CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Demand Paging
When a process runs
avoid the weight of all its pages

Guess what it needs
bring in just those

The price you pay? Shrideep Pallickara
page faults expensive they are

Computer Science

Too many of those?

Trouble! for that's the process’ cry for help Colorado State Unive rsi’ry
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Frequently asked questions from the previous class
survey
Segments are paged?
Hierarchical paging
Is the identification of the appropriate inner page table(s) deterministic?
How do TLBs work with it2 Is it still only maintaining a mapping of virtual-
page-to-physical-frame?
If you page-the-page-table, do all page tables need to be the same size?
Is there any scenario where hashed page tables would be better?
If physical memory was infinite, would you need paging (or
segmentation)?
What are the consequences of having a bad hashing function?
COLORADD STATE UNIVERSITY (arescr S o ewrvent VIRTUAL MEMORY 123.2
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Demand Paging

Performance of Demand Paging

Page Replacement
Belady’s anomaly

Stack algorithms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.3

3

DEMAND PAGING

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Demand Paging: Basic concepts

When a process is to be swapped in, guess which pages will be
utilized by process

Before the process will be swapped out again

Avoid reading unused pages

Better physical memory utilization
Reduced I/O

Lower swap times

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.5

5

Distinguishing between pages in memory and those
on disk

Valid-Invalid bits

Associated with entries in the page table

Valid

Page is both legal and in memory

Invalid

(1) Page is not in logical address space of process
OR

(2) Valid BUT currently on disk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.3

CS370: Operating Systems

Dept. Of C

omputer Science, Colorado State University

Distinguishing between pages in memory and those
on disk 0
[o1
Physical ,
0 A Memory
1 B 3 Backing Store
4R
2 ¢ o M 1w .
3 D 1 I 6 C D D E]
- 2 6 |v 7 [J a[] 8[]
e = s | Oe0=0]
- H s 5—t— 10 F[] e[] B[]
Logical 6 _ L 12— D D D
Memory 7 I
Page Table 13 D D D
14 v
COLORADOD STATE UNIVERSITY (s Sweer wuood® | viria Mevory 123.7
7
Handling Valid-invalid entries in the page table
[

01 If process never attempts to access an invalid page?

No problems

01 If process accesses page that is not memory resident?
Page fault

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GOupureR SCIENGE DepARTMENT ~ VIRTUAL MEMORY L23.8

8

SLIDES CREATED

BY: SHRIDEEP PALLICKARA

L23.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Handling page faults

3 Locate page on backing store

2) Trap to the OS

OPERATING Reference ~
SYSTEM
1
‘|—>" ‘ I
5— Free
load M PAGE o eset I 4
) T eset page wallh
- " table Bring in
Restart missing
instruction page
PHYSICAL ~__
MEMORY
BACKING
Professor: SHRIDEEP PALLICKARA STORE
COLORADO STATE UNIVERSITY Goypyter SciENCE DepARTMENT ~ VIRTUAL MEMORY L23.9
9
o
Pure demand paging
Never bring a page into memory unless it is required
Execute process with no pages in memory
First instruction of process will fault for the page
Page fault to load page into memory and execute
Professor: SHRIDEEP PALLICKARA 123.10

COLORADO STATE UNIVERSITY Coupurer SOIENGE DeparTmMenT VIRTUAL MEMORY

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Potential problems with pure demand paging

1 Multiple page faults per instruction execution
One fault for instruction

Many faults for data

1 Multiple page faults per instruction are rare

Locality of reference

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.11

11

Hardware requirements to support demand paging

1 Page Table

1 Secondary space

Section of disk known as swap space is used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Restarting instructions after a page fault

Page faults occur at memory reference
Use PCB to save state of the interrupted process

Restart process in exactly the same place

Desired page is now in memory and accessible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.13

13

Restarting processes after a page fault has been
serviced

If fault occurred during an instruction fetch

During restart, refetch the instruction

If fault occurred while fetching operands
(1) Fetch and decode instruction

(2) Fetch the operand

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Worst case example

Add operands A and B

Place sum in C

If we fault while storing C
Service page fault
Update page table

Restart instruction

Decode, fetch operands, and perform addition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.15

15

Problems when operations modify several different
memory locations
E.g., Move a block from one memory location to another

{C1} Either block straddles page-boundary
{C2} Page fault occurs

Move might be partially done
Uh-oh ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Approaches to fault-proofing block transfers

(1) Compute and access both ends of the block

If a page fault were to happen it will at this point
Nothing has been partially modified

After fault servicing, block transfer completes

(2) Use temporary registers

Track overwritten values

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.17

17

Can on-demand paging be applied anywhere
without modifications?

Paging is between CPU and physical memory

Transparent to user process

Non-demand paging can be applied to any system

Not so for demand paging

Fault processing of special instructions non-trivial

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PERFORMANCE OF QEMND PAGING
e

Effective access times

Without page faults, effective access times are equal to memory
access times

200 nanoseconds approximately

With page faults
Account for fault servicing with disk 1/O

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

| ROGING

p :probability of a page fault

ma : memory access time

Effective access time =

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

(1I-p) x ma + p x page-fault-time

VIRTUAL MEMORY

Calculating the effective access times with demand

L23.21

21
Components of page-fault servicing
|
Service Read in Restart
interrupt the page process
1~100 puS Latency : 3 mS 1~100 pS
Seek :5mS

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

L23.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Effective access times

Effective access time =
(1-p) x ma + p x page-fault-time
= (1-p) x 200ns + p x (8mS)
= (1-p) x 200 + p x (8,000,000)

= 200 + 7,999,800 x p \

Effective access time directly
proportional to page-fault rate

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.23

23

If performance degradation is to be less than 10%

220 > 200 + 7,999,800 x p
20 > 7,999,800 x p
p < 0.0000025

Fewer than 1 memory access out
of 399,990 can page-fault

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

OTHER ISSUES IN DEMAND PAGING

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

25

Allocation of physical memory to |/O and programs
is a challenge

Memory used for holding program pages
1/O buffers also consume a big chunk of memory

Solutions:
Fixed percentage set aside for |/O buffers

Processes and the 1/O subsystem compete

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Demand paging and the limits of logical memory

Without demand paging
All pages of process must be in physical memory

Logical memory limited to size of physical memory

With demand paging
All pages of process need not be in physical memory

Size of logical address space is no longer constrained by physical memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.27

27

Demand paging is the OS’ attempt to improve CPU
utilization and system throughput

Load pages into memory when they are referenced

Increases degree of multiprogramming

Example
40 pages of physical memory

6 processes, each of which is 10 pages in size

Each process only needs 5 pages as of now

Run 6 processes with 10 pages to spare

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Essentially, we are over-allocating physical memory

Example
Physical memory = 40 pages
6 processes each of which is of size 10 pages
But are using 5 pages each as of now
What happens if each process needs all 10 pages?
60 physical frames needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

Increasing the degree of multiprogramming can be tricky

L23.29

29

Coping with over-allocation of memory

Terminate a user process

But paging should be transparent to the user

Swap out a process

Reduces the degree of multiprogramming

Page replacement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The two core problems in demand paging

1 Frame allocation

£ How many frames to allocate to a process

0 Page replacement

o1 Select the frame(s) for replacement

01 Caveat:

o1 Disk 1/O is expensive, so inefficient solutions can weigh things down

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.31

31

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Page replacement

If no frame is free?

Find one that is not currently being used
Use it

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Goupyter SciENCE DepARTMENT ~ VIRTUAL MEMORY L23.33
33
Freeing a physical memory frame
Write frame contents to swap space
Change page table of process
To reflect that page is no longer in memory
Freed frame can now hold some other page
Professor: SHRIDEEP PALLICKARA 123.34

COLORADO STATE UNIVERSITY Coupurer SOIENGE DeparTmMenT VIRTUAL MEMORY

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.17

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

YES

Servicing a page fault

Retrieve page
from disk

—

Free frame available?

Done using a

page replacement
l NO (_/_ algorithm

Use it ’

Select victim frame —l

Write victim frame
to disk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

L23.35

35
Page replacement is central to demand paging
B
3 Locate page on backing store
2) Trap to the OS
OPERATING Reference —r’
SYSTEM 1
My S
Free
_
s —. 5 _Eza.meJ 4
load M — N
TasLE Reset page Bring i
table ring in
Restart missing
instruction page
PHYSICAL ~
MeMORY BACKING
STORE

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

L23.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Overheads for page replacement

If no frames are free: 2 page transfers needed
Victim page out

New page in

No free frames?
Doubles page-fault service time

Increases effective access time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.37

37

Using the modify bit to reduce page replacement
overheads

Each page/frame has a modify bit
Set by hardware when page is written into
Indicates if page was modified

Since the last time it was read from disk

During page replacement

If victim page not modified, no need to write it to disk
Reduces |/O time by one-half

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGE REPLACEMENT ALGORITHMS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

39

Page replacement algorithms:

What are we looking for?

Low page-fault rates

How do we evaluate them?

Run algorithm on a string of memory references

Reference string

Compute number of page faults

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The reference string:
Snapshot memory references

We track page numbers

Not the entire address

If we have a reference to a memory-resident page p

Any references to p that follow will not page fault

Page is already in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.41

41

The reference string: Example
Page size =100 bytes
l : \ ——

0100 0432 0101 0612 0102 0103 0104 0101 0611 0102 0103

0104 0101 0610 0102 0103 0104 0101 0609 0102 0105

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Factors involved in determining page faults
|

01 Reference string of executing process
0 Page replacement algorithm

01 Number of physical memory frames available

O Intuitively:

o Page faults reduce as the number of page frames increase

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.43

43

™ G
fft ¢

L
‘ '}ff;&
FIFO (FIRST IN FIRST OUT) %

PAGE REPLACEMENT ALGORITHM

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FIFO page replacement algorithm:
Out with the old; in with the new

When a page must be replaced

Replace the oldest one

OS maintains list of all pages currently in memory
Page at head of the list: Oldest one

Page at the tail: Recent arrival

During a page fault
Page at the head is removed

New page added to the tail

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.45

45

FIFO example: 3 memory frames

Reference String
R70120304230321201701

Youngest 7 90 1 22 3042300012 22701
720 112304233301 1127170
Oldest 7 0012 3042223000127

\ No page fault M

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

With your feet on the air and your head on the ground
Try this trick and spin it, yeah
Where is My Mind, Charles Thompson/Black Francis, Pixies

BELADY’S ANOMALY

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

47

Intuitively the greater the number of memory frames,
the lower the faults

Surprisingly, this is not always the case

In 1969 Belady, Nelson and Shedler discovered counter example™ in
FIFO

FIFO caused more faults with 4 frames than 3
This strange situation is now called Belady’s anomaly

An anomaly in space-time characteristics of certain programs running in a paging machine.
Belady, Nelson and Shedler. Communications of the ACM. Vol. 12 (6) pp 349-353. 1969.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.24

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Youngest QO 1
01

Oldest 0

01 2
Youngest O 1 2
0 1

0

Oldest

2

3

N W O

0

0

0

Belady’s anomaly: FIFO
Same reference string, different frames

4 4 4 2 3 3

1
0]

w w NS

1

1
0

w N O O

2

1 4 2
01 4

3
1 23
2

4 0 1
340

2
4

N W N B

1

Numbers in this color:

No page fault

9 page faults
with 3 frames

10 page faults
with 4 frames

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

L23.49

49

0 Stack algorithms

Belady’s anomaly

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

11 Led to a whole theory on paging algorithms and properties

VIRTUAL MEMORY

L23.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

STACK ALGORITHMS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

51

The Model

There is an array M

Keeps track of the state of memory
M has as many elements as pages of virtual memory

Divided into two parts
Top part: m entries {Pages currently in memory}

Bottom part: n-m entries

Pages that were referenced BUT paged out

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The model

Reference

String N\

m entries

]
‘1' Page fault

Tracking the state of the array M over time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

n elements

L23.53

53

Properties of the model

When a page is referenced?

Move to the top entry of M

If the referenced page is already in M2

Pages below it are not moved

Page eviction from main memory

All pages above it moved down one position

Transition from within box to outside of it2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

L23.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L23.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The model
1354637 47335531117 234.1
1 35463 74733553111723491
2 13546 3 7477335 33317234
0 23 354 633447 775%5531723
0213546666 44477753172
0 21 1 55 55 56 664 4 445517
022 1111111166 66443535
0 0 22 22 2 22222226666
00 00O0OOOOOO O OO0O00O00O0DO
55
[
Properties of the model
M(m,r)
The set of pages in the top part of M
m page frames
r memory references
COLORADD STATE UNIVERSITY (arescr S o ewrvent VIRTUAL MEMORY 123.56
56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

A property that has some interesting implications
M(m, r) subset of M(m+1, r)

Set of pages in the top part of M with m frames
Also included in M with (m+1) frames

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.57

57

What the subset relationship means

Execute a process with a set of memory frames

If we increase memory size by one frame and re-execute

At every point of execution all pages in the first execution are present in
the second run

Does not suffer from Belady’s anomaly

Stack algorithms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L23.58

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

Andrew S Tanenbaum. Modern Operating Systems. 4" Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L23.59

59

SLIDES CREATED BY: SHRIDEEP PALLICKARA L23.30

