CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

What is the effectiveness of small vs large pages?

Could page size be changed later on?

Can page tables be shared across processes?

Is there a case where you end up using too much for page tables?

Why does each memory access result in two accesses? one for the
page table entry, and one for the page. Any way around it?

Do all processes share the same TLB hardware?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

01 Shared pages

0 Page sizes

01 Structure of Page tables
Hashed Page Tables

Inverted Page Tables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.3

All who joy would win must share it. Happiness was born a
Twin.
George Byron

SHARED PAGES

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Reentrant Code [1/2]

A computer program or subroutine is called reentrant if:
It can be inferrupted in the middle of its execution and

Then safely called again ("re-entered") before its previous invocations
complete execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.5

5

Reentrant Code [2/2]

Non-self-modifying

Does not change during execution

Two or more processes can:
@ Execute same code at same time
(2) Will have different data

Each process has:

Copy of registers and data storage to hold the data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Shared Pages

System with N users

Each user runs a text editing program

Text editing program
150 KB of code
50 KB of data space

40 users
Without sharing: 8000 KB space needed
With sharing : 150 + 40 x 50 = 2150 KB needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L227

7

Shared Paging 0
1 Data 1
ed 1 3 2 Data 3
ed 2 4 Wa Page Tables 3 ed 1
ed 3 e \ 4 ed 2
Data 1|| 1 5
ed 1 3
6 ed 3
Process P, ed 2 2
7 Data 2
ed 3 6
8
ed 1 3 Data 2 7 9
ed 2 N Process P,
ed 3 6
Page n
Data 3|| 2
Physical Memory
Process P53
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT 122.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Shared Paging
B
01 Other heavily used programs can be shared
Compilers, runtime libraries, database systems, etc.
0 To be shareable:
(1) Code must be reentrant
(2) The OS must enforce read-only nature of the shared code
9

You might not write well eve
you can always edit a bad pa
can't edit a blank page.

PAGE SIZES

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Paging and page sizes

On average, 2 of the final page is empty

Internal fragmentation: wasted space

With n processes in memory, and a page size p

Total np/2 bytes of internal fragmentation

Greater page size = Greater fragmentation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.11

11

But having small pages is not necessarily efficient

Small pages mean programs need more pages
Larger page tables
32 KB program needs
4 8-KB pages, but 64 512-byte pages

Context switches can be more expensive with small pages

Need to reload the page table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Transfers to-and-from disk are a page at a time

Primary Overheads: Seek and rotational delays

Transferring a small page almost as expensive as transferring a big
page

64 x 15 = 960 msec to load 64 512-bytes pages

4 x 25 = 100 msec to load 4 8KB pages

Here, large pages make sense

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.13

13

Overheads in paging:
Page table and internal fragmentation

Average process size = §
Page size = p

Size of each page entry = ¢
Pages per process = s/p

se/p: Total page table space

Total Overhemol/:> se/p + p/2 —

e e — Internal fragmentation loss

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Looking at the overhead a little closer

Total Overhead = se/p + p/2
Increases if P is small Increases if P is Iar'ge
* Optimum is somewhere in between

* First derivative with respect to p

-se/p’ + % =0 e, p’ = 2se

p = V2se

MEMORY MANAGEMENT L22.15

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

15

Optimal page size: Considering only page size and

internal fragmentation

P = sqrt(2se)
s = 128KB and e¢=8 bytes per entry

Optimal page size = 1448 bytes
In practice we will never use 1448 bytes
Instead, either 1K or 2K would be used

Why? Pages sizes are in powers of 2 i.e. 2X
Deriving offsets and page numbers is also easier

Prof + SHRIDEEP PALLICKARA
rofessor: S c MEMORY MANAGEMENT L22.16

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Pages sizes and size of physical memory

As physical memories get bigger, page sizes get larger as well

Though not linearly

Quadrupling physical memory size rarely even doubles page size

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L2217

b

All problems in computer science can
be solved by another level of
indirection. Except, of course, the

problem of too many indirections!
—David Wheeler

STRUCTURE OF THE PAGE TABLE

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Typical use of the page table

Process refers to addresses through pages’ virtual address
Process has page table

Table has entries for pages that process uses

One slot for each page

Irrespective of whether it is valid or not

Page table sorted by virtual addresses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.19

19

[] []
Basic Paging Hardware
Page Page
number [..., offset Physical
Address
Address ,/ £000..000
CPU Frame f
£111.111
Page Table
COLORADO STATE UNIVERSITY SSFA:;SGE;SSRE(E;ELA&EC%E:ARTMENT MEMORY MANAGEMENT 12220

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Structure of the Page Table

Hierarchical Paging
Hashed Page Tables

Inverted Page Tables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L22.21

21

Hierarchical Paging

Logical address spaces: 232 ~ 264

Page size: 4KB = 22x 210= 212

Number of page table entries?

Logical address space size/page size

232/212 = 220 = 1 million entries

Page table entry = 4 bytes
Page table for process = 229x 4 = 4 MB

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

L22.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Issues with large page tables
|

1 Cannot allocate page table contiguously in memory

1 Solution:

Divide the page table into smaller pieces

® Page the page-table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.23

23

Two-level Paging
(e
Page number Page offset
20 12
32-bit logical address
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L22.24
24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two-level Paging

(B
Outer Inner
Page Page Page offset
10 10 12

32-bit logical address

25
Address translation in two-level paging
(B
. Pm | P2 | d |
P { Actual Physical address
—
P2 Physical memory
frame
/_/40 d q
uter page
Track pages table pag
of page-table e —
Page of page table
L22.26

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two-level Page tables:
The outer page table
B
4 GB address space split into 1024 chunks
0 / Each entry represents 4 MB
1 —_—
2 —_
3 —_——
4 —_—
Outer Inner
Page Page Page offset
10 10 12 L~ Page size is 4 KB
27

Two-level Page tables:
Case where only a few entries are needed
(e
4 GB address space split into 1024 chunks
0 /— Each entry represents 4 MB
I
2
3 e ——
4 Unused by program
1023
Outer Inner
Page Page Page offset
10 10 12 . Page size is 4 KB
COLORADO STATE UNIVERSITY (armer o e o mvenT MEMORY MANAGEMENT 122.28
28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two-level Page tables

0
1
2
3
4
0
1 —30
2 11023
3 2
4 3
4_ 00
Second level
1023 —_— page tables

Address space has a million pages %
But ONLY 4 page tables are 3
actually needed

1023
Professor: SHRIDEEP PALLICKARA g
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L22.29
29
Computing number of page tables in hierarchical
paging
Outer Inner
Page Page Page offset
11 11 10
* There is 1 outer table with 2'! entries
* Each outer table entry points to an inner page
table
— So, there are 2'! inner page tables
* Total number of page tables = 1 + 2!
* Total number of entries = 21 + 211 x 211
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT 122.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Let’s try 2-level paging for a 64-bit logical address
space

Inner
Outer page page Page offset

42 10 12

* Outer page table has 242 entries!

* Divide the outer page table into smaller pieces?

2nd Outer

Outer Inner
page page page Page offset
32 10 10 12

31

Why hierarchical tables may strain 64-bit
architectures

In our previous example

There would be 232 entries in the outer page table

We could keep going

4-level page tables ...

But all this results in a prohibitive number of memory accesses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Hashed page tables

[
01 An approach for handling address spaces > 232

0 Virtual page number is hashed

£ Hash used as key to enter items in the hash table

01 The value part of table is a linked list

£ Each entry has:
(1) Virtual page number
(2) Value of the mapped page frame

(3) Pointer to next element in the list

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Searching through the hashed table for the frame
number

Virtual page number is hashed

Hashed key has a corresponding value in table

Linked List of entries

Traverse linked list to

Find a matching virtual page number

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L22.35

35

Hash tables and 64-bit address spaces

Each entry refers to several pages instead of a single page

Multiple page-to-frame mappings per entry
Clustered page tables

contiguous (and scattered)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT

Useful for sparse address spaces where memory references are non-

L22.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INVERTED PAGE TABLES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

37

Inverted page table

Only 1 page table in the system

Has an entry for each memory frame

Each entry tracks
Process that owns it (pid)

Virtual address of page (page number)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Inverted Page table

Logical Physical
Address
Address | i000..000
N
ill1l.111
search _—

pid | p

Page Table\ Stored based on frames

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

MEMORY MANAGEMENT L22.39
39
Profiling the inverted page table
Decreases the amount of memory needed
Search time increases
During page dereferencing
Stored based on frames, but searched on pages
Whole table might need to be searched!
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L22.40
40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Other issues with the inverted page table

Shared paging

Multiple pages mapped to same physical memory

Shared paging NOT possible in inverted tables
Only 1 virtual page entry per physical page

Stored based on frames

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT

L22.41

41
PAGING IN REAL-WORLD SYSTEMS
COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY
42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

x86-64

Intel: IA-64 Itanium

The architrecture did not gain much traction
AMD: x86-64

Intel adopted AMD’s x86-64 architecture
64-bit address space: 2°4 (16 exabytes)
Currently x86-64 provides

48—bit virtual address [Sufficient for 256 TB]

Page sizes: 4 KB, 2 MB, and 1 GB
4-level hierarchical paging

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.43

43

A typical paging scheme in the x86-64

15-level 2nd_|evel 3rd-level 4th_|evel Offset

9-bits 9-bits 9-bits 9-bits 12-bits

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Optimization to eliminate levels in the x86-64

High-end servers routinely have 2 TB RAM or more

With 48-bit addressing and 4-level page tables we can have some
optimizations

Each physical frame on the x86 is 4 KB

Each page in the 4™ level page table maps 2 MB

If the entire 2MB covered by that page table is allocated contiguously in
physical memory?
Page table entry one layer up can be marked to point directly to this region
instead of page table

Also improves TLB efficiency

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L2245

45

ARM architectures

iPhone and Android systems use this
32-bit ARM
4 KB and 16 KB pages
1 MB and 16 MB pages

Termed sections

2-level paging

\ 1-level paging

There are two levels for TLBs:
A separate TLB for data
Another for instructions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SEGMENTATION WITH PAGING

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

47

Segmentation with Paging

Multics: Each program can have up to 256K independent segments

Each with 64K 36-bit words

Intel Pentium
16K independent segments
Each segment has 107 32-bit words (4GB)
Few programs need more than 1000 segments, but many programs need

large segments

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Segmentation with Paging

32-bit x86

Virtual address space within a segment has a 2-level page table

First 10-bits top-level page table, next 10-bits second-level page-table, final 12-
bits are the offsets within the page

64-bit x86
48-bits of virtual addresses within a segment

4-level page table

Includes optimizations to eliminate one or two levels of the page table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.49

49

VIRTUAL MEMORY

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

How we got here ...

Pure
Fragmentation Paging

Contiguous External

Memory

Single
Address
space

—> Segmentation

/

Low Degree of
Multiprogramming

|

Virtual
Memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

MEMORY MANAGEMENT L22.51

51

Memory Management: Why?

Main objective of system is to execute programs

Programs and data must be in memory (at least partially) during

execution

To improve CPU vutilization and response times

Several processes need to be memory resident

Memory needs to be shared

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

MEMORY MANAGEMENT L22.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Requiring the entire process to be in physical

memory can be limiting
|

01 Limits the size of a program

To the size of physical memory

1 BUT the entire program is not always needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.53

53

Situations where the entire program need not be
memory resident
[
1 Code to handle rare error conditions
©1 Data structures are often allocated more memory than they need
Arrays, lists ...
01 Rarely used features
COLORADO STATE UNIVERSITY (oo o o orvENT MEMORY MANAGEMENT L22.54
54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What if we could execute a program that is

artially in memory?
-b

0 Program is not constrained by amount of free memory that is
available

01 Each program uses less physical memory

1 So, more programs can run

71 Less 1/O to swap programs back and forth

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.55

55

Logical view of a process in memory

max {Function parameters,

return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}
low {Program code}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.56

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory

.- e
max

Requires actual physical space
ONLY IF heap or stack grows

low
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.57

57

Sparse address spaces
s

0 Virtual address spaces with holes

0 Harnessed by
£ Heap or stack segments

& Dynamically linked libraries

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.58

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEMAND PAGING

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

59

Loading an executable program into memory

What if we load the entire program?

We may not need the entire program

Load pages only when they are needed

Demand Paging

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.60

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Differences between the swapper and pager

Swapper

Swaps the entire program into memory

Pager
Lazy swapper

Never swap a page into memory unless it is actually needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.61

61

The contents of this slide-set are based on the
following references
Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.62

62

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Swapping: Temporarily moving a process out of memory
into a backing store
B
Operating
System
Swap out Process
> P
Swap in Process
- P2
User space —_—
v/
COLORADO STATE UNIVERSITY GOl 'Seior Deparrment MEMORY MANAGEMENT L22.63
63

P A 0 D 1 D 2 D 3 D
rogram Swap OUT 4 D 5 D 6 D . D
8 | 9o] 1o] 1] |

125 13D 14|:] 155

Program B :|>S!vap|N. 1GD 1'7D 18D 19D

) 2oD 21@ 22D 23|
w

Transfer of paged memory to contiguous disk space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT MEMORY MANAGEMENT L22.64

64

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L22.32

