CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[VIRTUALIZATION]

Binary translation
Take code sequences
split them up into blocks
short sequences without a branch
tiny paths without logic forks

Swap out paths that are at risk
rewrite block, one at a time
swap out instructions Shrid eep Pallickara

sensitive and privileged

Computer Science

Store this work
In a cache Colorado State University
Ready to use
Cause you'll need it soon

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Does the CS department use VMs?

x86 2

Can there be a VM inside a VM?

Does every VM get its own CPU core?

How are the caches and physical memory divvied up across VMs?

What happens when control sensitive instructions are executed in
VMs?

Is there concurrency (i.e., threads/processes running concurrently)
within a VM2

What do VPNs do?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Techniques for efficient virtualization

Virtualizing the unvirtualizable
Cost of virtualization
Memory virtualization

Virtual Appliances

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.3

3

Each sign signifies a sound, and to link sounds is to form
words, and to link words is to construct worlds.
Cloud Cuckoo Land, Anthony Doerr

TECHNIQUES FOR EFFICIENT
VIRTUALIZATION

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Type-1 hypervisors

Virtual machine runs as a user-process in user mode

Not allowed to execute sensitive instructions (in the Popek-Goldberg sense)

But the virtual machine runs a Guest OS that thinks it is in kernel
mode (although, of course, it is not)

Virtual kernel mode

The virtual machine also runs user processes, which think they are in
the user mode

And really are in user mode

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.5

5

Modes

User processes

\./ ‘/ } Virtual user mode

User mode
Guest Operating Systen-/'\ :||> Virtual kernel mode
Type 1 hypervisor Trap on privileged instruction Kernel Mode
Hardware
fessor:
COLORADO STATE UNIVERSITY (oo o e akvenT VIRTUALIZATION 126.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Execution of kernel model instructions

(B
1 What if the Guest OS executes an instruction that is allowed
only when the CPU is really in kernel mode?
On CPUs without VT (Intel: Virtualization Technology)?

u |nstruction fails and the OS crashes

1 On CPUs with VT¢

A trap to the hypervisor does occur
m Hypervisor can inspect instruction to see if it was issued:
By Guest OS: Arrange for the instruction to be carried out

By user-process in that VM: Emulate what hardware would do when
confronted with sensitive instruction executed in user-mode

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION

L26.7

7

VIRTUALIZING THE U

— Maya Angelou

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Virtualizing the x86 before VT (and AMD SVM)

Virtualizing is straightforward when VT is available

When it is not available?

Make clever use of:

(1) Binary translation
(2) Hardware features that did exist on the x86

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.9

9

Protection rings

The x86 supported 4 protection modes (or rings)
Ring 3 is the least privileged

This is where normal processes execute

You cannot execute privileged instructions

Ring O is the most privileged
Allows execution of any instruction
In normal operation, the kernel runs here

Other rings were never used by operating systems

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

x86 privilege level architecture without virtualization
B
Ring 3 User Apps
Ring 2
___._ ______ Direct execution of
Ring 1 User and OS Requests
Ring O (03 \
Host Computer System Hardware
11
In other words, hypervisors had some room to play
with
B
71 Many solutions kept the hypervisor in kernel mode (ring O)
71 Applications in user mode (ring 3)
11 Guest OS in a layer of intermediate privilege
Ring 1
COLORADD STATE UNIVERSITY (orescr S e arrment VIRTUALIZATION 126.12
12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

How this allows virtualization ...

Kernel is privileged relative to user processes

Any attempt to access kernel memory from a user program leads to an
access violation

Guest OS’ privileged instructions trap to the hypervisor

Hypervisor performs sanity checks and then performs instructions on
the guest’s behalf

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.13

13

o L] [
Using the x86 rings prior to VT/SVM
Ring 3
Virtual l: __________________ R _ B ; ______
Machine) : ing
Guest Operating System T TTTTTTTTTTTTTTETT
(Rewrite binary prior to execution + Ring 1
emulate) .
Type 1 hypervisor Ring O
Hardware

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

But what about sensitive instructions in the guest OS’
kernel code?

The hypervisor makes sure that they no longer exist

Hypervisor rewrites code one basic block at a time

Basic block

Short, straight-line sequences that end with a branch

Contain no jump, call, trap, return or other instructions that alter flow of
control

Except for the very last instruction which does precisely that

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.15

15

Executing basic blocks

Prior to executing a basic block, hypervisor scans it to see if
there are sensitive instructions

If so, replace with call to hypervisor procedure that handles them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Dynamic translation and emulation sound very
expensive

But typically, are not

Translated blocks are cached

So, no translation is needed in the future
After basic block has completed executing, control is returned to
hypervisor

Which locates block’s successor

If successor has already been translated, it can be executed
immediately

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.17

17

Binary translations

Common to perform binary translation on all the guest OS code
running in ring 1

Replace even the privileged, sensitive instructions that could be
made to trap

Traps can be expensive and binary translation leads to better
performance

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What about Type 2 hypervisors?

Though type 2 hypervisors are conceptually different from type 1
They use, by and large, the same techniques

For e.g., VMware ESX Server (type 1, 2001) used exactly the same
binary translation as the first VMware Workstation (type 2, 1999)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.19

19

For faithful virtualization

Guest OS should also be tricked into thinking it is the true and
only king/queen of the mountain

Full control of all machine’s resources

Access to entire address space (4GB on 32-bit machines)

When the queen finds another king squatting in its address
space?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Let’s look at this 2 kings/queen problem

In Linux, a user process has access to just 3 GB of the 4 GB
address space [32-bit addressing]

1 GB is reserved for the kernel

Any access to kernel memory leads to a trap
We could take the trap and emulate appropriate actions

Expensive!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.21

21

Type 2 hypervisors have a kernel module operating
in ring O

Allows manipulation of hardware with privileged instructions

Allows the guest to have the full address space

This is all well and good, but ...

At some point hypervisor needs to clean up and restore original
processor context

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What if the guest is running and an interrupt arrives from
an external device?

Type 2 hypervisor depends on host’s device drivers to handle the
interrupt

So, the hypervisor reconfigures hardware to to run the host OS
system code

When the device driver runs, it finds everything just as it expected it to be

Hypervisor behaves just like teenagers throwing a party when
parents are away

It's OK to rearrange furniture completely, as long as they put it back as they
found it before parents get home

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.23

23

World switch

Going from a hardware configuration for the host kernel to a
configuration for the guest OS

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Why do hypervisors work even on unvirtualizable

hardware?
o

1 Sensitive instructions in the guest kernel are replaced by calls to
procedures that emulate these instructions

71 No sensitive instructions issued by the guest OS are ever
executed directly by true hardware

Turned into calls to the hypervisor, which emulates them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.25

25

COST OF VIRTUALIZATION

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Cost of virtualization

We expect CPUs with VT would greatly outperform software
techniques

Trap-and-emulate approach used by VT hardware generates a
lot of traps ... and these are expensive
Ruin CPU caches, TLBs, and branch predictions

In contrast, when sensitive instructions are replaced by calls to
hypervisor procedures

None of this context-switching overhead is incurred

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.27

27

Cost of virtualization

Still ... with modern VT hardware, usually the hardware beats
the software

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

True virtualization & paravirtualization
B
True virtualization Paravirtualization
[\ [\
e e ® e
Trap due
. . to sensitive ” X Trap due to
Unmodified Windows (\/ instruction Modified L|nux,\/ hypervisor
. call
1
Type 1 hypervisor i Microkernel
1
Hardware
29
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

x86 privilege level architecture without virtualization

(B

Ring 3 User Apps

Ring 2

o _ ______ Direct execution of
Ring 1 User and OS Requests
Ring O (03 \
Host Computer System Hardware

31

Full Virtualization: Binary translation approach to
x86 virtualization
(B
Ring 3 User Apps
Ring 2
. Direct execution of
Ring 1 Guest OS User and OS Requests
. Binary Translation
Ring 0 VMM of OS Requests
Host Computer System Hardware
COLORADD STATE UNIVERSITY (orescr S e arrment VIRTUALIZATION 1.26.32
32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

M —
Ring 3 User Apps
Ring 2
Ring 1 Guest OS
Ring O Paravirtualized Host OS

Virtualization Layer

Paravirtualization approach to x86 virtualization

Direct execution of
User and OS Requests

“Hypercalls” to the
Virtualization Layer
replace non-virtualizable
OS instructions

>

Host Computer System Hardware

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION

L26.33
33
L] L] L] L]
Hardware assisted virtualization

(B

Ring 3 User Apps

Ring 2

Direct execution of
Ring 1 Guest OS User and OS Requests
OS Requests trap to VMM
Ring O VMM without Binary Translation
__________ or Paravirtualization
Host Computer System Hardware

COLORADQO STATE UNIVERSITY coupuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Contrasting the virtualization approaches

B

Technique Binary Translation and Exit to Root Mode on Hypercalls

Direct Execution privileged instructions

Guest Unmodified Guest OS Unmodified Guest OS GuestOS codified to issue

Modification/ Hypercalls so it can’t run

Compatibility Excellent compatibility Excellent compatibility on native hardware.

Compatibility is lacking

35

Tell all the truth but tell it slant —
Success in Circuit lies

Too bright for our infirm Delight
The Truth’s superb surprise

As Lightning to the Children eased
With explanation kind

The Truth must dazzle gradually
Or every man be blind —

Tell all the truth but tell it slant, Emily Dickinson

MEMORY VIRTUALIZATION

COMPUTER SCIENCE DEPARTMENT

@ COLORADO STATE UNIVERSITY

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

All modern OS support virtual memory

Basically mapping of virtual address space onto frames of
physical memory

Defined by (multilevel) page tables

Mapping is set in motion by having the OS set a control register
that points to the top-level page table

Virtualization greatly complicates memory management

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.37

37

Scenario

Guest OS decides to map its virtual pages 7, 4, and 3 onto
physical frames 10, 11, and 12 respectively

Builds page tables and sets hardware register to point to top
level page table

Sensitive instruction that traps on a VT CPU

We will look at type-1 but the problem is the same in type-2
and paravirtualization

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L26.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What should the hypervisor do?

Allocate physical frames 10, 11, and 12 to the VM
Setup page tables to map VM’s virtual pages 7, 4, 3

What if a second VM starts up and maps its virtual pages 4, 5,
and 6 to physical frames 10, 11 and 122

This VM loads a control register to point to its page tables

Hypervisor catches this trap

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.39

39

Choices for the hypervisor

Cannot use the mapping from the 2"4 VM because physical frames
10, 11, and 12 are already in use

Find free frames, say 20, 21, and 22 and use them
But first, create new page tables mapping virtual pages 4, 5, and 6 of VM-
2 onto 20, 21, and 22

In general, for each VM, the hypervisor needs to create a shadow
page table

Map virtual pages used by VM onto actual physical frames that the
hypervisor gave it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Also ...

Every time the Guest OS changes its page tables?
The hypervisor must change the shadow page tables as well

If the guest OS remaps virtual page 7 onto what it sees as physical

frame 200

The hypervisor has to know about this change

Trouble is that the guest OS can change its page tables by just
writing into memory

No sensitive operations are required, so the hypervisor does not even know
about the change

Certainly, cannot update shadow page tables used by actual hardware

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.41

41

Options

Keep track of the top-level page table
There is a trap when the guest OS attempts to load register

Map the page tables it points to as read-only
If the guest OS tries to modify it, will cause a fault and give control to the hypervisor

Figure out what the guest OS is trying to do and update shadow tables accordingly

Allow guest to add new mappings at will
Nothing changes in the shadow tables

When a new page is accessed, fault occurs and control reverts to hypervisor
(can then add entries)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Hardware support for nested page tables

Took AMD and Intel a few years to produce hardware to virtualize
memory efficiently

Support for nested page tables (AMD)
Intel calls this extended page tables (EPT)

With EPT

Hypervisor still has the shadow page table, but CPU is able to handle
intermediate levels in hardware

Hardware walks the EPT to to translate guest virtual address to guest
physical address

Also, walks the EPT to find the host physical address without software intervention

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.43

43

Other issues

Overcommitment of physical memory

1 physical machine with 32 GB of memory will run 3 VMs each of
which thinks there is 16 GB of memory

Deduplication

Allow sharing of pages with the same content

E.g., Linux kernel

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

How can we take away memory pages safely from
VMs?2

There is a trick known as ballooning

Small balloon module loaded into each VM as a psuedo device
driver that talks to hypervisor

Balloon inflates at hypervisor’s request by allocating more and
more pinned pages

And deflates by deallocating these pages

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.45

45

How ballooning helps

As balloon inflates
Memory scarcity in the guest OS increases

The guest OS responds by paging out what it believes are the least
valuable pages

This is exactly what we need!

As balloon deflates

More memory available for the guest to allocate

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

In other words

Hypervisor tricks the guest OS into making tough decisions for it

In politics this is known as passing the buck

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.47

47

VIRTUAL APPLIANCES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Installing application software

VMs offer a solution to a problem that has long plagued users
(especially open source)

How to install application programs

Applications are dependent on numerous other applications and
libraries

Which themselves depend on a host of software packages

Plus, there are dependencies on particular versions of compilers,
scripting languages, OS efc.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.49

49

With VMs ...

Developer can carefully construct a virtual machine
Load it with required OS, compiler, libraries, and application code

Freeze the entire unit ... ready to run

Only the software developer has to understand the
dependencies

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What about customers?

Customers get a complete package that actually works

Completely independent of which OS they are running and which
other software, packages, and libraries they have

These are “shrink-wrapped” virtual machines

Virtual appliances

Amazon’s EC2 cloud offers many pre-packaged virtual
appliances

Software as a service

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.51
51
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Clouds

Virtualization played a critical role in the dizzying rise of cloud
computing

Clouds

Public or private or federated

Clouds offer different things
Bare metal

VMs of different sizes and capabilities

Appliances with software that is ready to use

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.53

53

5 characteristics of clouds: NIST

On-demand self-service
No human interaction needed

Broad network access
Resources available over the network

Resource pooling
Resources pooled among multiple users

Rapid elasticity

Acquire and release resources rapidly

Measured service
Meters resource usage

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LICENSING ISSUES

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

55

Licensing Issues

Some software is licensed on a per-CPU basis
Especially, software for companies

When users buy a program they have the right to run it on just one
CPU

What is a CPU anyway?

Can we run multiple VMs all running on the same physical hardware?

Problem is even worse, when companies have licenses for N
machines running the software
VMs come and go on demand

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT VIRTUALIZATION L26.56

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the

following references
Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 7]
VMWare: Understanding Full Virtualization, Paravirtualization, and Hardware Assist.

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 9, 16]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT VIRTUALIZATION L26.57

57

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26.29

