
SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26-B.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[CONTAINERS]

Shrideep Pallickara
Computer Science

Colorado State University

1

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.2

Topics covered in this lecture

¨ Containers
¤How they differ from virtualization
¤Key enabling concepts

n Cgroups
n Namespaces
n Capabilities

¤ Images

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26-B.3COMPUTER SCIENCE DEPARTMENT CONTAINERS: A TOP LEVEL VIEW
3

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.4

History

¨ Most of what containers accomplish is based on cgroups (control
groups)
¤Created by Google Engineers Rohit Seth and Paul Menage; work

started in 2006
¤Merged into the Linux kernel mainline in version 2.6.24 (January

2008)

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.5

What is a container?

¨ Ultimately, just a group of processes
¨ As such, a container can do anything that processes can do

¤Albeit with restrictions enforced by the kernel

5

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.6

Why containers?

¨ ”build”-ing software can be difficult
¤ The build process may have dependencies on specific versions of

libraries and such
¤Solution: Package all dependencies in the container

¨ Deploying software can also be difficult
¤You may use a specific feature of Python 3.6, and if the server only

has Python 3.5 the deployment breaks
¤Solution: Deploy a container

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.7

Containers have their own file system

¨ Use this to include every dependency
¨ A container image is a compressed representation (usually tar)

of the filesystem

7

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.8

Containers are not magic

¨ A running container shares the kernel of the host machine it is
running on
¤A containerized application designed to run on a host with a Windows

kernel will not run on a Linux host

¨ Caveat: This is an area that is quite fluid and changes are afoot

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26-B.9COMPUTER SCIENCE DEPARTMENT

CONTAINERS VS VIRTUALIZATION

9

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.10

How are containers different from virtual machines?
 [1/2]

¨ Every VM requires its own dedicated OS
¤ Every OS consumes CPU, RAM and storage that could otherwise be

used to power more applications
¤ Every OS needs patching and monitoring; in some cases, every OS

requires a license
¤ These overheads add up

¨ VMs are slower to boot
¤Migrating and moving VM workloads between hypervisors and cloud

platforms can be harder than it needs to be

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.11

How are containers different from virtual machines?
 [2/2]

¨ The container is roughly analogous to the VM

¨ Major difference?
¤ Every container does not require its own full-blown OS
¤ In fact, all containers on a single host share a single OS

11

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.12

Container Engines

¨ The container engine (e.g. Docker Engine) is the infrastructure
plumbing software that runs and orchestrates containers

¨ Core container runtime that runs containers

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.13

The hypervisor MO

¨ Once the hypervisor boots, it lays claim to all physical resources
on the system such as CPU, RAM, storage, and NICs

¨ The hypervisor then carves these hardware resources into virtual
versions that look-smell-and-feel exactly like the real thing
¤Packages them into a software construct called the VM
¤We then take those VMs and install an operating system and

application on each one

13

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.14

What about the container engine?

¨ The container engine then takes OS resources such as the
process tree, the filesystem, and the network stack, and carves
them up into secure, isolated constructs called containers

¨ Each container looks-smells-and-feels just like a real OS

¨ Inside of each container we can run an application

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.15

Hypervisors versus container engines

¨ At a high level, we can say that hypervisors perform hardware
virtualization
¤Carve up physical hardware resources into virtual versions

¨ Containers perform OS virtualization
¤Carve up OS resources into virtual versions

15

L26-B.16COMPUTER SCIENCE DEPARTMENT

ENABLING CONSTRUCTS IN CONTAINERS

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.17

Key enabling constructs in Container

¨ Namespaces
¨ Cgroups
¨ Capabilities
¨ seccomp

17

L26-B.18COMPUTER SCIENCE DEPARTMENT

NAMESPACES

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.19

Kernel namespaces are at the very heart of
containers

¨ Lets us slice up OS so that it looks and feels like multiple
isolated operating systems

¨ This lets us do really cool things like
¤Run multiple web servers on the same OS without having port conflicts
¤Multiple applications on the same OS without them fighting over

shared config files and shared libraries

¨ Docker containers are an organized collection of namespaces

19

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.20

Namespaces [1/3]

¨ Process ID namespace
¤ Use the pid namespace to provide isolated process trees for each container.
¤ Every container gets its own process tree, i.e. every container can have its own PID 1
¤ PID namespaces also mean that a container cannot see or access to the process tree of

other containers, or the host it’s running on

¨ Network namespace
¤ Uses the net namespace to provide each container its own isolated network stack
¤ This stack includes: interfaces, IP addresses, port ranges, and routing tables
¤ For example, every container gets its own eth0 interface with its own unique IP and range

of ports

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.21

Namespaces [2/3]

¨ Mount namespace:
¤ Every container gets its own unique isolated root / filesystem
¤ Every container can have its own /etc, /var, /dev etc.
¤ Processes inside of a container cannot access the mount namespace of the

Linux host or other containers
n They can only see and access their own isolated mount namespace

¨ Inter-process Communication namespace
¤ Uses the ipc namespace for shared memory access within a container
¤ Also isolates the container from shared memory outside of the container

21

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.22

Namespaces [3/3]

¨ User namespace
¤Use user namespaces to map users inside of a container to different

users on the Linux host
¤A common example is mapping the root user of a container to a non-

root user on the Linux host

¨ UTS (UNIX Timesharing System) namespace
¤Use the uts namespace to provide each container with its own

hostname

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26-B.23COMPUTER SCIENCE DEPARTMENT

CGROUPS

23

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.24

Cgroups

¨ If namespaces are about isolation, control groups (cgroups) are
about setting limits

¨ Containers are isolated from each other but all share a common
set of OS resources — things like CPU, RAM and disk I/O

¨ Cgroups let us set limits on each of these so that a single
container cannot use all of the CPU, RAM, or storage I/O of the
host

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.25

Think of containers as similar to rooms in a hotel

¨ Yes, each room is isolated, but each room also shares a common
set of resources
¤ E.g. water supply, electricity supply, shared swimming pool, shared

gym, shared breakfast bar etc.

¨ Cgroups let us set limits so that
¤No single container can use all of the water or eat everything at the

breakfast bar

25

L26-B.26COMPUTER SCIENCE DEPARTMENT

CAPABILITIES

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.27

Capabilities

¨ Arduous to run containers as non-root — non-root is so
powerless it’s practically useless

¨ What we need is a technology that lets us pick and choose
which root powers our containers need in order to run?
¤Capabilities

27

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.28

Under the hood, the Linux root account is made up of
a long list of capabilities

¨ CAP_CHOWN lets you change file ownership
¨ CAP_NET_BIND_SERVICE lets you bind a socket to low

numbered network ports
¨ CAP_SETUID lets you elevate the privilege level of a process
¨ CAP_SYS_BOOT lets you reboot the system
¨ Etc, etc …
¨ Container engines work with capabilities so that you can run

containers as root, but strip out capabilities that you don’t need

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.29

seccomp

¨ Rarely used system calls can help an attacker
¨ seccomp

¤ Limit the system calls a container can make to the host’s kernel

¨ Docker blocks dozens of system calls by default
¨ You can customize seccomp profiles

29

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.30

seccomp-bpf

¨ Lets you run a function before every system call
¨ The function decides if that syscall is allowed
¨ Ultimately there are two ways to block scary system calls

¤ Limit the containers capabilities
¤Set of seccomp-bpf permissions list
¤Best practice? Doing both

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L26-B.31COMPUTER SCIENCE DEPARTMENT

DOCKER IMAGES

31

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.32

Images are considered build-time constructs,
whereas containers are run-time constructs

¨ Images are made up of multiple layers that get stacked on top
of each other and represented as a single object

¨ Inside the image is a cut-down OS and all of the files and
dependencies required to run an application
¤Because containers are intended to be fast and lightweight, images

tend to be small.

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.33

The whole purpose of a container is to run an
application or service

¨ The image a container is created from must contain all OS and
application files required to run the app/service

¨ However, containers are all about being fast and lightweight
¤So images they’re built from are usually small and stripped of all non-

essential parts

¨ All containers running on a Docker host share access to the host’s
kernel
¤ Images contain just enough OS

33

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.34

Images and Layers [1/2]

¨ A Docker image is just a bunch of loosely-connected read-only
layers

¨ All Docker images start with a base layer, and as changes are
made and new content is added, new layers are added on top
¤ You might create a new image based off Ubuntu Linux 16.04.

n This would be your image’s first layer.
n If you later add the Python package, this would be added as a second layer on top of

the base layer.
n If you then added a security patch, this would be added as a third layer at the top

¨ Docker takes care of stacking these layers and representing them as
a single unified object

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.35

Images and Layers [2/2]

¨ As additional layers are added, the image is always the
combination of all layers

¨ Docker employs a storage driver (snapshotter in newer versions)
that is responsible for stacking layers and presenting them as a
single unified filesystem

35

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.36

Multi-Architecture Images

¨ As Docker grew, things started getting complex — especially
when new platforms and architectures, such as Windows, ARM,
were added

¨ Have to think about whether the image we’re pulling is built for
the architecture we’re running on

¨ Docker (image and registry specs) now supports multi-
architecture images
¤A single image can have an image for Linux on x64, Linux on PowerPC,

Windows x64, ARM etc.

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.37

Working with images

¨ The process of getting images onto a Docker host is called
pulling

¨ Docker images are stored in image registries. The most common
registry is Docker Hub (https://hub.docker.com)

37

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.38

Commands with Images

¨ docker image ls lists all of the images stored in your Docker
host’s local cache
¤ To see the SHA256 digests of images add the --digests flag.

¨ docker image inspect gives you all of the glorious details
of an image — layer data and metadata

¨ docker image rm is the command to delete images

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L26-B.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTAINERSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L26-B.39

The contents of this slide-set are based on the
following references
¨ Nigel Poulton. Docker Deep Dive. ISBN: 978-1521822807 1st Edition. 2017.

Chapters [1, 6, and 15]

¨ Julia Evans. How Containers Work! E-zine. Available from Wizard Zines. 2020.

39

