
SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[INTER PROCESS COMMUNICATIONS]

Shrideep Pallickara
Computer Science

Colorado State University

IPC: Looking to communicate?
Work alongside the kernel
lower those guardrails so
other processes may join the fray

Use shared memory with its intricate setup
for the fastest speed but heed the call for clean up

Message passing is seamless with ease
But duplication causes speed to decrease
IPC: Choose speed or ease but not both

1

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.2

Frequently asked questions from the previous class
survey
¨ fork()

¤ Where all does it occur? Do parent-child run concurrently?
¤ Do children “see” other children?
¤ Can fork() return a non-zero id even if a child wasn’t created?
¤ Is this used only by the OS? Why isn’t there something better?
¤ What does it mean to be short on resources?

¨ exec():
¤ Why? What if you didn’t do it? How does exec() know what to execute?
¤ Why wait() for a child? Zombie processes, are these bad? After exec() do the child and

parent still share resources?
¨ Windows

¤ Is process creation less efficient?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.3

fork(): An example output
int child_pid = fork();

 if (child_pid == 0) { // I’m the child process.
 printf("I am process #%d\n", getpid());
 return 0;
 } else { // I’m the parent process.
 printf("I am the parent of process #%d\n", child_pid);
 return 0;
 }

 Possible output:
 I am the parent of process 495
 I am process 495

 Another less likely but still possible output:
 I am process 456
 I am the parent of process 456

3

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.4

Topics covered in this lecture

¨ Shells and Daemons

¨ POSIX

¨ Inter Process Communications

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.5

Nota Bene: Regarding Unix I/O

¨ The commands to read and write to an open file descriptor are
the same whether the file descriptor represents a
¤Keyboard
¤Screen
¤ File
¤Device
¤Pipe

¨ UNIX programs do not need to be aware of where their input is
coming from, or where their output is going

5

COMPUTER SCIENCE DEPARTMENT

SHELLS AND DAEMONS

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.7

Shell: Command interpreter

¨ Prompts for commands

¨ Reads commands from standard input

¨ forks children to execute commands

¨ Waits for children to finish

¨ When standard I/O comes from terminal
¤ Terminate command with the interrupt character

n Default Ctrl-C
? Background processes?

7

main() {
 char *prog = NULL;
 char **args = NULL;

 // Read the input a line at a time, and parse each line into the program
 // name and its arguments. End loop if we’ve reached the end of the input.
 while (readAndParseCmdLine(&prog, &args)) {

 // Create a child process to run the command.
 int child_pid = fork();

 if (child_pid == 0) {
 // I’m the child process.
 // Run program with the parent’s input and output.
 exec(prog, args);
 // NOT REACHED
 } else {
 // I’m the parent; wait for the child to complete.
 wait(child_pid);
 return 0;
 }
 }
 }

Si
m

pl
e

Sh
el

l

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.9

Background processes and daemons

¨ Shell interprets commands ending with & as a background
process
¤No waiting for process to complete
¤ Issue prompt immediately

n Accept new commands

¤ Ctrl-C has no effect

¨ Daemon is a background process
¤Runs indefinitely ? Servers?

9

COMPUTER SCIENCE DEPARTMENT

POSIX

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.11

Portable Operating Systems Interface for UNIX
(POSIX)

¨ 2 distinct, incompatible flavors of UNIX existed
¤System V from AT&T
¤BSD UNIX from Berkeley

¨ Programs written for one type of UNIX

¤Did not run correctly (sometimes even compile) on UNIX from another
vendor

¨ Pronounced pahz-icks

11

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.12

IEEE attempt to develop a standard for UNIX
libraries

¨ POSIX.1 published in 1988
¤Covered a small subset of UNIX

¨ In 1994, X/Open Foundation had a much more comprehensive
effort
¤Called Spec 1170
¤Based on System V

¨ Inconsistencies between POSIX.1 and Spec 1170

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.13

The path to the final POSIX standard

¨ 1998
¤Another version of the X/Open standard
¤Many additions to POSIX.1
¤Austin Group formed

n Open Group, IEEE POSIX, and ISO/IEC tech committee
n International Standards Organization (ISO)
n International Electrotechnical Commission (IEC)

n Revise, combine and update standards

13

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.14

The path to the final POSIX standard:
Joint document

¨ Approved by IEEE & Open Group
¤ End of 2001

¨ ISO/IEC approved it in November 2002

¨ Single UNIX spec
¤Version 3, IEEE Standard 1003.1-2001
¤POSIX

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.15

If you write for POSIX-compliant systems

¨ No need to contend with small, but critical variations in library
functions
¤Across platforms

15

COMPUTER SCIENCE DEPARTMENT
INTER PROCESS COMMUNICATIONS (IPC)

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.17

Independent and Cooperating processes

¨ Independent: CANNOT affect or be affected by other processes

¨ Cooperating: CAN affect or be affected by other processes

17

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.18

Why have cooperating processes?

¨ Information sharing

¨ Computational speedup
¤Sub tasks for concurrency

¨ Modularity

¨ Convenience: Do multiple things in parallel

¨ Privilege separation

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.19

Cooperating processes need IPC to exchange data
and information

¨ Shared memory
¤ Establish memory region to be shared
¤Read and write to the shared region

¨ Message passing
¤Communications through message exchange

? Which is faster?

19

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.20

Contrasting the two IPC approaches

process A

process B

kernel

process A

shared memory

process B

kernelM

M

M

Easier to implement
Best for small amounts of data
Kernel intervention for communications

Maximum speed
System calls to establish shared memory

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.21

Shared memory systems

¨ Shared memory resides in the address space of process
creating it

¨ Other processes must attach segment to their address space

21

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.22

Using shared memory

¨ But the OS typically prevents processes from accessing each
other’s memory, so …

① Processes must agree to remove this restriction

② Processes also coordinate access to this region

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.23

Let’s look a little closer at cooperating processes

¨ Producer-consumer problem is a good exemplar of such
cooperation

¨ Producer process produces information

¨ Consumer process consumes this information

23

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.24

One solution to the producer-consumer problem uses
shared-memory

¨ Buffer is a shared-memory region for the 2 processes

¨ Buffer needed to allow producer & consumer to run
concurrently
¤Producer fills it
¤Consumer empties it

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.25

Buffers and sizes

¨ Bounded: Assume fixed size
¤Consumer waits if buffer is empty
¤Producer waits if buffer is full

¨ Unbounded: Unlimited number of entries
¤Only the consumer waits WHEN buffer is empty

25

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.26

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=0, out=0}

{in=1, out=0}

{in=2, out=0}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.27

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=2, out=1}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

27

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.28

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=2, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

After consuming
in == out
Buffer is EMPTY

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.29

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

{in=3, out=2}

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=4, out=2}

{in=1, out=2}

29

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.30

Circular buffer: Bounded

0

1

5

2

3

4

6

7

in: next free position (producer)
out: first full position (consumer)

After consuming:
out=(out+1)%BUFFER_SIZE

After producing:
in=(in+1)%BUFFER_SIZE

{in=2, out=2}

After producing:
(in+1)%BUFFER_SIZE==out
Buffer is FULL

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

INTER PROCESS COMMUNICATIONS
SHARED MEMORY

We'll travel south cross land
Put out the fire
And don't look past my shoulder
The exodus is here
The happy worlds are near
Let's get together

Baba O'Riley, Pete Townsend; The Who

31

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.32

POSIX IPC: Shared Memory
Creating a memory segment to share

¨ First create shared memory segment shmget()
shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR)
§ IPC_PRIVATE: key for the segment
§ size: size of the shared memory
§ S_IRUSR|S_IWUSR: Mode of access (read, write)

¨ Successful invocation of shmget()
¤Returns integer ID of shared segment

n Needed by other processes that want to use region

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.33

Processes wishing to use shared memory must first
attach it to their address space

¨ Done using shmat(): SHared Memory ATtach
¤Returns pointer to beginning location in memory

¨ (void *) shmat(id, asmP, mode)
§ id: Integer ID of memory segment being attached
§ asmP: Pointer location to attach shared memory

§ NULL allows OS to select location for you

§ Mode indicating read-only or read-write
§ 0: reads and writes to shared memory

33

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.34

IPC: Use of the created shared memory

¨ Once shared memory is attached to the process’s address space
¤Routine memory accesses using * from shmat()

n Write to it
n sprintf(shared_memory, “Hello”);

n Print string from memory
n printf(“*%s\n”, shared_memory);

¨ RULE: First attach, and then access

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.35

IPC Shared Memory:
What to do when you are done

① Detach from the address space.
§ shmdt() :SHared Memory DeTtach
§ shmdt(shared_memory)

② To remove a shared memory segment
§ shmctl() : SHared Memory ConTroL operation

n Specify the segment ID to be removed
n Specify operation to be performed: IPC_RMID

n Pointer to the shared memory region

35

COMPUTER SCIENCE DEPARTMENT

INTER PROCESS COMMUNICATIONS
MESSAGE PASSING

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.37

Communicate and synchronize actions without
sharing the same address space

¨ Two main operations
¤send(message)
¤receive(message)

¨ Message sizes can be:
¤ Fixed: Easy
¤Variable: Little more effort

37

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.38

Communications between processes

¨ There needs to be a communication link

¨ Underlying physical implementation
¤Shared memory
¤Hardware bus
¤Network

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.39

Aspects to consider for IPC

① Communications
¤ Direct or indirect

② Synchronization
¤ Synchronous or asynchronous

③ Buffering
¤ Automatic or explicit buffering

39

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.40

Communications: Naming allows processes to refer to
each other

¨ Processes use each other’s identity to communicate

¨ Communications can be
¤Direct
¤ Indirect

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.41

Direct communications

¨ Explicitly name recipient or sender

¨ Link is established automatically
¤ Exactly one link between the 2 processes

¨ Addressing
¤Symmetric
¤Asymmetric

41

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.42

Direct Communications:
Addressing

Explicitly name recipient
and sender of message

Only sender names recipient
Recipient does not

• Symmetric addressing
• send(P, message)
• receive(Q, message)

• Asymmetric addressing
– send(P, message)
– receive(id, message)
• Variable id set to name of the sending process

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.43

Direct Communications: Disadvantages

¨ Limited modularity of process definitions

¨ Cascading effects of changing the identifier of process
¤ Examine all other process identifiers

43

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.44

Indirect communications: Message sent and received
from mailboxes (ports)

¨ Each mailbox has a unique identification & owner
¤POSIX message queues use integers to identify mailboxes

¨ Processes communicate only if they have shared mailbox
¤send(A, message)
¤receive(A, message)

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.45

Indirect communications: Link properties

¨ Link established only if both processes share mailbox

¨ Link may be associated with more than two processes

45

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.46

Indirect communications

¨ Processes P1, P2 and P3 share mailbox A
¤P1 sends a message to A
¤P2, P3 execute a receive() from A

¨ Possibilities? Allow …
① Link to be associated with at most 2 processes

② At most 1 process to execute receive() at a time

③ System to arbitrarily select who gets message

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.47

Mailbox ownership issues

¨ Owned by process

¨ Owned by the OS

47

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.48

Mailbox ownership issues:
Owned by process

¨ Mailbox is part of the process’s address space
¤Owner: Can only receive messages on mailbox
¤User: Can only send messages to mailbox

¨ When process terminates?
¤Mailbox disappears

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.49

Mailbox ownership issues:
Owned by OS

¨ Mailbox has its own existence

¨ Mailbox is independent
¤Not attached to any process

¨ OS must allow processes to
¤Create mailbox
¤Send and receive through the mailbox
¤Delete mailbox

49

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.50

Message passing: Synchronization issues
Options for implementing primitives
¨ Blocking send

¤ Block until received by process or mailbox

¨ Nonblocking send
¤ Send and promptly resume other operations

¨ Blocking receive
¤ Block until message available

¨ Nonblocking receive
¤ Retrieve valid message or null

¨ Producer-Consumer problem: Easy with blocking

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.51

Message Passing: Buffering

¨ Messages exchanged by communicating processes reside in a
temporary queue

¨ Implementation schemes for queues
¤ZERO Capacity
¤Bounded
¤Unbounded

? When does a consumer wait?

? When does a producer wait?

51

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.52

Message Passing Buffer:
Consumer always has to wait for message

¨ ZERO capacity: No messages can reside in queue
¤Sender must block till recipient receives

¨ BOUNDED: At most n messages can reside in queue
¤Sender blocks only if queue is full

¨ UNBOUNDED: Queue length potentially infinite
¤Sender never blocks

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INTER-PROCESS COMMUNICATIONSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.53

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 3]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 2, 3]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

53

