CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[VIRTUAL MEMORY]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Belady’s anomaly

Does it still occur? Do current OS rely on stack algorithms?
Are pages removed from the backing store?

Why block transfers?

How does demand paging “guess” which pages to bring in2 Can you have
mix of demand and non-demand paging in the same system?

Page faults:
Is the user made aware of them? Or is handled transparently?
Can the OS pivot to some other process when this happens?

Is there a way to maintain a set of victim frames?

Page table entries?

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Coupurer SOIENGE DeparTMENT VIRTUAL MEMORY L24.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.1

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Page replacement algorithms
Page Buffering

Frame Allocations

Working Sets

TLB Reach

Topics covered in this lecture

3
How we got here ...
Contiguous External Pure Low Degree of
e —>)
Memory Fragmentation Paging Multiprogramming

Demand Page

Paging Faults
Working Sets

Page replacement
algorithms Page Buffering Frame
Allocation
VIRTUAL MEMORY L24.4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THE OPTIMAL PAGE REPLACEMENT

ALGORITHM
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
5
The optimal page replacement algorithm

The best possible algorithm

Easy to describe but impossible to implement

Crux:

Put off unpleasant stuff for as long as possible
COLORADO STATE UNIVERSITY (oo o e arvenT VIRTUAL MEMORY L24.6
6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The optimal page replacement algorithm description

When a page fault occurs some set of pages are in memory
One of these pages will be referenced next

Other pages may be not be referenced until 10, 100 or 1000 instructions later

Label each page with the number of instructions to be executed before it
will be referenced

When there is a page-fault, the page with the highest label should be removed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.7

7

Problem with the optimal page replacement
algorithm

It is unrealizable

During a page fault, the OS has no way of knowing when each of the
pages will be referenced next

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

So why are we looking at it?

Run a program

Track all page references

Based on reference information from the first run

one

Implement optimal page replacement on the second run

Compare performance of realizable algorithms with the best possible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.9

9

LRU PAGE REPLACEMENTS

COMPUTER SCIENCE DEPARTMENT

COLORADO STATE UNIVERSITY

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The Least Recently Used (LRU) page replacement
algorithm

Approximation of the optimal algorithm

Observation

Pages used heavily in the last few instructions

Probably will be used heavily in the next few

Pages that have not been used

Will probably remain unused for a long time

When a page fault occurs?

Throw out page that has been unused the longest

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.11

11

LRU example: 3 memory frames

q‘er‘ence String
701 20304230321 2017°01

Recent 7 01 203042303212 01701
70 120304230321 201170

Least 7 01 223042203312017
Used
COLORADO STATE UNIVERSITY (oo o e arvenT VIRTUAL MEMORY L24.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Implementing LRU

Logical clock

Stacks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.13

13

Using Logical clocks to implement LRU

Each page table entry has a time-of-use field

Entry updated when page is referenced

Contents of clock register are copied

Replace the page with the smallest value

Time increases monotonically

Overflows must be accounted for

Requires search of page table to find LRU page

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Stack based approach

Keep stack of page numbers

When page is referenced

Move to the top of the stack
Implemented as a doubly linked list

No search done for replacement

Bottom of the stack is the LRU page

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.15

15

Problems with clock /stack based approaches to LRU
replacements

Inconceivable without hardware support

Few systems provide requisite support for true LRU implementations
Updates of clock fields or stack needed at every memory reference

If we use interrupts and do software updates of data structures things
would be very slow

Would slow down every memory reference

At least 10 times slower

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LRU APPROXIMATION PAGE

REPLACEMENTS
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
17
LRU Approximation:
Reference bit
Reference bit associated with page table entries
Reference bit is set by hardware when page is referenced
Read/write access of the page
Determine which page has been used and which has not
No way of knowing the order of references though
18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LRU Approximation:
Additional reference bits

Maintain 8-bit byte for each page in memory

8-bit byte
Operation performed at regular intervals

The reference bit is then cleared

OS shifts the reference bit for page into the highest order bit of the

19
LRU approximation:
Reference bits
Shift Reference bit Shift Register after the
Register for the page OS timer interrupt
00000000 1 10000000
10010001 1 11001000
01100011 0 00110001
L24.20

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

VIRTUAL MEMORY

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LRU Approximation:
Interpreting the reference bits

Interpret 8-bit bytes as unsigned integers

Page with the lowest number is the LRU page
00000000 : Not used in last 8 periods
01100101 : Used 4 times in the last 8 periods
11000100 used more recently than 01110111

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.21

21

The Second Chance Algorithm

Simple modification of FIFO
Avoids throwing out a heavily used page

Inspect the reference bit of a page
If it is O: Page is old and unused
Evict
If it is 1: Page is given a second chance

Move page to the end of the list

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The Operation of second chance

A—B—C—D—E—F—G—H

Page fault occurs at time 20 AND page A's reference bit was set

3 7 8 12 14 15 18 20

B—C—D—E—F—G—H—A

A is freated as a
newly loaded page

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

Page Loaded Most recently
first loaded page
0 3 7 8 12 14 15 18

L24.23

23

Second chance

Reasonable algorithm, but unnecessarily inefficient

Constantly moving pages around on its list

Better to keep pages in a circular list

In the form of a clock ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

L24.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Clock Page Replacement

Keep all frames on a circular list in the form of a clock

Hand points to the oldest page

When a page fault occurs, page being pointed to by the hand is
inspected
If its R bit is O: the page is evicted
New page is inserted into the clock in its place

Hand is advanced one position

If its R bit is 1

It is cleared and the hand is advanced one position until a page is found with R =0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.25

25

Counting based page replacements
Most Frequently Used (MFU)

Argument:
Page with the smallest count was probably just brought in

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Summary of Page Replacement Algorithms

Algorithm Comment

Optimal Not implementable, but useful as a benchmark
FIFO (First-In, First-Out) Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement

NFU (Not Frequently Used) Fairly crude approximate to LRU

Aging [Multiple reference bits] Efficient algorithm that approximates LRU well

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.27

27

PAGE BUFFERING ALGORITHMS

COMPUTER SCIENCE DEPARTMENT & COLORADO STATE UNIVERSITY

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Page Buffering

(1) Maintain a buffer of free frames

(2) When a page-fault occurs

Victim frame chosen as before

Desired page read into free-frame from buffer

Before victim frame is written out

Process that page-faulted can restart much faster

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.29

29

Page Buffering:
Being proactive

Maintain a list of modified pages
When the paging device is idle?
Write modified pages to disk

Implications

If a page is selected for replacement increase likelihood of that page being
clean

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Page Buffering: Reuse what you can

Keep pool of free frames as before

BUT remember which pages they held
Frame contents are not modified when page is written to disk

If page needs to come back in?

Reuse the same frame, if it was not used to hold some other page

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY

L24.31

31

Buffering and applications

Applications often understand their memory /disk usage better than
the OS

Provide their own buffering schemes

If both the OS and the application were to buffer
Twice the 1/O is being utilized for a given 1/O

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

L24.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

ALLOCATION OF FRAMES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

33

Frame allocation: How do you divvy up free memory
among processes?

Frame size = 1 MB; Total Size = 128 MB

35 MB for the OS

~ 128 MB

93 MB for others

2 processes at To
How are frames allocated?

—

With demand paging all 93 frames would be in the free frame pool
COLORADO STATE UNIVERSITY (oo o e arvenT VIRTUAL MEMORY 124.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Constraints on frame allocation

Max: Total number of frames in the system

Available physical memory

Min: We need to allocate at least a minimum number of frames

Defined by the architecture of the underlying system

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.35

35

Minimum number of frames

As you decrease the number of frames for a process
Page fault increases

Execution time increases too

Defined by the architecture

In some cases, instructions and operands (indirect references) straddle page
boundaries

With 2 operands at least 6 frames needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FRAME ALLOCATION POLICIES

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

37

Global vs Local Allocation

Global replacement

One process can take a memory frame from another process

Local replacement

Process can only choose from the set of frames that was allocated to it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.19

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Local vs Global replacement:

Al 10 Al
A2 7 A2
A3 5 A3

@ 3 A5
B1 9 B1
B2 4 B2

@ 2 B3
B4 6 B4
C1 3 C1
C2 5 C2
c3 6 c3

Processes A,Band C

Local Replacement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

Based on how often a page is referenced

-?

Al

A2 Process A has
A3 page faulted
and needs to

Ad bring in a page

c3

Global Replacement
VIRTUAL MEMORY L24.39

39

Global vs Local Replacement
|

Local Global

Number of frames

Fixed Varies dynamically
allocated to process
Can process control its
YES NO

own fault rate?
Can it use free frames NO YES
that are available?
Increases system

Y NO YES
throughput?

Professor: SHRIDEEP PALLICKARA VIRTUAL MEMORY 124.40

COLORADO STATE UNIVERSITY CompyTER SCIENCE DEPARTMENT

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

WORKING SETS & THRASHING

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

41

Locality of References

During any phase of execution, a process references a relatively small
fraction of its pages

Set of pages that a process is currently using

Working set

Working set evolves during process execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Implications of the working set

If the entire working set is in memory

Process will execute without causing many faults

Until it moves to another phase of execution

If the available memory is too small to hold the working set?
(1) Process will cause many faults

(2) Run very slowly

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.43

43

A program causing page faults every few
instructions is said to be thrashing

System throughput plunges

Processes spend all their time paging

Increasing the degree of multiprogramming can cause this

New process may steal frames from another process {Global Replacement}

Overall page-faults in the system increases

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Characterizing the affect of multiprogramming on
thrashing

S Thrashing

3

XN

s

-]

[- W

O

Degree of Multiprogramming

45

Mitigating the effects of thrashing

Using a local page replacement algorithm
One process thrashing does not cause cascading thrashing among other

processes
BUT if a process is thrashing?

Average service time for a page fault increases

Best approach

(1) Track a process’ working set
(2) Make sure the working set is in memory before you let it run

L24.46

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

WORKING SETS & THRASHING

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

47

Working set is an approximation of the program’s
locality

Most important property of the working set is its size

Page reference table
6157777

1 7 5162 3444343444123438

>
Cd

A A
WS = {1,2,5,6,7} WS = {3,4}

>
r d

A D

* WSS, = Working set size for process p;

* |f total demand exceeds available frames

— Thrashing will occur

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Working sets and page fault rates

The peak in page-fault rate happens when a new locality is being
demand-paged

Once working set is in memory

Page fault rate falls

When process moves towards a new working set window?

Fault rate rises again

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.49

49

The page fault frequency approach to reducing
thrashing

When the page fault rate is high

Process needs more frames

When the page fault rate is too low

Process may have too many frames

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Using page fault frequencies to control thrashing:
Establish bounds
2
S Increase number of frames
% Upper Bound
]
[T
o
o
<]
[
Lower Bound
\ Decrease number of frames
Number of frames
51
OTHER CONSIDERATIONS
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Prepaging: Loading pages BEFORE letting a process
run

Bring into memory -- at one time -- all the pages that will be needed

Prepage frames for small files

With the working set model

Ensure that the entire working set is in memory before the process is
resumed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.53

53

TLB Reach is the amount of memory accessible from
the TLB

TLB-Reach = Number of TLB entries X Page Size

Approaches to increasing TLB reach
Double the entries
Expensive
Increase page size
Increases (internal) fragmentation
Support multiple page sizes
OS not hardware manages the TLB Current trend

Increase reach and hit ratio

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Select data structures and program structures
efficiently

Increase locality

Reduce page fault rates

Loops

If data is stored in row-major format, but program reads it as column-major
format

Loader should avoiding placing routines across page boundaries

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUAL MEMORY L24.55

55

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT VIRTUAL MEMORY L24.56

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L24.28

