS buffers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Swapping is not a reasonable memory management
solution

Too much swapping time; too little execution time

Modification of swapping exists in many versions of UNIX
Swapping is normally disabled
Starts if many processes are running, and a set threshold is breached

Halted when system load reduces

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.7

7

Summarizing the pure Swapping based approach

Bring in each process, in its entirety, into memory

Run process for a while before eviction due to:
Space being needed for another process

Process becomes idle

Idle processes should not take up space in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Partitioning of memory
|

T Main memory needs to accommodate the OS and user processes

0 Divided into two partitions
1 Resident OS

® Usually low memory

1 User processes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyTeR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

Base register (also referred to as a relocation register)

Smallest physical address

Limit register

Range of logical addresses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L20.11

11

Memory Mapping and Protection

When CPU scheduler selects a process for execution

Base and limit registers reloaded as part of context switch

Every address generated by the CPU

Checked against the relocation(base)/limit registers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L20.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

E.g.: base/relocation=100040

and limit=74600 limit base
register register
LogicaT TPhysical
address YES address
CPU —— < _—> + —————
NO

memory
TRAP to OS: Addressing ERROR

13
Memory Allocation: Fixed Partition method
Divide memory into several fixed-size partitions
Each partition contains exactly one process
Degree of multiprogramming
Bound by the number of partitions
L20.14

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory allocation: Variable-partition method [1/2]

Used in batch environments

OS maintains table tracking memory utilization
What is available?

Which ones are occupied?

Initially all memory is available
Considered a large memory gap
Eventually many memory gaps will exist

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.15

15

Memory allocation: Variable-partition method [2/2]

OS orders processes according to the scheduling algorithm

Memory allocated to processes until requirements of the next process
cannot be met

Wait till a larger block is available

Check if smaller requirements of other processes can be met

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Variable-partition method: Reclaiming spaces
B
1 When process arrives, if space is too large
Split into two
1 When process terminates?
If released memory is adjacent to other memory gaps
® Fuse to form a larger space
17
Splitting and Fusing Memory spaces
B
P3
P4
Py
P2
COLORADO STATE UNIVERSITY (oo o o oRvENT MEMORY MANAGEMENT 120.18
18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Dynamic Storage Allocation Problem

Satisfying a request of size n from the set of available spaces

First fit
Best fit
Worst fit
19
[] []
First fit

Scan list of segments until you find a memory-gap that is big enough

Gap is broken up into two pieces
One for the process

The other is unused memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Best Fit

Scan the entire list from beginning to the end

Pick the smallest memory-gap that is adequate to host the process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L20.21

21

Comparing Best Fit and First Fit

Best fit is slower than first fit

Tends to fill up memory with tiny, useless gaps

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

Surprisingly, best fit also results in more wasted memory than first fit

L20.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Worst fit

(B
1 How about going to the other extreme?
o Always take the largest available memory-gap

o1 Perhaps, the new memory-gap would be useful

01 Simulations have shown that worst fit is not a good idea either

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.23

23

SEGMENTATION

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Base and limits translation lacks many of the
features needed to support modern programs

Base and limits translation supports only coarse-grained protection at
the level of the entire process

It is not possible to prevent a program from overwriting its own code, for
example

It is also difficult to share regions of memory between two processes

Since the memory for a process needs to be contiguous ...

Supporting dynamic memory regions, such as for heaps, thread stacks, or memory
mapped files, becomes difficult to impossible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.25

25

In our discussions so far ...

Logical/virtual memory is one-dimensional

Logical addresses go from @ to some max value

Many problems can benefit from having two or more separate logical
address spaces

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.13

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

01 Source Text

a

Symbol table

Constants Table

a

o Parse tree

o Stack

Integer and floating point constants

Syntactic analysis of program _

Procedure calls within the compiler

A compiler has many tables that are built up as
compilation proceeds

Names and attributes of variables Grows continuously

as compilation
proceeds

Grows and shrinks
in unpredictable ways
during compilation

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Goypyter SciENCE DEPARTMENT ~ MIEMORY MANAGEMENT L20.27
27
One dimensional address space with growing tables
(B Program has an exceptional

number of variables
Symbol
Table

Source
text

Address space
being used

Free -

table the constant table

COLORADO STATE UNIVERSITY

Parse
tree

Constantl :}_ Address space allocated to

Call
stack

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT 120.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

One dimensional address space with growing tables

Program has an exceptional
number of variables

Table

Symbol
Symbol table has BUMPED INTO

the source text table

Source l
text

Address space
B Constantl }

being used

M table
Free -
Parse
tree
Call l
stack

Professor: SHRIDEEP PALLICKARA

Address space allocated to
the constant table

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.29
29
Options available to the compiler
Say that compilation cannot continue
Not cool
Play Robin Hood
Take space from tables with room
Give to tables with little room
Professor: SHRIDEEP PALLICKARA MEMORY MANAGEMENT 120.30

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What would be really cool ...

Free programmer from having to manage expansion and contraction
of tables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.31

31

But how?

Provide many completely independent address spaces

Segments

Each segment has linear sequence of addresses

0 to max

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Segments and Base /Limit registers

The hardware supports an array of pairs of base and bounds
registers, for each process

Segment Table

Each entry in the array controls a portion, or segment, of the virtual
address space

The physical memory for each segment is stored contiguously, but
different segments can be stored at different locations

For example, code and data segments are not immediately adjacent to
each other in either the virtual or physical address space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.33

33

Other things about segments

Different segments can and do have different lengths

Segments grow and shrink independently without affecting each other;
For example, consider a segment for the stack
Size increase: something pushed on stack segment

Size decrease: something popped off of stack segment

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.17

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Symbol
table

Segment0

Source
text

Segmentl

Segmentation allows users to view memory as a
collection of variable-sized segments

stack

Segment4

Parse
tree

Segment3

Constants

Segment2

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L20.35

35

Segmentation

Addresses specify

Segment name

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Logical address space is a collection of segments

Segments have name and length

Offset within the segment

Tuple: <segment-number, offset>

Prof + SHRIDEEP PALLICKARA
rofessor: S| c MEMORY MANAGEMENT

L20.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

stack
Symbol S—
table Segment4

Segment0 Parse
tree

Segment3

Segmentation Addressing Example

1400
Segment 0
2400

3200 Segment 3

Source Limit Base
text 0 1000 1400
€X Constants

L ' 1 400 6300 4300 S 7

egmen Segment2 2 400 4300 4700

3 1000 3200 4800
4 1000 4800 Segment 4

5800

6300
Segment 1

6700 o
37
L]
Segmentation Hardware
|
S -
limit = base
cPU — s [d |
Logical
Address Segment Table
Physical
YES Address
< —> + —
NO The offset d must be between
0 and the segment limit
TRAP: Addressing Error
COLORADO STATE UNIVERSITY (oo o o oRvENT MEMORY MANAGEMENT 120.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Contiguous Memory Allocation: Fragmentation
|

1 As processes (and segments) are loaded /removed from memory

£ Free memory space is broken into small pieces

01 External fragmentation
1 Enough space to satisfy request; BUT

o Available spaces are not contiguous

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyTeR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Fragmentation: Example

B
P3
P, Ps
P Process P5 cannot be loaded because

memory space is fragmented

P2

41

Fragmentation can be internal as well
|

1 Memory allocated to process may be slightly larger than requested

0 Internal fragmentation

Unused memory is internal to blocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Compaction: Solution to external fragmentation
|
71 Shuffle memory contents

Obijective: Place free memory into large block

1 Not possible if relocation is static

Load time

01 Approach involves moving:
(1O Processes towards one end

@ Gaps towards the other end

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L2043

43

Compaction: Example

[
Ps
Py Ps
Py
P,

COLORADO STATE UNIVERSITY (oo o o oRvENT MEMORY MANAGEMENT 120.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Memory compaction is time intensive and is usually
not done

Let’s consider a machine with 1 GB of RAM

The machine can copy 4 bytes in 20 nanoseconds

Time to compact all the memory?
107 x (20x10°9/4) = 5 seconds (approximately)
Note: 1 GB is approximately 107 bytes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.45

45

PAGING:
OVERVIEW OF THE MAPPING PROCESS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Overview of how mapping of logical and physical
addresses is performed

CPU
Virtual
address
Memory 5 Translation Physical
Management | Lookaside Memory
Unit (MMU) Buffer (TLB)

Physical :\
address e _ll=eF A

MMU may access Physical Memory to perform translations
{PageTable may be stored there}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.47

47

PAGING

Noncontiguous memory management

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The Paging memory management scheme

Physical address space of process can be non-contiguous

Solves problem of fitting variable-sized memory chunks to backing
store

Backing store has fragmentation problem

Compaction is impossible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.49

49

Basic method for implementing paging

Break memory into fixed-sized blocks

Physical memory: frames .
Same size
Logical memory: pages

Backing store is also divided the same way

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L20.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8]

Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. 1st edition. CreateSpace Independent Publishing Platform. ISBN-13: 97 8-
1985086593. [Chapter 14]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L20.51

51

SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.26

