
Lecture 17:
Monte-Carlo Ray Tracing

October 29, 2019

Today

→

What color should the cyan circle appear to be?

Direct vs. Indirect Lighting

From
https://graphics.pixar.com/library/PathTracedMovies/paper.pdf

https://graphics.pixar.com/library/PathTracedMovies/paper.pdf

Direct vs. Indirect Lighting

Direct vs. Indirect Lighting

Direct vs. Indirect Lighting

Direct vs. Indirect Lighting

The Rendering Equation

Lo(x , ωo, λ, t) =Le(x , ωo, λ, t)+

+

∫
Ω

fr (x ,wi ,wo, λ, t)Li(x ,wi , λ, t)(ωi · n)dωi

The Rendering Equation

Lo(x , ωo, λ, t) =Le(x , ωo, λ, t)+

+

∫
Ω

fr (x ,wi ,wo, λ, t)Li(x ,wi , λ, t)(ωi · n)dωi

Light coming out = Light emitted this direction+
+The amount of incoming light to this point

that is reflected this direction

Monte Carlo Methods

I Exact solutions are difficult (impossible?)

I Compute time is cheap

I Use many different samples to approximate true solution

I Shoot many rays per pixel and let them bounce “randomly”

Approximating Pi with Monte Carlo
Area of circle — πr2 Area of square — (2r)2

samples in
samples out

≈ π

4

Illumination with Monte Carlo

From https://www.youtube.com/watch?v=frLwRLS_ZR0

https://www.youtube.com/watch?v=frLwRLS_ZR0

Illumination with Monte Carlo

From https://www.youtube.com/watch?v=frLwRLS_ZR0

https://www.youtube.com/watch?v=frLwRLS_ZR0

Illumination with Monte Carlo

Don’t calculate illumination from each light at each point.
Instead:

1. Shoot many rays per pixel

2. Have each pixel bounce according to material properties

3. Keep track of the running albedo

4. When the ray collides with a light, return

Bouncing Rays

I Specular reflection — keep the same

I Lambertian reflection — what to do?

Recall from lecture eight:

Bouncing Rays

I Specular reflection — keep the same

I Lambertian reflection — what to do?

Recall from lecture eight:

Lambert’s Cosine Law Revisited

Modified from https://upload.wikimedia.org/wikipedia/commons/2/25/

Lambert_Cosine_Law_1.svg

https://upload.wikimedia.org/wikipedia/commons/2/25/Lambert_Cosine_Law_1.svg
https://upload.wikimedia.org/wikipedia/commons/2/25/Lambert_Cosine_Law_1.svg

Random Point in a Sphere

I Want to sample uniformly from points in the sphere

I Complex to do directly without bias

I Instead, sample from a cube and remove samples outside
the sphere

Other Implementation Details

I Ignore Ka, Kd , Ks, and Kr terms — only use the albedo
and emittance of the object

I Have materials determine the direction of a bounced ray

I Lights must have volume to be collided with

I Lights may need emittance > 1

SageMath Implementation

Warning: slow

Accuracy Over Time

From https://upload.wikimedia.org/wikipedia/commons/e/ea/Path_

tracing_sampling_values.png

https://upload.wikimedia.org/wikipedia/commons/e/ea/Path_tracing_sampling_values.png
https://upload.wikimedia.org/wikipedia/commons/e/ea/Path_tracing_sampling_values.png

Tricks for Efficiency

I Ray culling — ignore rays that have low albedo and boost
the rest

I Early stopping — skip pixels that have converged

I Bidirectional path tracing — shoot rays from the camera
and lights and connect them

I Explicit light sampling — cast rays directly towards the
lights some proportion of the time

I AI denoising — render a partial image and feed it to an
algorithm that gives a complete image

