CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

The Critical Section
A segment of code
accessing a shared resource

The segment
worthy of protection
bookended by two sentinels
The entry and exit

The entry gatekeeping

so only one may enter
The exit housekeeping
so someone else may enter

Shrideep Pallickara
Computer Science

COMPUTER SCIENCE DEPARTMENT

Colorado State University

@ COLORADO STATE UNIVERSITY

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

Frequently asked questions from the previous class
survey

How different is the actual code for user vs kernel threads?
Do we decide when to use kernel vs user threads?
Are threads ever launched without the user ever knowing them?
Is there a process-level distinction for the main thread vs. other threads?
When a join is called by a thread, does the number of program counters reduce by one?
Does every class that needs be a Java Thread need to implement Runnable?
Why is the first statement that is executed in a Java thread in the run() method?
Can only the main-thread join()?
Say, thread A performs a join () on a thread B

Is thread A now running?
Is thread B now running?

What is a thread pool2

Professor: SHRIDEEP PALLICKARA INTER-PROCESS SYNCHRONIZATION L9.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Why?
Synchronization l
primitives
Synchronization
Classical

Synchronization
problems

assists

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

Synchronization: What we will look at

Race Conditions

/

€& Critical Sections

Critical Section problem
Hardware & solution requirements

INTER-PROCESS SYNCHRONIZATION L9.3
3
Topics covered in the lecture

Critical section

Critical section problem

Peterson’s solution

Hardware assists
COLORADO STATE UNIVERSITY (oo o e arvenT INTER-PROCESS SYNCHRONIZATION L9.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Reasoning about interleaved access to shared state:

Too much milk!
o

Roommate 1’s actions Roommate 2’s actions
3:00 Look in fridge; out of milk
3:05 Leave for store
3:10 Arrive at store Look in fridge; out of milk
3:15 Buy milk Leave for store

3:20 Arrive home; put milk away Arrive at store

3.25 Buy milk
3.30 Arrive home; put milk away
Oh no!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.5

5

ry tales are more than true: not because they tell us that dragons exist, but
cause they tell us that dragons can be beaten.

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.3

CS370: Ope

rating Systems

Dept. Of Computer Science, Colorado State University

Process synchronization

How can processes pass information to one another?

Make sure two or more processes do not get in each other’s

way
E.g., 2 processes in an airline reservation system, each trying to grab
the last seat for a different passenger

Ensure proper sequencing when dependencies are present

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION Lo.7

7

Applicability to threads

Passing information between threads is easy

They share the same address space of the parent process

Other two aspects of process synchronization are applicable to
threads

Keeping out of each other’s hair

Proper sequencing

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

A look at the producer consumer problem
|

while (true) {
while (counter == BUFFER SIZE) {
; /*do nothing */
}

}

buffer[in] = nextProduced Producer
in = (in +l)%BUFFER_SIZE;
counter++;
} ? Operators?
N—
while (true) {
while (counter == 0) {
; /*do nothing */
} Consumer
nextConsumed = buffer[out]
out = (out +1)% BUFFER SIZE;
counter--;

COLORADO STATE UNIVERSITY C(;l;PGTI;RéCIENHCEMBE; ARTMENT INTER-PROCESS SYNCHRONIZATION

L9.9

9
[[[
Implementation of ++/-- in machine language
(B
counter++
registerl = counter
registerl = registerl + 1
counter = registerl
counter--
register2 = counter
register2 = register2 - 1
counter = register2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

L9.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Lower-level statements may be interleaved in any

order
Producer execute: registerl = counter
Producer execute: registerl = registerl + 1 ﬂ, Correctness?
N

Producer execute: counter = registerl

Consumer execute: register2 = counter

Consumer execute: register2 = register2 - 1

Consumer execute: counter = register2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.11

11
Lower-level statements may be interleaved in any
order
B
Producer execute: registerl = counter
Consumer execute: register2 = counter
Producer execute: registerl = registerl + 1
Consumer execute: register2 = register2 - 1
Producer execute: counter = registerl
Consumer execute: counter = register2

The order of statements within each high-level statement is preserved

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.6

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

order (counter = 5)

Producer execute:

Counter has incorrect state of 4

registerl = counter {register1 = 5}
Producer execute: registerl = registerl + 1 {register] = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register2 = register2 - 1 {register2 = 4}
Producer execute: counter = registerl {counter = 6}
Consumer execute: counter = register? {counter = 4}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

Lower-level statements may be interleaved in any

INTER-PROCESS SYNCHRONIZATION L9.13
13
L] L]
Lower-level statements may be interleaved in any
order (counter = 5)
B
Producer execute: registerl = counter {register]1 = 5}
Producer execute: registerl = registerl + 1 {register] = 6}
Consumer execute: register2 = counter {register2 = 5}
Consumer execute: register2 = register2 -1 {register2 = 4}
Consumer execute: counter = register2 {counter = 4}
Producer execute: counter = registerl {counter = 6}
Counter has incorrect state of 6
COLORADO STATE UNIVERSITY (oo o e arvenT INTER-PROCESS SYNCHRONIZATION 19.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Life doesn't give you all the practice races you
need.

Jesse Owens

CONDITIONS

15

Race condition
j—

11 Several processes access and manipulate data concurrently

71 Outcome of execution depends on

Particular order in which accesses takes place

-1 Debugging programs with race conditions?
Painful!

Program runs fine most of the time, but once in a rare while something
weird and unexpected happens

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Race condition: Example [1/3]

When process wants to print file, adds file to a special spooler
directory

Printer daemon periodically checks to see if there are files to be
printed

If there are, print them
In our example, spooler directory has a large number of slots

Two variables
in: Next free slot in directory
out: Next file to be printed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.17

17

Race condition: Example [2/3]

In jurisdictions where Murphy’s Law hold ...

Process A reads in, and stores the value 7/, in local variable
next free slot

Context switch occurs

Process B also reads 1n, and stores the value 7, in local variable
next free slot

Stores name of the file in slot 7

Process A context switches again, and stores the name of the file it
wants to print in slot 7

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Race condition: Example [3/3]

Spooler directory is internally consistent

But process B will never receive any output

User B loiters around printer room for years, wistfully hoping for an
output that will never come ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.19

19

The kernel is subject to several possible race
conditions

E.g.: Kernel maintains list of all open files
2 processes open files simultaneously

Separate updates to kernel list may result in a race condition

Other kernel data structures
Memory allocation

Process lists

Interrupt handling

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.10

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Segment of code where processes change commonsvcrigbles

CRITICAL SECTION P

21

Critical Section

Concurrent accesses to shared resources can lead to unexpected
or erroneous behavior

Parts of the program where the shared resource is accessed thus
need to be protected

This protected section is the critical section

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Critical-Section

System of n processes {Pg, Py, ..., P}
Each process has a segment of code (critical section) where it:

Changes common variables, updates a table, etc

No two processes can execute in their critical sections at the
same time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.23

23

The Critical-Section problem
Design a protocol that processes can use to cooperate

Each process must request permission to enter its critical section

The entry section

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

General structure of a participating process
|

do {

Request permission
; to enter
entry section

critical section

exit section <—__ Housekeeping to let
other processes enter

remainder section

} while (TRUE) ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

L9.25

25

J >

REQUIREMENTS FOR
CRITICAL

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.13

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Requirements for a solution to the critical section
problem

(1) Mutual exclusion

(2) Progress
(3) Bounded wait

PROCESS SPEED
Each process operates at non-zero speed
Make no assumption about the relative speed of the n processes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.27

27

Mutual Exclusion
Only one process can execute in its critical section

When a process executes in its critical section

No other process is allowed to execute in its critical section

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Mutual Exclusion: Depiction

/ A enters A exits
Process A g critical section /cri'ricol section
1

: | : l

1 1 1 1

1 1 1 |

: : B attempts : B enters | B

[| ! . L) exits

, | toenter :/crmcql sec'rlon:/ . .
ProcessB %.cr.ifric.ql..S.egti.on..r ”_critical section

)) i

: : B blocked | |

: : : |

1 1 1 I

I

T1 T2 T3 T4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.29

29

Progress

{C1} If No process is executing in its critical section, and ...

{C2} Some processes wish to enter their critical sections

Decision on who gets to enter the critical section
Is made by processes that are NOT executing in their remainder section

Selection cannot be postponed indefinitely

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Bounded waiting

After a process has made a request to enter its critical section

AND before this request is granted

Limit number of times other processes are allowed to enter
their critical sections

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.31

31

Approaches to handling critical sections in the OS

Nonpreemptive kernel
If a process runs in kernel mode: no preemption

Free from race conditions on kernel data structures

Preemptive kernels
Must ensure shared kernel data is free from race conditions

Difficult on SMP (Symmetric Multi Processor) architectures

2 processes may run simultaneously on different processors

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Kernels: Why preempt?

Suitable for real-time

A real-time process may preempt a kernel process

More responsive

Less risk that kernel mode process will run arbitrarily long

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.33

33

PETERSON’S SOLUTION

Software based solution

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Peterson’s Solution

Software solution to the critical section problem

Restricted to two processes

No guarantees on modern architectures

Machine language instructions such as 1oad and store implemented
differently

Good algorithmic description

Shows how to address the 3 requirements

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.35

35

Peterson’s Solution: The components

Restricted to two processes

P; and Pj where j = 1-1

Share two data items

int turn

Indicates whose turn it is to enter the critical section

boolean flagl[2]

Whether process is ready to enter the critical section

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Copmoien Soence Diparrvent INTER-PROCESS SYNCHRONIZATION 19.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Peterson’s solution: Structure of process P;

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn==j) {;}

critical section

flag[i] = FALSE;

remainder section

} while (TRUE):;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

L9.37

37

Peterson’s solution: Mutual exclusion

while (flag[]j] && turn==j)
P, enters critical section only if
flag[j] == false OR turn == 1

flag[0] == flag[l] == true
But turn can be 0 or 1, not BOTH

If Pj entered critical section

flag[j] == true AND turn == j
Will persist as long as Pjis in the critical section

If both processes execute in critical section at the same time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

L9.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.19

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Peterson’s Solution:
Progress and Bounded wait
71 P;can be stuck only if flag[j]==true AND turn==j

If Pjis not ready: flag[j] == false, and Pjcan enter
Once Pjexits: it resets flag[j] to false

o If Pj resets flag[j] to true
Must set turn = i;

0 P; will enter critical section (progress) after at most one entry by P;
(bounded wait)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.39

39

SYNCHRONIZATION
HARDWARE

@ COLORADO STATE UNIVERSITY

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Solving the critical section problem using locks
|

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem [1/2]

Uniprocessor environment

Prevent interrupts from occurring when shared variable is being
modified

No unexpected modifications!

Multiprocessor environment

Disabling interrupts is time consuming

Message passed to ALL processors

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.43

43

Possible assists for solving critical section problem [2/2]

Special atomic hardware instructions

Swap content of two words
Modify word

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.22

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Swap ()

COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

void Swap (boolean *a, boolean *b) {
boolean temp = *a;
*a = *b;
*b = temp;

Professor: SHRIDEEP PALLICKARA INTER-PROCESS SYNCHRONIZATION

L9.45

45

do {

} while

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

key = TRUE;
while (key == TRUE) ({
Swap (&lock, é&key)

Cannot enter critical section
UNLESS lock == FALSE

}

critical section
lock = FALSE;

lock is a SHARED variable
key is a LOCAL variable

remainder section
If two Swap () are executed
(TRUE) ; simultaneously, they will be executed
’ sequentially in some arbitrary order

Prof + SHRIDEEP PALLICKARA
rofessor: S c INTER-PROCESS SYNCHRONIZATION

Swap: Shared variable LOCK is initialized to false

L9.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

TestAndSet ()

boolean TestAndSet (boolean *target) {
boolean rv = *target;

*target = TRUE;
return rv;

Sets target to true and returns old value of target

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.47

47

TestAndSet: Shared boolean variable 1ock
initialized to false
do {
while (TestAndSet (&lock)) {;}

critical section <__'l'obrec:ukour:
Return value of TestAndSet

lock = FALSE: should be FALSE

remainder section

If two TestAndSet () are executed
simultaneously, they will be executed

) while (TRUE); sequentially in some arbitrary order

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION L9.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.24

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region: enter region:

TSL REGISTER, LOCK MOVE REGISTER, #1

CMP REGISTER, #0 XCHNG REGISTER, LOCK

JNE enter region CMP REGISTER, #0

RET JNE enter region
RET

leave region: leave region:
MOVE LOCK, #0 MOVE LOCK, #0
RET RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

L9.49

49

The contents of this slide set are based on the
following references
(o

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

Edition. ISBN: 978-0985673529. [Chapter 5]
https://en.wikipedia.org/wiki/Critical_section

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT INTER-PROCESS SYNCHRONIZATION

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 2014.

Thomas Anderson and Michael Dahlin. Operating Systems Principles and Practice. 2"

L9.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.25

