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Frequently asked questions from the previous class 
survey

¨ What is the effectiveness of small vs large pages?

¨ Could page size be changed later on?
¨ Can page tables be shared across processes?

¨ Is there a case where you end up using too much for page tables?
¨ Why does each memory access result in two accesses? one for the 

page table entry, and one for the page.  Any way around it?

¨ Do all processes share the same TLB hardware?
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Topics covered in this lecture

¨ Shared pages

¨ Page sizes
¨ Structure of Page tables

¤ Hashed Page Tables
¤ Inverted Page Tables
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SHARED PAGES

All who joy would win must share it. Happiness was born a 
Twin. 

George Byron
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Reentrant Code                                       [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and 
¤ Then safely called again ("re-entered") before its previous invocations 

complete execution
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Reentrant Code                                       [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
①  Execute same code at same time
②  Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data

6



SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.4

CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.7

Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed
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Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
①  Code must be reentrant
②  The OS must enforce read-only nature of the shared code
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You might not write well every day, but 
you can always edit a bad page. You 
can't edit a blank page. 

Jodi Picoult
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Paging and page sizes

¨ On average, ½ of the final page is empty
¤ Internal fragmentation: wasted space

¨ With n processes in memory, and a page size p
¤ Total np/2 bytes of internal fragmentation

¨ Greater page size = Greater fragmentation
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But having small pages is not necessarily efficient

¨ Small pages mean programs need more pages
¤ Larger page tables
¤ 32 KB program needs

n 4 8-KB pages, but 64 512-byte pages

¨ Context switches can be more expensive with small pages
¤ Need to reload the page table
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Transfers to-and-from disk are a page at a time

¨ Primary Overheads: Seek and rotational delays

¨ Transferring a small page almost as expensive as transferring a big 
page
§ 64 x 15 = 960 msec to load 64 512-bytes pages
§ 4 x 25  =  100 msec to load 4 8KB pages

¨ Here, large pages make sense
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Overheads in paging:
Page table and internal fragmentation 

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n se/p: Total page table space

¨ Total Overhead =   se/p + p/2

Page table overhead Internal fragmentation loss
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Looking at the overhead a little closer

¨ Total Overhead = se/p +  p/2

Increases if p is small Increases if p is large

• Optimum is somewhere in between

• First derivative with respect to p
 -se/p2 + ½ = 0    i.e., p2 = 2se
 𝑝 = 2𝑠𝑒
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Optimal page size: Considering only page size and 
internal fragmentation

¨ p = sqrt(2se)

¨ s = 128KB and e=8 bytes per entry

¨ Optimal page size = 1448 bytes
¤ In practice we will never use 1448 bytes
¤ Instead, either 1K or 2K would be used

n Why? Pages sizes are in powers of 2 i.e. 2X 

n Deriving offsets and page numbers is also easier
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Pages sizes and size of physical memory

¨ As physical memories get bigger, page sizes get larger as well

¤ Though not linearly

¨ Quadrupling physical memory size rarely even doubles page size
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STRUCTURE OF THE PAGE TABLE

All problems in computer science can 
be solved by another level of 
indirection. Except, of course, the 
problem of too many indirections!

—David Wheeler
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Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses
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Basic Paging Hardware
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Structure of the Page Table 

¨ Hierarchical Paging

¨ Hashed Page Tables
¨ Inverted Page Tables
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Hierarchical Paging

¨ Logical address spaces: 232 ~ 264

¨ Page size: 4KB = 22x 210= 212

¨ Number of page table entries?
§ Logical address space size/page size
§ 232/212 = 220 ≈ 1 million entries

¨ Page table entry = 4 bytes
¤ Page table for process = 220 x 4 = 4 MB
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Issues with large page tables

¨ Cannot allocate page table contiguously in memory

¨ Solution:
¤ Divide the page table into smaller pieces

n Page the page-table
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Two-level Paging

Page offsetPage number

20 12

32-bit logical address
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Two-level Paging

Page offset
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32-bit logical address

Inner
Page

1010

Outer 
Page
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Physical memory
frame

Page of page table

Outer page
table

Address translation in two-level paging

p1 p2 d

p2

p1

d

Actual Physical address

Track pages 
of page-table 
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Two-level Page tables: 
The outer page table

0
1

3
2

4

1023

Page offset

12

Inner
Page

1010

Outer 
Page

4 GB address space split into 1024 chunks

Page size is 4 KB

Each entry represents 4 MB
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Two-level Page tables: 
Case where only a few entries are needed

0
1

3
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4
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Page offset
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Inner
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4 GB address space split into 1024 chunks

Page size is 4 KB

Each entry represents 4 MB

Unused by program

28



SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.15

CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.29

Two-level Page tables
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Address space has a million pages
But ONLY 4 page tables are 
actually needed

Second level
 page tables
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Computing number of page tables in hierarchical 
paging

Page offset

10

Inner
Page

1111

Outer 
Page

• There is 1 outer table with 211 entries
• Each outer table entry points to an inner page 

table
– So, there are 211 inner page tables

• Total number of page tables = 1 + 211

• Total number of entries =  211 + 211 x 211
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Let’s try 2-level paging for a 64-bit logical address 
space

Page offset

12

Inner 
page 

1042

Outer page 

Page offset

1210

Inner 
page 

10

Outer 
page 

32

2nd Outer 
page 

• Outer page table has 242 entries!
• Divide the outer page table into smaller pieces?

31

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.32

Why hierarchical tables may strain 64-bit 
architectures

¨ In our previous example
¤ There would be 232 entries in the outer page table

¨ We could keep going
¤ 4-level page tables …

¨ But all this results in a prohibitive number of memory accesses
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Hashed page tables

¨ An approach for handling address spaces > 232

¨ Virtual page number is hashed
¤ Hash used as key to enter items in the hash table

¨ The value part of table is a linked list
¤ Each entry has:

① Virtual page number
② Value of the mapped page frame
③ Pointer to next element in the list
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Searching through the hashed table for the frame 
number

¨ Virtual page number is hashed
¤ Hashed key has a corresponding value in table

n Linked List of entries

¨ Traverse linked list to
¤ Find a matching virtual page number
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Hash tables and 64-bit address spaces

¨ Each entry refers to several pages instead of a single page

¨ Multiple page-to-frame mappings per entry
¤ Clustered page tables

¨ Useful for sparse address spaces where memory references are non-
contiguous (and scattered) 

36



SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.19

CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L22.37COMPUTER SCIENCE DEPARTMENT

INVERTED PAGE TABLES

37

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.38

Inverted page table

¨ Only 1 page table in the system
¤ Has an entry for each memory frame

¨ Each entry tracks 
¤ Process that owns it (pid)
¤ Virtual address of page (page number)
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Inverted Page table

CPU pid d i d

Logical
Address

Physical
Address

i000…000

i111…111

Page Table

Frame i

pid | p

search

p

Stored based on frames
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Profiling the inverted page table

¨ Decreases the amount of memory needed

¨ Search time increases
¤ During page dereferencing

¨ Stored based on frames, but searched on pages
¤ Whole table might need to be searched!
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Other issues with the inverted page table

¨ Shared paging
¤ Multiple pages mapped to same physical memory

¨ Shared paging NOT possible in inverted tables
¤ Only 1 virtual page entry per physical page

n Stored based on frames
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PAGING IN REAL-WORLD SYSTEMS 
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x86-64

¨ Intel: IA-64 Itanium
¤ The architrecture did not gain much traction

¨ AMD: x86-64
¤ Intel adopted AMD’s x86-64 architecture

¨ 64-bit address space: 264 (16 exabytes)

¨ Currently x86-64 provides
¤ 48–bit virtual address [Sufficient for 256 TB]
¤ Page sizes: 4 KB, 2 MB, and 1 GB
¤ 4-level hierarchical paging
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A typical paging scheme in the x86-64

9-bits 9-bits 9-bits 9-bits 12-bits

Offset4th-level3rd-level2nd-level1st-level
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Optimization to eliminate levels in the x86-64

¨ High-end servers routinely have 2 TB RAM or more
¨ With 48-bit addressing and 4-level page tables we can have some 

optimizations
¨ Each physical frame on the x86 is 4 KB
¨ Each page in the 4th level page table maps 2 MB

¤ If the entire 2MB covered by that page table is allocated contiguously in 
physical memory?
n Page table entry one layer up can be marked to point directly to this region 

instead of page table

¨ Also improves TLB efficiency
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ARM architectures

¨ iPhone and Android systems use this

¨ 32-bit ARM
¤ 4 KB and 16 KB pages
¤ 1 MB and 16 MB pages

n Termed sections

2-level paging

1-level paging

There are two levels for TLBs:
    A separate TLB for data
    Another for instructions
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Segmentation with Paging

¨ Multics: Each program can have up to 256K independent segments 
¤ Each with 64K 36-bit words

¨ Intel Pentium
¤ 16K independent segments
¤ Each segment has 109 32-bit words (4GB)
¤ Few programs need more than 1000 segments, but many programs need 

large segments
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Segmentation with Paging

¨ 32-bit x86
¤ Virtual address space within a segment has a 2-level page table

n First 10-bits top-level page table, next 10-bits second-level page-table, final 12-
bits are the offsets within the page

¨ 64-bit x86
¤ 48-bits of virtual addresses within a segment
¤ 4-level page table

n Includes optimizations to eliminate one or two levels of the page table
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VIRTUAL MEMORY
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How we got here …

Contiguous 
Memory

Virtual 
Memory

External 
Fragmentation

Pure 
Paging

Low Degree of 
Multiprogramming

Single 
Address 
space

Segmentation
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Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least partially) during 
execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared
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Requiring the entire process to be in physical 
memory can be limiting

¨ Limits the size of a program 
¤ To the size of physical memory

¨ BUT the entire program is not always needed
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Situations where the entire program need not be 
memory resident

¨ Code to handle rare error conditions

¨ Data structures are often allocated more memory than they need
¤ Arrays, lists …

¨ Rarely used features
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What if we could execute a program that is 
partially in memory?

¨ Program is not constrained by amount of free memory that is 
available

¨ Each program uses less physical memory
¤ So, more programs can run

¨ Less I/O to swap programs back and forth
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Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters, 
  return addresses, 
  and local variables}

max

low
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Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low
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Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by 
¤ Heap or stack segments
¤ Dynamically linked libraries
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Loading an executable program into memory

¨ What if we load the entire program?
¤ We may not need the entire program

¨ Load pages only when they are needed
¤ Demand Paging
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Differences between the swapper and pager

¨ Swapper
¤ Swaps the entire program into memory

¨ Pager
¤ Lazy swapper
¤ Never swap a page into memory unless it is actually needed
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The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th  Edition, 2014. Prentice Hall. 
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd 
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8] 
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Swapping: Temporarily moving a process out of memory 
into a backing store

Process 
P1

Process 
P2

Operating 
System

User space

Swap out

Swap in
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Transfer of paged memory to contiguous disk space

Program A

Program B

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Swap OUT

Swap IN
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