
SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.1COMPUTER SCIENCE DEPARTMENT

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Shrideep Pallickara
Computer Science

Colorado State University

The Critical Section
A segment of code
 accessing a shared resource

The segment
 worthy of protection
 bookended by two sentinels
The entry and exit

The entry gatekeeping
 so only one may enter
The exit housekeeping
 so someone else may enter

1

L9.2INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Frequently asked questions from the previous class
survey
¨ How different is the actual code for user vs kernel threads?
¨ Do we decide when to use kernel vs user threads?
¨ Are threads ever launched without the user ever knowing them?
¨ Is there a process-level distinction for the main thread vs. other threads?
¨ When a join is called by a thread, does the number of program counters reduce by one?
¨ Does every class that needs be a Java Thread need to implement Runnable?

¤ Why is the first statement that is executed in a Java thread in the run() method?
¨ Can only the main-thread join()?
¨ Say, thread A performs a join() on a thread B

¤ Is thread A now running?
¤ Is thread B now running?

¨ What is a thread pool?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.3INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Synchronization: What we will look at

Synchronization

Race Conditions

Critical Sections

Critical Section problem
& solution requirements

Classical
Synchronization
problems

Hardware
assists

Why?

Synchronization
primitives

3

L9.4INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Topics covered in the lecture

¨ Critical section
¨ Critical section problem
¨ Peterson’s solution
¨ Hardware assists

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.5INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Reasoning about interleaved access to shared state:
Too much milk!

Roommate 1’s actions Roommate 2’s actions

3:00 Look in fridge; out of milk
3:05 Leave for store

3:10 Arrive at store Look in fridge; out of milk

3:15 Buy milk Leave for store

3:20 Arrive home; put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home; put milk away

Oh no!

5

L9.6COMPUTER SCIENCE DEPARTMENT

PROCESS SYNCHRONIZATION

Fairy tales are more than true: not because they tell us that dragons exist, but
because they tell us that dragons can be beaten.

G.K. Chesterton by way of Neil Gaiman, Coraline

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.7INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Process synchronization

¨ How can processes pass information to one another?

¨ Make sure two or more processes do not get in each other’s
way
¤ E.g., 2 processes in an airline reservation system, each trying to grab

the last seat for a different passenger

¨ Ensure proper sequencing when dependencies are present

7

L9.8INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Applicability to threads

¨ Passing information between threads is easy
¤ They share the same address space of the parent process

¨ Other two aspects of process synchronization are applicable to
threads
¤Keeping out of each other’s hair
¤Proper sequencing

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.9INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

A look at the producer consumer problem

while (true) {
 while (counter == BUFFER_SIZE) {
 ; /*do nothing */
 }
 buffer[in] = nextProduced
 in = (in +1)%BUFFER_SIZE;
 counter++;
}

while (true) {
 while (counter == 0) {
 ; /*do nothing */
 }
 nextConsumed = buffer[out]
 out = (out +1)% BUFFER_SIZE;
 counter--;
}

Producer

Consumer

? Operators?

9

L9.10INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Implementation of ++/-- in machine language

counter++
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter--
 register2 = counter
 register2 = register2 - 1
 counter = register2

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.11INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: register1 = register1 + 1

Producer execute: counter = register1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

? Correctness?

11

L9.12INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

The order of statements within each high-level statement is preserved

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.13INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter {register1 = 5}

Producer execute: register1 = register1 + 1 {register1 = 6}

Consumer execute: register2 = counter {register2 = 5}

Consumer execute: register2 = register2 - 1 {register2 = 4}

Producer execute: counter = register1 {counter = 6}

Consumer execute: counter = register2 {counter = 4}

Counter has incorrect state of 4

13

L9.14INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Lower-level statements may be interleaved in any
order (counter = 5)

Producer execute: register1 = counter

Producer execute: counter = register1

Producer execute: register1 = register1 + 1

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

{register1 = 5}

{register1 = 6}

{register2 = 5}

{register2 = 4}

{counter = 6}

{counter = 4}

Counter has incorrect state of 6

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.15COMPUTER SCIENCE DEPARTMENT

RACE CONDITIONS

Life doesn't give you all the practice races you
need.

Jesse Owens

15

L9.16INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition

¨ Several processes access and manipulate data concurrently

¨ Outcome of execution depends on
¤Particular order in which accesses takes place

¨ Debugging programs with race conditions?
¤Painful!
¤Program runs fine most of the time, but once in a rare while something

weird and unexpected happens

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.17INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [1/3]

¨ When process wants to print file, adds file to a special spooler
directory

¨ Printer daemon periodically checks to see if there are files to be
printed
¤ If there are, print them

¨ In our example, spooler directory has a large number of slots

¨ Two variables
¤ in: Next free slot in directory
¤ out: Next file to be printed

17

L9.18INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [2/3]

¨ In jurisdictions where Murphy’s Law hold …

¨ Process A reads in, and stores the value 7, in local variable
next_free_slot

¨ Context switch occurs
¨ Process B also reads in, and stores the value 7, in local variable
next_free_slot

¤ Stores name of the file in slot 7

¨ Process A context switches again, and stores the name of the file it
wants to print in slot 7

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.19INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Race condition: Example [3/3]

¨ Spooler directory is internally consistent

¨ But process B will never receive any output
¤User B loiters around printer room for years, wistfully hoping for an

output that will never come ...

19

L9.20INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The kernel is subject to several possible race
conditions

¨ E.g.: Kernel maintains list of all open files
¤2 processes open files simultaneously
¤Separate updates to kernel list may result in a race condition

¨ Other kernel data structures
¤Memory allocation
¤Process lists
¤ Interrupt handling

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.21COMPUTER SCIENCE DEPARTMENT

CRITICAL SECTION

Segment of code where processes change common variables

21

L9.22INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Critical Section

¨ Concurrent accesses to shared resources can lead to unexpected
or erroneous behavior

¨ Parts of the program where the shared resource is accessed thus
need to be protected
¤ This protected section is the critical section

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.23INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Critical-Section

¨ System of n processes {P0, P1, …, Pn-1}

¨ Each process has a segment of code (critical section) where it:
¤Changes common variables, updates a table, etc

¨ No two processes can execute in their critical sections at the
same time

23

L9.24INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The Critical-Section problem

¨ Design a protocol that processes can use to cooperate

¨ Each process must request permission to enter its critical section
¤ The entry section

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.25INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

General structure of a participating process

do {

 critical section

 remainder section

} while (TRUE);

entry section

exit section

Request permission
to enter

Housekeeping to let
other processes enter

25

L9.26COMPUTER SCIENCE DEPARTMENT

REQUIREMENTS FOR A SOLUTION TO THE
CRITICAL SECTION PROBLEM

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.27INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Requirements for a solution to the critical section
problem

① Mutual exclusion

② Progress

③ Bounded wait

¨ PROCESS SPEED
¤ Each process operates at non-zero speed
¤Make no assumption about the relative speed of the n processes

27

L9.28INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Mutual Exclusion

¨ Only one process can execute in its critical section

¨ When a process executes in its critical section
¤No other process is allowed to execute in its critical section

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.29INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Mutual Exclusion: Depiction

Process A

Process B

A enters
critical section

T1 T2 T3 T4

B attempts
to enter
critical section

B enters
critical section

B blocked

A exits
critical section

B exits
critical section

29

L9.30INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Progress

¨ {C1} If No process is executing in its critical section, and …

¨ {C2} Some processes wish to enter their critical sections

¨ Decision on who gets to enter the critical section
¤ Is made by processes that are NOT executing in their remainder section

¤ Selection cannot be postponed indefinitely

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.31INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Bounded waiting

¨ After a process has made a request to enter its critical section
¤AND before this request is granted

¨ Limit number of times other processes are allowed to enter
their critical sections

31

L9.32INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Approaches to handling critical sections in the OS

¨ Nonpreemptive kernel
¤ If a process runs in kernel mode: no preemption
¤Free from race conditions on kernel data structures

¨ Preemptive kernels
¤Must ensure shared kernel data is free from race conditions
¤Difficult on SMP (Symmetric Multi Processor) architectures

n 2 processes may run simultaneously on different processors

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.33INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Kernels: Why preempt?

¨ Suitable for real-time
¤A real-time process may preempt a kernel process

¨ More responsive
¤ Less risk that kernel mode process will run arbitrarily long

33

L9.34COMPUTER SCIENCE DEPARTMENT
Software based solution

PETERSON’S SOLUTION

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.35INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution

¨ Software solution to the critical section problem
¤Restricted to two processes

¨ No guarantees on modern architectures
¤Machine language instructions such as load and store implemented

differently

¨ Good algorithmic description
¤Shows how to address the 3 requirements

35

L9.36INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution: The components

¨ Restricted to two processes
§ Pi and Pj where j = 1-i

¨ Share two data items
§ int turn

n Indicates whose turn it is to enter the critical section

§ boolean flag[2]

n Whether process is ready to enter the critical section

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.37INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s solution: Structure of process Pi

do {

 critical section

 remainder section

} while (TRUE);

flag[i] = TRUE;
turn = j;
while (flag[j] && turn==j) {;}

flag[i] = FALSE;

37

L9.38INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s solution: Mutual exclusion

¨ Pi enters critical section only if
 flag[j] == false OR turn == i

¨ If both processes execute in critical section at the same time
§ flag[0] == flag[1] == true
§ But turn can be 0 or 1, not BOTH

¨ If Pj entered critical section
§ flag[j] == true AND turn == j
§ Will persist as long as Pj is in the critical section

while (flag[j] && turn==j) {;}

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.39INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Peterson’s Solution:
Progress and Bounded wait
¨ Pi can be stuck only if flag[j]==true AND turn==j

¤ If Pj is not ready: flag[j] == false, and Pi can enter
¤ Once Pj exits: it resets flag[j] to false

¨ If Pj resets flag[j] to true
¤ Must set turn = i;

¨ Pi will enter critical section (progress) after at most one entry by Pj
(bounded wait)

39

L9.40COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZATION
HARDWARE

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.41INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

41

L9.42INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Solving the critical section problem using locks

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.43INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Possible assists for solving critical section problem [1/2]

¨ Uniprocessor environment
¤Prevent interrupts from occurring when shared variable is being

modified
n No unexpected modifications!

¨ Multiprocessor environment
¤Disabling interrupts is time consuming

n Message passed to ALL processors

43

L9.44INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Possible assists for solving critical section problem [2/2]

¨ Special atomic hardware instructions
¤Swap content of two words
¤Modify word

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.45INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Swap()

void Swap(boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp;
}

45

L9.46INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Swap: Shared variable LOCK is initialized to false

do {

 critical section

 remainder section

} while (TRUE);

key = TRUE;
while (key == TRUE) {
 Swap(&lock, &key)
}

lock = FALSE;

lock is a SHARED variable
key is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.47INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

47

L9.48INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L9.49INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region:
 TSL REGISTER, LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

enter_region:
 MOVE REGISTER, #1
 XCHNG REGISTER,LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

49

L9.50INTER-PROCESS SYNCHRONIZATIONCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA

The contents of this slide set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

¨ Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2nd
Edition. ISBN: 978-0985673529. [Chapter 5]

¨ https://en.wikipedia.org/wiki/Critical_section

50

