CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Paging without memory fragments

Divvy up the logical address into fixed sized chunks
Pages ... we'll call them

Do the same for physical memory
Frames ... we'll call those chunks

Frames cradle pages Shrideep Pallickara

takes a frame to hold a page C S .
Pages from a process may omputer Science

be scattered throughout memory COlOFGdO Sfo're Universi’ry

With paging, in physical memory’s realm
No space goes waste

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Segmentation fault?
Do memory gaps (i.e., external fragmentation) exist in segmentation?
Internal fragmentation?
In segmentation?
How often2
Segment table: How big?
Could the MMU be a potential bottleneck?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.3

3

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture
B

01 Paging

01 Translation look-aside buffers (TLB)

1 Memory Protection in paged environments

-1 Shared Pages

01 Page sizes
COLORADD STATE UNIVERSITY (oresor SR e mvanr MEMORY MANAGEMENT L21.4
4

PAGING

=

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The Paging memory management scheme

Physical address space of process can be non-contiguous

Solves problem of fitting variable-sized memory chunks to backing
store

Backing store has fragmentation problem

Compaction is impossible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.6

6

Basic method for implementing paging

Break memory into fixed-sized blocks

Physical memory: frames .
Same size
Logical memory: pages

Backing store is also divided the same way

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.7

7

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What will seem odd, and perhaps cool, about
paging [1/2]

While a program thinks of its memory as linear ...

It is usually scattered throughout physical memory in a kind of abstract
mosdaic

The processor will execute one instruction after another using virtual
addresses

The virtual addresses are still linear

However, an instruction located at the end of a page will be located in a
completely different region of physical memory from the next instruction at
start of another page

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.8

8

What will seem odd, and perhaps cool, about
paging [2/2]

Data structures appear to be contiguous using virtual addresses

But a large matrix is scattered across many physical page frames

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.9

9

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Paging: Analogy

Shuffling several decks of cards together
A single process in its virtual address page sees the cards of a single
deck in order

A different process sees a completely different deck, but it will also be in
order

In physical memory, however, the decks of all processes currently
running will be shuffled together, apparently at random

Page tables are the magician’s assistant in locating cards from the
shuffled decks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.10

10

Paging: Logical and Physical Memory

0
1 Page 0
Page 0 ol 1)
1| 4
Page 1 23 3 Page 2
Page 2 3| 7 4 page 1
T
Page 3 Page Table 5
; 6
Logical Memory
7 Page 3
Physical Memory
COLORADO STATE UNIVERSITY (oo o o oRvENT MEMORY MANAGEMENT L21.11

11

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Paging Hardware: Performing address translation

Page Page
number Logical offset Physical
Address
Address) - f000 000
CPU ‘),_p—ﬂl_i[l nﬂ Frame f
£111.111
P
Page Table
12
L]
Page size
A power of 2
Typical sizes: 512 bytes — 16 MB
Size of logical address: 2™
Page size: 27
Page number Page offset
m - n n m bits
Logical address
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L21.13

13

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Paging and Fragmentation

No external fragmentation

Free frame available for allocation to other processes

Internal fragmentation possible
Last frame may not be full

If process size is independent of page size

Internal fragmentation = V2 page per process

14
L]
Page sizes
Processes, data sets, and memory have all grown over time
Page sizes have also increased
Some CPUs/kernels support multiple page sizes
L21.15

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

15

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Paging: User program views memory as a single
space

Program is scattered throughout physical memory

User view and physical memory reconciled by

Address-translation hardware

Process has no way of addressing memory outside of its page table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.16

16

OS manages the physical memory

Maintains frame-table; one entry per frame
Free or allocated?

If allocated: Which page of which process

Maintains a page table for each process

Used by CPU dispatcher to define hardware page table when process is
CPU-bound

Paging increases context switching time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.17

17

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Example: 32-bit address space

Page size = 4K P,
Logical address = 0x23FA427 e
What’s the offset within the page?

0x427
What’s the page number?

O0x23FA

Page table entry maps 0x23FA to frame 0x12345 what is the physical
memory address for the logical address?
0x12345427

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.18

18

Example: 32-bit address space

Page size = 1K

Logical address = 0x23FA427

What's the offset within the page?
01| 0000100111

What's the page number?
0010 0011 1111 1010 O1

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Coupurer SOIENGE DEpARTMENT MEMORY MANAGEMENT L21.19

19

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

All accesses to memory must go through'aap.
Efficiency is important.

HARDWARE SUPPORT FOR PAGING

The purpose of the page table is to map virtual

to physical f
- pages onto physical rframes

01 Think of the page table as a function

Takes virtual page number as an argument

Produces physical frame number as result

01 Virtual page field in virtual address replaced by frame field

Physical memory address

Professor: SHRIDEEP PALLICKARA
COLORADQO STATE UNIVERSITY coupuTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.21

21

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two major issues facing page tables

Can be extremely large
With a 4 KB page size, a 32-bit address space has 1 million pages

Also, each process has its own page table

The mapping must be fast
Virtual-to-physical mapping must be done on every memory reference

Page table lookup should not be a bottleneck

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.22

22

Implementing the page table:
Dedicated registers

When a process is assigned the CPU, the dispatcher reloads these
registers

Feasible if the page table is small

However, for most contemporary systems page table entries are greater
than 109

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.23

23

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Implementing the page table in memory

Page table base register (PTBR) points to page table

2 memory accesses for each access
One for the page-table entry
One for the byte

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.24

24

Process and its page table:
When the page table entirely in memory?

A pointer to the page table is stored in the page table base register
(PTBR) in the PCB

Similar to the program counter

Often there is also a register which tracks the number of entries in the
page table

Page table need not be memory resident when the process is swapped
out

But must be in memory when process is running

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.25

25

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.12

CS370: Operating Systems

Dept. Of

Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

TRANSLATION LOOK-ASIDE BUFFERS

Cash is king. — Pehr Gyllenhammar

26

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.27

Observation

0 Most programs make a large number of references to a small number
of pages

Not the other way around

0 Only a small fraction of the page table entries are heavily read

Others are barely used at all

27

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Translation look-aside buffer (TLB): Small, fast-

lookup hardware cache

Number of TLB entries is small (64 ~ 1024)

Contains few page-table entries

Each entry of the TLB consists of 2 parts

A key and a value

When the associative memory is presented with an item

Item is compared with all keys simultaneously

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L21.28

28

Using the TLB with page tables

TLB contains only a few page table entries

[1/2]

When a logical address is generated by the CPU, the page number is

presented to the TLB
When frame number is found (TLB hit), use it to access memory

Usually just 10-20% longer than an unmapped memory reference

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L21.29

29

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Using the TLB with page tables [2/2]
What if there is a TLB miss?

Memory reference to page table is made

Replacement policies for the TLB entries

Some TLBs allow certain entries to be wired down

TLB entries for kernel code are wired down

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

MEMORY MANAGEMENT L21.30
30
L] L]
Paging Hardware with a TLB
Page Page
number Logical Offse* Physical
Address
\dcjress £000..000
o [(p [d] —E T e
A
h" £111..111
P _
—> f —
TLBMiss T
Page Table
ssor: SHRIDEEP PALLIC]
COLORADO STATE UNIVERSITY (oreoer o DemarTMENT MEMORY MANAGEMENT 121.31
31

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

TLB and Address Space Identifiers (ASIDs)

ASID uniquely identifies each process

Allows TLB to contain addresses from several different processes
simultaneously

When resolving page numbers
TLB ensures that ASIDs match

If not, it is treated as a TLB miss

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.32

32

Weithout ASIDs TLB must be flushed with every
context switch

Each process has its own page table

Without flushing or ASIDs, TLB could include old entries
Valid virtual addresses

But incorrect or invalid physical addresses _@ &

From previous process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.33

33

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Effective memory access times

20 ns to search TLB

100 ns to access memory

If page is in TLB: access time = 20 + 100 = 120 ns

If page is not in TLB:
20 + 100 + 100 =220ns

/‘

Access TLB :
Access memory to retrieve frame number

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.34

34

Effective access times with different hit ratios

80%
=0.80x 120 + 0.20 x 220 = 140 ns

98%
=0.98x 120 +0.02x220=122ns

When hit rate increases from 80% to 98%

Results in ~13% reduction in access time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.35

35

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

TLB in modern, practical settings
|
01 Hit time: 0.5 — 1 nanoseconds

01 Miss penalty: 10 — 100 clock cycles
01 Miss rate: 0.01 — 1%

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Kept in the page table

Bits can indicate

Valid-invalid bit

Indicates if page is in the process’s logical address space

Read-write, read-only, execute

lllegal accesses can be trapped by the OS

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

Protection bits are associated with each frame

MEMORY MANAGEMENT L21.38

38

00000

10,468

Page

Page

Page

Page

Page

Page

ol & W] N P]|] O

Logical Memory

10K = 10240

N o o W N B O

Frame Valid/
Number Invalid bit

2 v
3 v
4 v
7 v
8 v
9 v
0 i
0 i
Page Table

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Protection Bits: Page size=2K;
Logical address space = 16K

Program restrictedto 0 - 10468

Page 0

Page 1

Page 2

Page 3

Page 4

© O J o 1L WN H O

Page 5

Page X

Physical Memory
MEMORY MANAGEMENT L21.39

39

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SHARED PAGES

40
Reentrant Code [1/2]
[
01 A computer program or subroutine is called reentrant if:
It can be inferrupted in the middle of its execution and
Then safely called again ("re-entered") before its previous invocations
complete execution
COLORADD STATE UNIVERSITY (oo S o errmenT MEMORY MANAGEMENT L21.41
41

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Reentrant Code [2/2]

Non-self-modifying

Does not change during execution

Two or more processes can:
@ Execute same code at same time
(2) Will have different data

Each process has:

Copy of registers and data storage to hold the data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.42

42

Shared Pages

System with N users

Each user runs a text editing program

Text editing program
150 KB of code
50 KB of data space

40 users
Without sharing: 8000 KB space needed
With sharing : 150 + 40 x 50 = 2150 KB needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.43

43

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Shared Paging 0
1 Data 1
ed 1 3 2 Data 3
ed 2 4 Page Tables 3 ed 1
el 3 8 \ 4 ed 2
Data 1|| 1 5
ed 1 3
6 ed 3
Process P, ed 2 2
7 Data 2
ed 3 6
8
ed 1 3 Data 2 7 9
ed 2 4 Process P,
ed 3 6
Page n
Data 3|| 2
Physical Memory
Process P
44
Shared Paging
Other heavily used programs can be shared
Compilers, runtime libraries, database systems, etc.
To be shareable:
(1) Code must be reentrant
(2) The OS must enforce read-only nature of the shared code
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L21.45

45

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

You might not write well every dk
you can always edit a bad page.
can't edit a blank page. -

Jodi Picouf

PAGE SIZES
46
Paging and page sizes
[
0 On average, Y2 of the final page is empty
Internal fragmentation: wasted space
01 With n processes in memory, and a page size p
Total np/2 bytes of internal fragmentation
01 Greater page size = Greater fragmentation
COLORADO STATE UNIVERSITY HoresenSUEPuicons o Mewory Maacewent
47

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

But having small pages is not necessarily efficient

Small pages mean programs need more pages
Larger page tables

32 KB program needs
4 8-KB pages, but 64 512-byte pages

Context switches can be more expensive with small pages

Need to reload the page table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.48

48

Transfers to-and-from disk are a page at a time

Primary Overheads: Seek and rotational delays

Transferring a small page almost as expensive as transferring a big
page

64 x 15 = 960 msec to load 64 512-bytes pages

4 x 25 = 100 msec to load 4 8KB pages

Here, large pages make sense

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.49

49

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Overheads in paging:
Page table and internal fragmentation

Average process size = §
Page size = p

Size of each page entry = ¢
Pages per process = s/p

se/p: Total page table space

Total Overhe% se/p + p/2 —

o o Internal fragmentation loss

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.50

50

Looking at the overhead a little closer

Total Overhead = se/p + p/2

Increases if p is small Increases if p is large

* Optimum is somewhere in between

* First derivative with respect to p
-se/p’+% =0 e p’=2se
p=2se

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.51

51

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Optimal page size: Considering only page size and
internal fragmentation

P = sqrt(2se)
s = 128KB and e¢=8 bytes per entry

Optimal page size = 1448 bytes
In practice we will never use 1448 bytes

Instead, either 1K or 2K would be used
Why? Pages sizes are in powers of 2 i.e. 2X

Deriving offsets and page numbers is also easier

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.52

52

Pages sizes and size of physical memory

As physical memories get bigger, page sizes get larger as well

Though not linearly

Quadrupling physical memory size rarely even doubles page size

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.53

53

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L21.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references
Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L21.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L21.27

