CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[FILE SYSTEMS]

An ode to the mighty iNode
A file control block

a keeper of the lore

a file’s heart and so much more

tracing information about

Shrideep Pallickara

blocks that
comprise a file Computer Science
not just the what Colorado State University

but also the how
and the where

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Who decides the size of a block?

What if the file does not take up a whole block?

Is the BCB at a standard location on every disk?
What is metadata? Could you give an example?
How do you “erase” data from CDs, DVDs, Blu-Rays?

Can you “re-burn” disks to store new data?
How does a DVD wear out even when someone is careful?

If we have two different files with the same name in different
directories, how is it handled?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Block Allocations
Indexed allocations

Linked allocations

File Systems
Unix File System/FFS
FAT-32
3
What’s in a name? That which we call a rose
By any other name would smell as sweet.
—Juliet
Romeo and Juliet (ll, ii, 1-2)
(Shakespeare)
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Terminology

Storage hardware arranges data in sectors (for magnetic disk) or

pages (for flash)

File systems often group together a fixed number of disk sectors or

flash pages into a larger allocation unit called a block.

E.g.: format file system to run on a disk with 512b sectors to use 4 KB blocks

Windows FAT and NTFS refer to blocks as clusters

File Control Block (FCBs) organize info about blocks comprising a file

iNode in UFS and MFT Record in NTFS; Master File Table (MFT)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Goypyter SciENcE DepARTMENT T ILE SYSTEMS L28.5
5
Allocation methods:
Objective and approaches
How to allocate space for files such that:
Disk space is utilized effectively
File is accessed quickly
Major Methods
Contiguous
Linked
Indexed
COLORADD STATE UNIVERSITY (aremer o o arvens FILE SYSTEMS L28.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INDEXED ALLOCATIONS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Indexed allocations
Bring all pointers together into one location

index block

Each file has its own index block

Directory contains address of the index block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Indexed allocation supports direct access without
external fragmentation

Every disk block can be utilized

No external fragmentation

Space wasted by pointers is generally higher than linked listed
allocations
Example: File has two blocks
Linked listed allocations: 2 pointers are utilized

Indexed allocations: Entire index block must be allocated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.9
9
[]
iINODES
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode

Fixed-length data structure

One per file

Contains information about
File attributes

Size, owner, creation/modificqtion time efc.

Disk addresses

File blocks that comprise file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.11

11

inode

The inode is used to encapsulate information about a large number of
file blocks

For e.g.
Block size = 8 KB, and file size = 8 GB
There would be a million file-blocks
inode will store info about the pointers to these blocks
inode allows us to access info for all these blocks

Storing pointers to these file blocks also takes up storage

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Managing information about data blocks in the
inode

If the file is large: Indirect pointer

To a block of pointers that point to additional data blocks

If the file is larger: Double indirect pointer

Pointer to a block of indirect pointers

If the file is huge: Triple indirect pointer

Pointer to a block of double-indirect pointers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS

The first few pointers to the data blocks of the file stored in the inode

L28.13

13

Schematic structure of the inode

File Attributes:
Size (bytes)
Owner UID/GID
Relevant times

Link and Block counts
Permissions

Direct pointers to first

few file blocks
Pointers
Single indirect pointer ————> to next

J file blocks
Address of Double indirect

disk block pointer

Triple indirect pointer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS

L28.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

i-Node: How the pointers to the file blocks are

organized
i-Node
Single indirect
Attributes block

Double indirect / ———
block

- ... |
:\

—/
Triple indirect —

plpck |
rofessor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS

L28.15
15
Disk Layout in traditional UNIX systems
i-Nodes Data Blocks
Boot Super
Block Block
An integer number of inodes fit in a single data block

COLORADD STATE UNIVERSITY (aremer o o arvens FILE SYSTEMS L28.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Super Block describes the state of the file system

Total size of partition

Block size and number of disk blocks

Number of inodes
List of free blocks

inode number of the root directory

Destruction of super block?

Will render file system unreadable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.17

17

A linear array of inodes follows the data block

inodes are numbered from 1 to some max

Each inode is identified by its inode number

inode number contains info needed to locate inode on the disk

Users think of files as filenames

UNIX thinks of files in terms of inodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

UNIX directory structure

Contains only file names and the corresponding inode numbers

i-node

File n
N or ile name

Use 1s -—1i to retfrieve inode numbers of the files in the directory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.19

19

Directory entry, inode and data block for a simple
file

i-node
Number File name
12345 namel

inode 12345
Block 23567

Fragment of the

23567 | fextin the file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Looking up path names in UNIX

Example: /usr/tom/mbox

Root directory

1
1

4 | bin
7 dev
14 | lib
etc
usr
tmp

Looking up usr
yields i-node 6

i-node 6
is for /usr
Mode, size
.. attributes

132

i-node 6 says
that /usr is in
block 132

Block 132 is
/usr directory

6

1

19 | bob
30 eve
51 jim

26 tom
45 | zac

/usr/tom is in
i-node 26

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

i-node 26
is /usr/tom

Mode, size
.. attributes

406

i-node 26 says
that /usr/tom
is in block 406

FILE SYSTEMS

Block 406 is
/usr/tom dir
26
6
64 grants
92 dev
60 mbox
81 docs
17 | src

/usr/tom/mbox
is in i-node 60

L28.21

21

Advantages of directory entries that have name and

inode information

Changing filename only requires changing the directory entry

Only 1 physical copy of file needs to be on disk

File may have several names (or the same name) in different directories

Directory entries are small

Most file info is kept in the inode

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA

FILE SYSTEMS

L28.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Two hard links to the same file

Directory entry

in /dirA
i-node File name
12345 namel

Block 23567

Fragment of the

23567 | fextin the file

inode 12345

23
L °
Two hard links to the same file
Directory entry Directory entry
in /dirA in /dirB
i-node File name i-node File name
12345 namel 12345 name2
: Block 23567
2
Fragment of the
23567 | fextin the file
inode 12345
L28.24

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

File with a symbolic link

Directory entry Directory entry
in /dirA in /dirB

i-node File name i-node File name
<:x 12345 namel 13579 name2

Block 23567

Fragment of the 1 “/dirA/namel”

23567 | text in the file 5

15213

/ Block 15213

inode 12345

inode 13579
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS

L28.25

25

Maximum size of your hard disk
(8 KB blocks and 32-bit pointers)

32-bit pointers can address 232 blocks

At 8 KB per-block
Hard disk can be 2'3 x 232 = 245 bytes (32 TB)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS

L28.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The case for larger block sizes

Larger partitions for a fixed pointer size

Retrieval is more efficient

Better system throughput

Problem

Internal fragmentation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.27

27

Limitations of a file system based on inodes

File must fit in a single disk partition

Partition size and number of files are fixed when system is set up

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode preallocation and distribution

inodes are preallocated on a volume

Even on empty disks % of space lost to inodes

Preallocating inodes and spreading them

Improves performance

Keep file’'s data block close to its inode

Reduce seek times

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS

L28.29

29

Checking up on the iNodes:
The df —i command (disk free)

inode statistics for a given set of file systems

Total, free and used inodes

df -i /s/bach/*

Filesystem Inodes IUsed IFree lUse%
/dev/cciss/cO0d1p1 12746752 948362 11798390 8%
/dev/cciss/c0d2p1 10240000 150436 10089564 2%
/dev/cciss/c0d3p1 10240000 812727 9427273 8%
/dev/cciss/c0d4p1 10240000 930080 9309920 10%
/dev/cciss/c0d5p1 10240000 496744 9743256 5%
/dev/cciss/c0d6p1 10240000 167900 10072100 2%
/dev/cciss/c0d7p1 10240000 748709 9491291 8%
/dev/cciss/c0d8p1 12681216 760002 11921214 6%
/dev/cciss/c0d9p1 12681216 394165 12287051 4%

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS

L28.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

e —

68 bytes
File Attributes: —

128
by‘l'es Direct pointers to first L 128 - 68 - 12 =48
few file blocks

M 2 Number of direct pointers?
Single indirect pointer 48/4 =12
Double indirect
pointer [3x4 = 12 bytes
Triple indirect pointer

31

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

12 direct pointers to file blocks
Each file block = 8KB

Size of file that can be represented with direct pointers
12 x 8 KB = 96 KB

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode
i-Node
Attributes
| | _—
Triple indirect —_— —
lock | —
33
inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes
Block size = 8 KB
Single indirect block =block size = 8 KB (8192 bytes)
Number of pointers held in a single-indirect-block
Block-size /Pointer-size
8192/4 = 2048
With single-indirect pointer
Additional 2048 x 8 KB = 2! x 23 x 210= 224 (16 MB) of a file can be
addressed
COLORADD STATE UNIVERSITY (aremer o o arvens FILE SYSTEMS L28.34
34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode

i-Node
Single indirect
Attributes

g
o
o
=

Double indirect
block

Triple indirect —

plpck
rofessor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.35

35

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

With a double indirect pointer in the inode
The double-indirect block has 2048 pointers

Each pointer points to a different single-indirect-block

So, there are 2048 single-indirect blocks
Each single-indirect block has 2048 pointers to file blocks
Double indirect addressing allows the file to have an additional size

of
2048 x 2048 x 8 KB =21 x 211 x 23 x 210=235 . (32 GB)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

inode: A quantitative look
BLOCK Size = 8 KB and Pointers = 4 bytes

Triple indirect addressing
Triple indirect block points to 2048 double indirect blocks
Each double indirect block points to 2048 single indirect blocks
Each single direct block points to 2048 file blocks

Allows the file to have an additional size of
2048 x 2048 x 2048 x 8 KB = 211 x 235=246 (64 TB)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.37

37

Limits of triple indirect addressing

In our example:
There can be 2048 x 2048 x 2048 data blocks

ie, 2" x 21" x 21" = 233

Pointers would need to be longer than 32-bits to fully address this storage

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

What if we increase the size of the pointers to 64-bits
(data block is still 8 KB) ¢

What is the maximum size of the file that we can hold?

8 KB data block can hold (8192/8) = 1024 pointers

Single indirect can add
1024 x 8 KB =210 x 23 x 210=223 (8MB) of additional bytes to the file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.39

39

What if we increase the size of the pointers to 64-bits
(data block is still 8 KB)2

Double indirect addressing allows the file to have an additional size
of

1024 x 1024 x 8 KB =210x 223=233 .. (8 GB)

Triple indirect addressing allows the file to have an additional size of
1024 x 1024 x 1024 x 8 KB =210 x 233=24 (8 TB)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

o N OB .. <

LINKED ALLOCATIONS

i, |

41

Linked Allocation: Each file is a linked list of disk

blocks
Pointer to next block File A
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block
File B
Professor: SHRIDEEP PALLICKARA FlLE SYSTEMS

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

L28.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Linked List Allocations:
Advantages

Every disk block can be used

No space is lost in external fragmentation

Sufficient for directory entry to merely store disk address of first block

Rest can be found starting there

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.43

43

Linked List Allocation:
Disadvantages

Used effectively only for sequential accesses

Extremely slow random access

Space in each block set aside for pointers

Each file requires slightly more space

Reliability
What if a pointer is lost or damaged?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Linked List Allocations: Reading and writing files is
much less efficient

1 Amount of data storage in block is no longer a power of two

Pointer takes up some space

1 Peculiar size is less efficient

Programs read/write in blocks that is a power of two

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.45

45

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Linked list allocation: Take pointers from disk block
and put in table
0

10

1
2
(J_
3 11
4 7 File File File File File
5 block block block block block
6 3 0 1 2 3 4
7 2 4 7 2 10 12
8
9
10 12
11 14
12 EoF Table tracks EVERY disk block in the system
13

FILE SYSTEMS L28.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Linked list allocation using an index /table

Entire disk block is available for data

Random access is much easier

Chain must still be followed

But this chain could be cached in memory

MS-DOS and OS/2 operating systems
Use such a file allocation table (FAT)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.47

47

Linked list allocation using an index:
Disadvantages

Table must be cached in memory for efficient access

A large disk will have a large number of data blocks

Table consumes a large amount of physical memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FAT-32: Linked List Allocations using an index

The Microsoft File Allocation Table (FAT) file system was first
implemented in the late 1970s

Woas the main file system for MS-DOS and early versions of Microsoft
Windows

FAT-32, which supports volumes with up to 228 blocks and files with up
to 232 - 1 bytes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.49

49

The FAT file system is named for its file allocation
table

An array of 32-bit entries in a reserved area of the volume

Each file in the system corresponds to a linked list of FAT entries

Each FAT entry containing a pointer to the next FAT entry of the file (or a
special “end of file” value)

The FAT has one entry for each block in the volume, and the file’s
blocks are the blocks that correspond to the file’s FAT entries:

If FAT entry i is the j FAT entry of a file, then storage block i is the j™ data
block of the file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

File numbers

Directories map file names to file numbers

In the FAT file system, a file’s number is the index of the file’s first entry
in the FAT

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.51

51

The FAT is also used for free space tracking

If data block i is free, then FAT[i] contains O

Thus, the file system can find a free block by scanning through the FAT
to find a zeroed entry

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L28.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The FAT file system is widely used because it is
simple and supported by many operating systems

Many flash storage USB keys and camera storage cards use FAT

Allowing them to be read and written by almost any computer running
almost any modern operating system

Variations of the FAT file system are even used by applications for
organizing data within individual files
For example, .doc files produced by versions of Microsoft Word from 1997
to 2007 are actually compound documents with many internal pieces

The .doc format creates a FAT-like file system within the .doc file to manage the
objects in the .doc file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.53

53

FAT-32: LIMITATIONS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FAT-32 limitations: No support for hard links

FAT represents each file as a linked list of 32-bit entries in the file
allocation table

This representation does not include room for any other file metadata

Instead, file metadata in stored with directory entries with the file’s
name

This approach demands that each file be accessed via exactly one directory
entry, ruling out multiple hard links to a file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.55

55

FAT-32 Limitations: Volume and File size

FAT table entries are 32 bits, but the top four bits are reserved

Thus, a FAT volume can have at most 228 blocks

With 4 KB blocks, the maximum volume size is limited
E.g., 228 blocks/volume X 212 bytes/block = 240 bytes/volume = 1 TB

Block sizes up to 256 KB are supported, but they risk wasting large amounts
of disk space due to internal fragmentation

Similarly, file sizes are encoded in 32 bits, so no file can be larger
than 232 - 1 bytes (just under 4 GB)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT FILE SYSTEMS L28.56

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 4]

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. Recursive Books. ISBN: 978-0985673529. [Chapter 13]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT FiLe SysTEMS L28.57

57

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.29

