

## CS 370: OPERATING SYSTEMS [FILE SYSTEMS]



"As we board the aircraft, I'd like to remind everyone that your primary storage space is in your cheeks."

Cartoon by Kate Isenberg  
New Yorker, November 2, 2023

Shrudeep Pallickara  
Computer Science  
Colorado State University

COMPUTER SCIENCE DEPARTMENT



1

### Frequently asked questions from the previous class survey

- Does each guest OS on a VM still need as much memory as a regular OS to run?
- Virtual appliance example? SaaS
- Are VMs safer if you someone is doing research on viruses?
- Have systems used ring-2?
- Does the hypervisor try to rewrite instructions other than sensitive, privileged instructions?
  - Why do those instructions still exist?
- Do the VMs have dedicated cores?



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.2

2

## Topics covered in this lecture

- File System Structure
- File System Implementation
- Allocations
  - Contiguous allocation



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.3

3

Memory is the treasury and guardian of all things.  
— Marcus Tullius Cicero

## FILE SYSTEMS

COMPUTER SCIENCE DEPARTMENT



COLORADO STATE UNIVERSITY

4

## Rationale #1: Applications need to store and retrieve information

- A program can store a **limited** amount of information in its own address space
- Storage capacity is **restricted** to the size of virtual memory
  - Far too small for several applications
    - Airline reservations, banking, directory services etc



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.5

5

## Rationale #2: Information in the address space of a process is not persistent

- When process terminates, information is lost
- For many applications, information must be **retained** for a much longer time
  - Weeks, Years, Forever



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.6

6

### Rationale #3: Multiple processes often need to access (parts of) information at the same time

- Storing an online telephone directory in the address space of one process?
  - Only that process can access the info
  - Only one telephone number can be looked up at a time



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.7

7

### Essential requirements for long-term storage

- ① **Store** a very large amount of information
- ② Information must **survive** process termination
- ③ Multiple processes must be able to **concurrently access** the information

- Store information on disk or external media
  - In units called **files**
    - If you printed 1 TB of data as text on paper, you would produce a stack about 20 miles high.



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.8

8

## Files are an abstraction mechanism

- Provide a way to store information and read it back later
- Do this in a way that **shields** the user from
  - How and where information is stored on disk
  - How disks really work



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.9

9

## Naming files

- Important characteristic of the abstraction mechanism
- Data must be shared across programs
  - Storage systems must provide ways to easily identify data of interest
- Strings 8-255 characters long
- Most OS support two-part file names separated by a period
  - Last part referred to as the **file extension**
    - Conventions: Easy to remember
    - Enforced in some cases e.g., the compiler



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.10

10

## Files can be structured in many ways:

### Unstructured sequence of bytes

- The OS does not know or care what is in the file
  - Maximum **flexibility**
- OS does not help, but does not get in the way either
- Meaning is imposed by programs
- Most OS support this



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.11

11

## File Structure: A sequence of records

- A file is a sequence of **fixed-length** records
- Read operation returns one record
  - Write operation overwrites/appends one record
- 80-column punch card used to be dominant
  - Files consisted of 80 character records



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.12

12

## Directory and disk structure

- Typically, there are millions of files within a computer
- Storage device can be used in its entirety for a file system
- It could also be **partitioned**
  - Limit size of individual file systems
  - Put multiple file system types
  - Set aside for **swap space**



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.13

13

## Directories are used to organize files

- Can be viewed as a **symbol table**
- In many systems, directories themselves are files
- Supported operations
  - ① Insert, delete, search, list and rename entries
  - ② Traversal



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.14

14

## Organization of directories

- Single level directory
- Two-level directory
- Tree-structured directories
- Acyclic graph directories
- Shared sub-directory



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.15

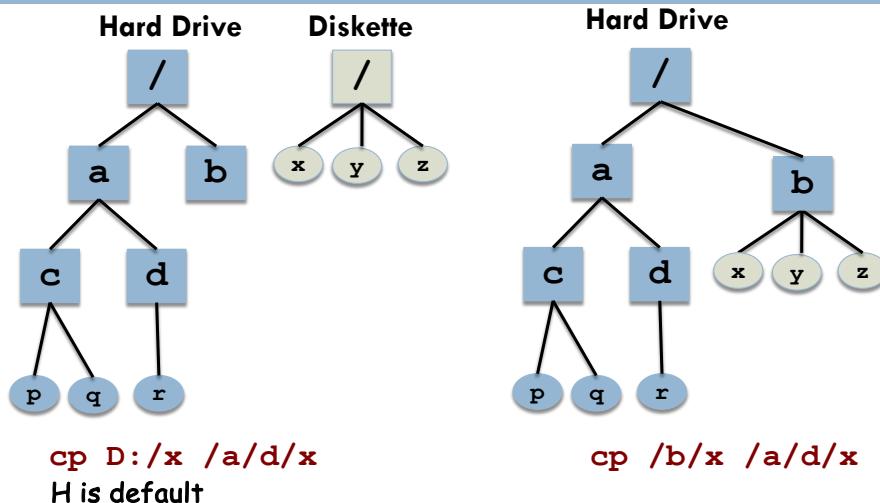
15

## Mounting file systems

- Many systems have more than one disk
  - How do you handle them?
- **S1:** Keep self-contained file system on each disk
  - And keep them separate
- **S2:** Allow one disk to be **mounted** in another disk's file tree



COLORADO STATE UNIVERSITY


Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.16

16

## Mounting file systems



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.17

17

## Checks performed during mounting

- OS **verifies** that the device contains a valid file system
- Read device directory
  - Make sure that the format is an expected one
- Windows mounting
  - Each device in a separate name space
  - {Letter followed by a colon e.g. **G:**}



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.18

18



19

## Nonvolatile storage and file systems

- Technologies such as magnetic disks and high-density flash **do not allow** random access to individual words of storage
  - Instead, access must be done in coarser-grained units — 512, 2048, or more bytes at a time
- Furthermore, these accesses can be much slower than access to DRAM (5-6 orders of magnitude)
- This large difference drives the OS to organize and use persistent storage devices differently than main memory



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.20

20

## Disks provide the bulk of secondary storage

- A disk can be **rewritten** in place
  - Read, modify, and then write-back to same place
- Disks can **directly access** any block of information
- I/O transfers between memory and disk are performed in units of **blocks**



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.21

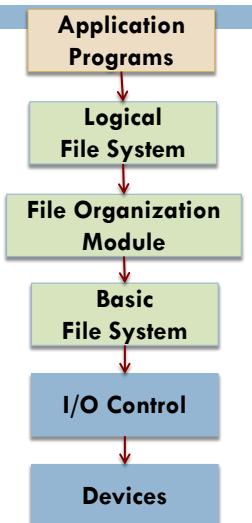
21

## There are two core design problems in file systems

- Defining how the file system should **look** to the user
- Creating algorithms and data structures to **map** logical file system onto physical storage



COLORADO STATE UNIVERSITY


Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.22

22

There are many levels that comprise a file system



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.23

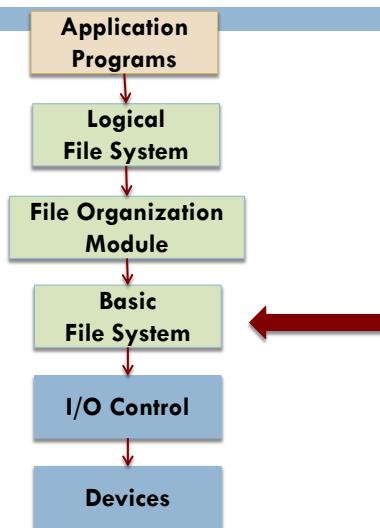
23

I/O Control consists of device drivers

- Transfers information *between main memory and disk*
- Receives **high-level** commands
  - Retrieve block 123, etc
- Outputs low-level, hardware-specific instructions
  - Used by the hardware controller
  - Writes bit patterns into specific locations of the I/O controller



COLORADO STATE UNIVERSITY


Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.24

24

There are many levels that comprise a file system



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.25

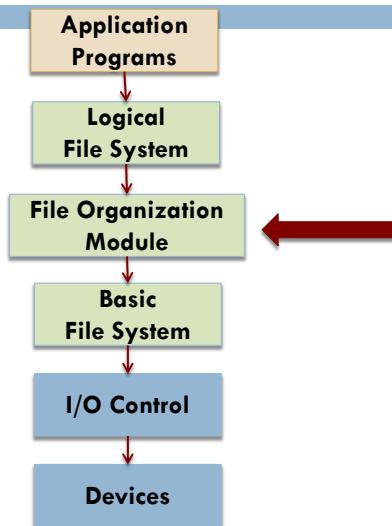
25

Basic file system issues commands to the device driver

- Read and write physical blocks on disk
  - E.g.: Drive 1, cylinder 73, sector 10
- Manages **buffers and caches**
  - ① To hold file system, directory and data blocks
  - ② Improves performance



COLORADO STATE UNIVERSITY


Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.26

26

There are many levels that comprise a file system



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.27

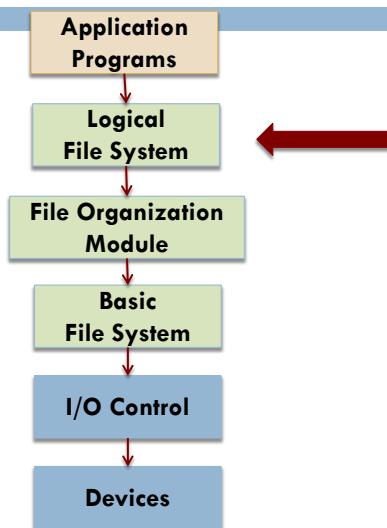
27

## File organization module

- Knows about files
  - Logical and physical blocks
- **Translate** logical addresses to physical ones
  - Needed for every block
- Includes a **free space manager**
  - Tracks unallocated blocks and allocates as needed



COLORADO STATE UNIVERSITY


Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.28

28

There are many levels that comprise a file system



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.29

29

The logical file system

- Manages **metadata** information
  - Metadata is *data describing the data*
- Maintains file structure via **file control blocks**
  - Info about the file
    - Ownership and permissions
    - Location of file contents
  - **inode** in UNIX file systems



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.30

30

## Several file systems are in use

- CD-ROMs written in ISO 9660 format
  - Designed by CD manufacturers
- UNIX
  - Unix file system (**UFS**)
  - Berkley Fast File System (**FFS**)
- Windows: **FAT**, **FAT32** and **NTFS**
- Linux
  - Supports 40 different file systems
  - Extended file system: **ext2**, **ext3** and **ext4**



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.31

31



32

## Using a magnet and a nail for instant messaging?

[1/2]

- **Message:** See you later; or not
- Drop a nail in your friend's mailbox
  - If nail is magnetized? You'll see the friend
  - If nail is not magnetized? You won't



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.33

33

## Using a magnet and a nail for instant messaging?

[2/2]

- Your friend comes home and picks up the nail
  - Uses the nail to pick up a paper-clip
    - If it sticks? Friend will expect to see you
- Magnetism can be used to store information!



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.34

34

## Using magnetism to store information

- Store information even when you turn power off!
- Storing ...**10001**...?
  - Magnetize first bit
  - Demagnetize next 3
  - Magnetize the next bit



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.35

35

## The anatomy of a disk

- A disk comprises a set of **platters**
  - These have a flat, circular shape
  - Usually made of glass or aluminum
- Both surfaces of a platter covered with **magnetic material**
  - Store information by recording it magnetically
- A platter is logically divided into circular **tracks**
  - These are subdivided into **sectors**



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.36

36

## Rates and times associated with disks

- Rate of data movement between the disk and the memory
  - Transfer rate
- Positioning time
  - Seek time
    - Move disk arm to the necessary cylinder
  - Rotational latency
    - Time for the desired sector to rotate to the disk head



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.37

37

## How about CD-ROMs, DVDs, and Blu-Rays? [1/2]

- Data written with the help of *high intensity* laser that makes “**pits**” on the reflecting surface
- During reads:
  - Use a lower intensity laser
  - Mirrors and a focusing lens are used to shine light on a specific portion of the disk
  - The amount of light that is *reflected back* depends on the presence or absence of a pit
    - Use this to interpret a 1 or 0



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.38

38

## How about CD-ROMs, DVDs, and Blu-Rays? [2/2]

- The *shorter* the wavelength, the *smaller* the pit
  - And greater the density of what can be stored
- DVD uses a 650 nm wavelength laser diode
  - 780 nm for CD
  - Pit sizes: DVD = 0.74  $\mu\text{m}$  and CD = 1.6  $\mu\text{m}$
- What about Blu-Ray?
  - 405 nm wavelength, 0.13  $\mu\text{m}$  pit size
  - 50 GB storage possible on one disk
- What's next?
  - Archival Disc (Sony/Panasonic) 79.5 nm with 300 GB of data storage



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.39

39

A pen--to register; a key--  
That winds through secret wards  
Are well assigned to Memory  
By allegoric Bards.

— Memory, William Wordsworth

## FILE SYSTEM IMPLEMENTATION

COMPUTER SCIENCE DEPARTMENT



40

## On-disk structures used to implement a file system

[1/2]

- **Boot control block**

- Information needed to boot an OS from that volume

- **Volume control block: Volume information**

- Number of blocks in the partition
  - Size of the blocks
  - Free-block count/pointers
  - Free file-control-block count/pointers
  - UFS: **super-block**      Windows: **Master file table**



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.41

41

## On-disk structures used to implement a file system

[2/2]

- **Directory structure to organize files**

- One per file system

- **Per file file-control-block**

- Contains details about individual files



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.42

42

## In memory structures used to improve performance via caching

- **Mount table**
  - Information about each mounted volume
- **Directory structure cache**
  - Holds information about recently accessed directories
- **System-wide open file table**
  - File control block of each open file
- **Buffers** to hold file-system blocks
  - To read and write to storage



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.43

43

## Creation of a new file

- **Allocate** a file-control block (FCB)
- **Read** appropriate directory into memory
  - Directory is just a file in UNIX
    - Special **type** field
- **Update** directory with new file name and FCB
- **Write** directory back to disk



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.44

44

## Partitions: A disk can be sliced into multiple partitions

### □ Cooked

- Has a file system

### □ Raw

- No file system
- UNIX swap space uses this
- Hold information needed by disk RAID (**Redundant Array of Independent Disks**) systems



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.45

45

## Boot information can be stored in a separate partition

### □ Usually a **sequential** series of blocks

- Loaded as an image into memory

### □ Image execution starts at a predefined location



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.46

46

## DIRECTORY IMPLEMENTATION

COMPUTER SCIENCE DEPARTMENT



47

### Directory Implementation

- Linear List
- Hash Table



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.48

48

## Directory Implementation

### Linear List

- File names with pointers to data blocks
- Simple to program
  - Inefficient and slow execution
- Finding a file requires a **linear search**
- Sorted list
  - Complicates creation and deletion
- Tree data structures might help here: B-Tree
- Linux's ext file system uses HTree



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.49

49

## Directory implementation:

### Hash table

- Linear list **and** a hash table is maintained
- Key computed from file name
  - Hash table value returns pointer to entry in linear list
- Things to consider
  - ① Account for **collisions** in the hash space
  - ② Need to **rehash** the hash table when the number of entries exceed the limit



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.50

50

## Allocation methods: Objective and approaches

- How to allocate space for files such that:
  - Disk space is utilized effectively
  - File is accessed **quickly**
- Major Methods
  - Contiguous
  - Linked
  - Indexed



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.51

51

What's in a name? That which we call a rose  
By any other name would smell as sweet.

—Juliet

Romeo and Juliet (II, ii, 1-2)  
(Shakespeare)

## NOMENCLATURE

COMPUTER SCIENCE DEPARTMENT



52

## Terminology

- Storage hardware arranges data in **sectors** (for magnetic disk) or **pages** (for flash)
- File systems often group together a **fixed number** of disk sectors or flash pages into a larger allocation unit called a **block**.
  - E.g.: format file system to run on a disk with 512b sectors to use 4 KB blocks
- Windows FAT and NTFS refer to blocks as **clusters**
- **File Control Block** (FCBs) organize info about blocks comprising a file
  - iNode in UFS and MFT Record in NTFS; Master File Table (MFT)



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.53

53

## CONTIGUOUS ALLOCATIONS

COMPUTER SCIENCE DEPARTMENT



COLORADO STATE UNIVERSITY

54

## Contiguous Allocation

- Each file occupies a set of contiguous blocks on the disk
  - If file is of size  $n$  blocks and starts at location  $b$ 
    - Occupies blocks  $b, b+1, \dots, b+n-1$
- Disk head movements
  - None for moving from block  $b$  to  $(b+1)$
  - Only when moving to a different track



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.55

55

## Sequential and direct access in contiguous allocations

- Sequential accesses
  - Remember **disk address** of the last referenced block
  - When needed, read the next block
- **Direct access** to block  $i$  of file that starts at block  $b$   
$$b + i$$



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.56

56

## Contiguous allocations suffer from external fragmentation

- Free space is broken up into chunks
  - Space is **fragmented**
- Largest continuous chunk may be insufficient for meeting request
- **Compaction** is very slow on large disks
  - Needs several hours



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.57

57

## Determining how much space is needed for a file is another problem

- **Preallocate** if eventual size of file is known?
  - Inefficient if file grows very slowly
    - Much of the allocated space is unused for a long time
- **Modified contiguous allocation scheme**
  - Allocate space in a continuous chunk initially
  - When space runs out allocate another set of chunks (**extent**)



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.58

58

## The contents of this slide-set are based on the following references

- Avi Silberschatz, Peter Galvin, Greg Gagne. *Operating Systems Concepts*, 9<sup>th</sup> edition. John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 4]
- Thomas Anderson and Michael Dahlin. *Operating Systems Principles and Practice*. 2nd Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 11]
- Andrew S Tanenbaum. *Modern Operating Systems*. 4<sup>th</sup> Edition, 2014. Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 4]
- Kay Robbins & Steve Robbins. *Unix Systems Programming*, 2nd edition, Prentice Hall ISBN-13: 978-0-13-042411-2. [Chapter 4]
- Hard Drives. <http://www.explainthatstuff.com/harddrive.html>
- <http://en.wikipedia.org/wiki/DVD>



COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA  
COMPUTER SCIENCE DEPARTMENT

FILE SYSTEMS

L27.59