
SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Shrideep Pallickara
Computer Science

Colorado State University

1

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.2

Frequently asked questions from the previous class
survey

¨ What is the effectiveness of small vs large pages?

¨ Could page size be changed later on?
¨ Can page tables be shared across processes?

¨ Is there a case where you end up using too much for page tables?
¨ Why does each memory access result in two accesses? one for the

page table entry, and one for the page. Any way around it?

¨ Do all processes share the same TLB hardware?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.3

Topics covered in this lecture

¨ Shared pages

¨ Page sizes
¨ Structure of Page tables

¤ Hashed Page Tables
¤ Inverted Page Tables

3

L22.4COMPUTER SCIENCE DEPARTMENT

SHARED PAGES

All who joy would win must share it. Happiness was born a
Twin.

George Byron

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.5

Reentrant Code [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and
¤ Then safely called again ("re-entered") before its previous invocations

complete execution

5

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.6

Reentrant Code [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
① Execute same code at same time
② Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.7

Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed

7

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.8

Shared Paging
ed 1

ed 2

ed 3

Data 1

Data 3

Page n

Physical Memory

ed 1

ed 2

Data 2

…

0

1

2
3

4
5

6

7
8

9

3

6

1

4

3

6

7

4

Data 1

ed 3Process P1
ed 1

ed 2

ed 3

Data 2

Process P2

ed 1

ed 2

ed 3

Data 3

3

6

2

4

Process P3

Page Tables

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.9

Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
① Code must be reentrant
② The OS must enforce read-only nature of the shared code

9

L22.10COMPUTER SCIENCE DEPARTMENT
PAGE SIZES

You might not write well every day, but
you can always edit a bad page. You
can't edit a blank page.

Jodi Picoult

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.11

Paging and page sizes

¨ On average, ½ of the final page is empty
¤ Internal fragmentation: wasted space

¨ With n processes in memory, and a page size p
¤ Total np/2 bytes of internal fragmentation

¨ Greater page size = Greater fragmentation

11

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.12

But having small pages is not necessarily efficient

¨ Small pages mean programs need more pages
¤ Larger page tables
¤ 32 KB program needs

n 4 8-KB pages, but 64 512-byte pages

¨ Context switches can be more expensive with small pages
¤ Need to reload the page table

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.13

Transfers to-and-from disk are a page at a time

¨ Primary Overheads: Seek and rotational delays

¨ Transferring a small page almost as expensive as transferring a big
page
§ 64 x 15 = 960 msec to load 64 512-bytes pages
§ 4 x 25 = 100 msec to load 4 8KB pages

¨ Here, large pages make sense

13

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.14

Overheads in paging:
Page table and internal fragmentation

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n se/p: Total page table space

¨ Total Overhead = se/p + p/2

Page table overhead Internal fragmentation loss

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.15

Looking at the overhead a little closer

¨ Total Overhead = se/p + p/2

Increases if p is small Increases if p is large

• Optimum is somewhere in between

• First derivative with respect to p
 -se/p2 + ½ = 0 i.e., p2 = 2se
 𝑝 = 2𝑠𝑒

15

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.16

Optimal page size: Considering only page size and
internal fragmentation

¨ p = sqrt(2se)

¨ s = 128KB and e=8 bytes per entry

¨ Optimal page size = 1448 bytes
¤ In practice we will never use 1448 bytes
¤ Instead, either 1K or 2K would be used

n Why? Pages sizes are in powers of 2 i.e. 2X

n Deriving offsets and page numbers is also easier

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.17

Pages sizes and size of physical memory

¨ As physical memories get bigger, page sizes get larger as well

¤ Though not linearly

¨ Quadrupling physical memory size rarely even doubles page size

17

L22.18COMPUTER SCIENCE DEPARTMENT

STRUCTURE OF THE PAGE TABLE

All problems in computer science can
be solved by another level of
indirection. Except, of course, the
problem of too many indirections!

—David Wheeler

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.19

Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses

19

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.20

Basic Paging Hardware

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.21

Structure of the Page Table

¨ Hierarchical Paging

¨ Hashed Page Tables
¨ Inverted Page Tables

21

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.22

Hierarchical Paging

¨ Logical address spaces: 232 ~ 264

¨ Page size: 4KB = 22x 210= 212

¨ Number of page table entries?
§ Logical address space size/page size
§ 232/212 = 220 ≈ 1 million entries

¨ Page table entry = 4 bytes
¤ Page table for process = 220 x 4 = 4 MB

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.23

Issues with large page tables

¨ Cannot allocate page table contiguously in memory

¨ Solution:
¤ Divide the page table into smaller pieces

n Page the page-table

23

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.24

Two-level Paging

Page offsetPage number

20 12

32-bit logical address

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.25

Two-level Paging

Page offset

12

32-bit logical address

Inner
Page

1010

Outer
Page

25

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.26

Physical memory
frame

Page of page table

Outer page
table

Address translation in two-level paging

p1 p2 d

p2

p1

d

Actual Physical address

Track pages
of page-table

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.27

Two-level Page tables:
The outer page table

0
1

3
2

4

1023

Page offset

12

Inner
Page

1010

Outer
Page

4 GB address space split into 1024 chunks

Page size is 4 KB

Each entry represents 4 MB

27

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.28

Two-level Page tables:
Case where only a few entries are needed

0
1

3
2

4

1023

Page offset

12

Inner
Page

1010

Outer
Page

4 GB address space split into 1024 chunks

Page size is 4 KB

Each entry represents 4 MB

Unused by program

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.29

Two-level Page tables

0
1

3
2

4

1023

0
1

3
2

4

10230
1
3
2
4

1023

0
1

3
2

4

1023

Address space has a million pages
But ONLY 4 page tables are
actually needed

Second level
 page tables

29

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.30

Computing number of page tables in hierarchical
paging

Page offset

10

Inner
Page

1111

Outer
Page

• There is 1 outer table with 211 entries
• Each outer table entry points to an inner page

table
– So, there are 211 inner page tables

• Total number of page tables = 1 + 211

• Total number of entries = 211 + 211 x 211

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.31

Let’s try 2-level paging for a 64-bit logical address
space

Page offset

12

Inner
page

1042

Outer page

Page offset

1210

Inner
page

10

Outer
page

32

2nd Outer
page

• Outer page table has 242 entries!
• Divide the outer page table into smaller pieces?

31

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.32

Why hierarchical tables may strain 64-bit
architectures

¨ In our previous example
¤ There would be 232 entries in the outer page table

¨ We could keep going
¤ 4-level page tables …

¨ But all this results in a prohibitive number of memory accesses

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.33COMPUTER SCIENCE DEPARTMENT

HASHED PAGE TABLES

33

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.34

Hashed page tables

¨ An approach for handling address spaces > 232

¨ Virtual page number is hashed
¤ Hash used as key to enter items in the hash table

¨ The value part of table is a linked list
¤ Each entry has:

① Virtual page number
② Value of the mapped page frame
③ Pointer to next element in the list

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.35

Searching through the hashed table for the frame
number

¨ Virtual page number is hashed
¤ Hashed key has a corresponding value in table

n Linked List of entries

¨ Traverse linked list to
¤ Find a matching virtual page number

35

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.36

Hash tables and 64-bit address spaces

¨ Each entry refers to several pages instead of a single page

¨ Multiple page-to-frame mappings per entry
¤ Clustered page tables

¨ Useful for sparse address spaces where memory references are non-
contiguous (and scattered)

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.37COMPUTER SCIENCE DEPARTMENT

INVERTED PAGE TABLES

37

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.38

Inverted page table

¨ Only 1 page table in the system
¤ Has an entry for each memory frame

¨ Each entry tracks
¤ Process that owns it (pid)
¤ Virtual address of page (page number)

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.39

Inverted Page table

CPU pid d i d

Logical
Address

Physical
Address

i000…000

i111…111

Page Table

Frame i

pid | p

search

p

Stored based on frames

39

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.40

Profiling the inverted page table

¨ Decreases the amount of memory needed

¨ Search time increases
¤ During page dereferencing

¨ Stored based on frames, but searched on pages
¤ Whole table might need to be searched!

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.41

Other issues with the inverted page table

¨ Shared paging
¤ Multiple pages mapped to same physical memory

¨ Shared paging NOT possible in inverted tables
¤ Only 1 virtual page entry per physical page

n Stored based on frames

41

L22.42COMPUTER SCIENCE DEPARTMENT

PAGING IN REAL-WORLD SYSTEMS

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.43

x86-64

¨ Intel: IA-64 Itanium
¤ The architrecture did not gain much traction

¨ AMD: x86-64
¤ Intel adopted AMD’s x86-64 architecture

¨ 64-bit address space: 264 (16 exabytes)

¨ Currently x86-64 provides
¤ 48–bit virtual address [Sufficient for 256 TB]
¤ Page sizes: 4 KB, 2 MB, and 1 GB
¤ 4-level hierarchical paging

43

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.44

A typical paging scheme in the x86-64

9-bits 9-bits 9-bits 9-bits 12-bits

Offset4th-level3rd-level2nd-level1st-level

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.45

Optimization to eliminate levels in the x86-64

¨ High-end servers routinely have 2 TB RAM or more
¨ With 48-bit addressing and 4-level page tables we can have some

optimizations
¨ Each physical frame on the x86 is 4 KB
¨ Each page in the 4th level page table maps 2 MB

¤ If the entire 2MB covered by that page table is allocated contiguously in
physical memory?
n Page table entry one layer up can be marked to point directly to this region

instead of page table

¨ Also improves TLB efficiency

45

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.46

ARM architectures

¨ iPhone and Android systems use this

¨ 32-bit ARM
¤ 4 KB and 16 KB pages
¤ 1 MB and 16 MB pages

n Termed sections

2-level paging

1-level paging

There are two levels for TLBs:
 A separate TLB for data
 Another for instructions

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.47COMPUTER SCIENCE DEPARTMENT

SEGMENTATION WITH PAGING

47

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.48

Segmentation with Paging

¨ Multics: Each program can have up to 256K independent segments
¤ Each with 64K 36-bit words

¨ Intel Pentium
¤ 16K independent segments
¤ Each segment has 109 32-bit words (4GB)
¤ Few programs need more than 1000 segments, but many programs need

large segments

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.49

Segmentation with Paging

¨ 32-bit x86
¤ Virtual address space within a segment has a 2-level page table

n First 10-bits top-level page table, next 10-bits second-level page-table, final 12-
bits are the offsets within the page

¨ 64-bit x86
¤ 48-bits of virtual addresses within a segment
¤ 4-level page table

n Includes optimizations to eliminate one or two levels of the page table

49

L22.50COMPUTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.51

How we got here …

Contiguous
Memory

Virtual
Memory

External
Fragmentation

Pure
Paging

Low Degree of
Multiprogramming

Single
Address
space

Segmentation

51

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.52

Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least partially) during
execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.53

Requiring the entire process to be in physical
memory can be limiting

¨ Limits the size of a program
¤ To the size of physical memory

¨ BUT the entire program is not always needed

53

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.54

Situations where the entire program need not be
memory resident

¨ Code to handle rare error conditions

¨ Data structures are often allocated more memory than they need
¤ Arrays, lists …

¨ Rarely used features

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.55

What if we could execute a program that is
partially in memory?

¨ Program is not constrained by amount of free memory that is
available

¨ Each program uses less physical memory
¤ So, more programs can run

¨ Less I/O to swap programs back and forth

55

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.56

Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.57

Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low

57

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.58

Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by
¤ Heap or stack segments
¤ Dynamically linked libraries

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.59COMPUTER SCIENCE DEPARTMENT

DEMAND PAGING

59

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.60

Loading an executable program into memory

¨ What if we load the entire program?
¤ We may not need the entire program

¨ Load pages only when they are needed
¤ Demand Paging

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.61

Differences between the swapper and pager

¨ Swapper
¤ Swaps the entire program into memory

¨ Pager
¤ Lazy swapper
¤ Never swap a page into memory unless it is actually needed

61

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.62

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 8]

62

SLIDES CREATED BY: SHRIDEEP PALLICKARA L22.32

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.63

Swapping: Temporarily moving a process out of memory
into a backing store

Process
P1

Process
P2

Operating
System

User space

Swap out

Swap in

63

MEMORY MANAGEMENTCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L22.64

Transfer of paged memory to contiguous disk space

Program A

Program B

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Swap OUT

Swap IN

64

