
Lecture 02:
Basic Geometry

August 29, 2019



An Aside: Radiosity is Not Ray Tracing
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Know what radiosity computation does.  Do not expect to implement nor see 
underlying equations this semester.



Example Courtesy of Nikolay Radaev

8/29/19 CSU CS410 Fall 2019, © Ross Beveridge 3

Rendered using 3D Studio Max (+VRay Plugin)



Now – The Journey to 2D Rotation
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Vectors, Points & Matrices
• The geometry for graphics rests upon
– Scalars, Vectors, Points, and Matrices

• And why ? The short answer.
– Objects are collections of points
– Light rays are vectors
– Objects & Light interact in Euclidean spaces
– Placement in space is done using matrices

• Now for the longer answer…
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But let’s start with… Scalars
• Scalar - a number.
– Two Operations -
• Addition, Multiplication.

– Axioms
• Associative
• Commutative
• Invertible

– Invertible implies
• Subtraction
• Division

€ 

α + β = β + α

α ⋅ β = β ⋅α

α + β + γ( ) = α + β( ) + γ

α ⋅ β ⋅ γ( ) = α ⋅ β( ) ⋅ γ

α ⋅ β + γ( ) = α ⋅ β + α ⋅γ
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Vectors
• Vector - direction and magnitude
– Two Operations -
• Scalar-vector multiplication
• Vector-vector addition

– Often expressed as an n-tuple of scalars.
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Test: Do you Get It?
• Are these two vectors the same?

8/29/19 CSU CS410 Fall 2019, © Ross Beveridge 8



Vector Spaces
• Combinations of vectors generate new 

vectors.
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€ 

u = α1 ⋅v1 + α2 ⋅v2 + α3 ⋅v3

for example ...

u =

3
4
1

= 1⋅
1
0
−1

+ 2 ⋅
1
0
1

+ 4 ⋅
0
1
0

   or  u = 3 ⋅
1
0
0

+ 4 ⋅
0
1
0

+ 1⋅
0
0
1

 



Key Vector Space Concepts
• Span
– The space of all vectors that can be created by 

linear combinations of a set of vectors
• Basis Vectors
– A set of vectors that span a space
– Generally focus on basis vectors that are
• Orthogonal to each other (independent axes)
• Unit length

• What is lacking?
– Location, distance, angles.
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Vectors beg �Where are we?�

• More seriously, vector spaces lack location
– Location requires an origin: a reference.

• Vector spaces have no origin.
• Now let us introduce points.
– A point is not the same thing as a vector!

• New operations
– Point-point subtraction yields a vector.
– A point plus a vector yields a point.

Directly over the center of the Earth?

8/29/19 CSU CS410 Fall 2019, © Ross Beveridge 11



Point + Vector = Point
– Linear combinations of basis vectors
–… and a specified origin - a point.

€ 

P = O + α1 ⋅v1 + α2 ⋅v2 + α3 ⋅v3

for example ...

P =

7
4
3

=

2
2
2

+ 5 ⋅
1
0
0

+ 2 ⋅
0
1
0

+ 1⋅
0
0
1

 

Typically, we think of the 
origin as being at [0,0,0], 
but that somewhat 
confuses the real meaning 
of an origin.

With an origin, you always know where you are (relatively).
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Tricky Question
• I present you with:

! = 1
3

• Is this a vector?
• Is this a point?
• How can you tell?
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And a related question …
• Do Points Exist Without Coordinates?
• The answer is – yes!
– Just ask the Stanford Bunny (see next slide)

• Why does this matter …

In graphics, keeping the intrinsic geometry of 
objects separate from their coordinate 
manifestation in a particular frame of 

reference is essential.
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Same Point - By Example

• The Stanford Bunny has intrinsic properties.
– Independent of reference frame A (or B).
– Changing reference does not change the Bunny. 
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Reference 
Frame A

Reference 
Frame B



But don’t I need numbers
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Somewhere, some how, don’t we 
need to specify triples; the x, y, z 
coordinates of each 3D vertex.



Intrinsic Vs. Extrinsic
• What matters is the relation of the data to the 

reference frame.
–Moving the Bunny toward the reference point is 

the same as moving the reference point toward 
the Bunny

– The same Bunny can be expressed in different 
reference frames

• “World Coordinates” aren’t special
– As long as all the data is expressed relative to 

the same reference frame
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Same Bunny?
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Where is a Point Revisited
• To specify a point in a Euclidean space.
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A Point named Fred
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Fred

Which is it?  !"#$ = 6
6 or !"#$ = 4

3



2D Translation
• Think about the previous example
• Can you decide between
– Fred was moved down and to the left.
– Reference frame was moved up and to the right.

• Generally you cannot
• More important
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Often in graphics it is equally valid, or even 
preferable, to think of movement as shifting a 
reference frame rather than moving an object.



2D Translation - Moving Fred
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Fred

!
" = 6

6 and %& = 4
3 as translation  66 = 4

3 + 2
3

v

u

y

x

Written as we are used to seeing it:  +, = + + -



Euclidean Space
• Euclidean Space adds a new operation, the 

dot product (inner product).
• You all know the algebraic definition.

• Do you know its geometric interpretation?

• From the dot product - distances and angles
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u ⋅ v = uivi
i
∑ v = v ⋅ v

u ⋅ v = u v cos θ( )



Dot Product as Projection
• To start, set origin at zero. Now observe.
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px
py

= x
1
0

+ y
0
1

 ⇒ x =
px
py
⋅
1
0

, y =
px
py
⋅
0
1

The distance of a point from the origin along a 
dimension, i.e. along a basis vector, is measured by a 
dot product between the point and the basis vector



About Orthogonality
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A B

C D

! " # = ! # cos ( cos 90° = 0



Know & Love Dot Products 1

• An easy way to 
define a line …

O
v1

v2
P

n

r

€ 

L⇒ F x,y( ) = 0
n ⋅L − ρ = 0    n ⋅ n = 1
ρ = n ⋅P = nx px + ny py
nx
ny
⋅
x
y
− ρ = 0

nxxx + nyy − ρ = 0
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And in 3D
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Riddle:  What do you call all points a distance of 3 from 
the origin measured in a direction defined by a  vector n?



Further Dot Product Motivation
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Above you see how almost all texts and courses introduction 2D rotation.
This is entirely correct, but there is a more intuitive way to understand rotation.



Know & Love Dot Products 2

• Consider an alternate basis

P

x
v

y
u
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Welcome to 2D Rotation

These are 
the same!
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Rotate by q

q

= 
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Does this make sense, given the geometry of the dot product?

R =
cos θ( ) −sin θ( )
sin θ( ) cos θ( )
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More Standard Approach
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q

x1 = rcos θ( )
y1 = rsin θ( )

x2 = rcos θ +φ( )
y2 = rsin θ +φ( )
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Derivation of Rotation Matrix



Derivation (cont.)
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Magic Trig Identity:

Note: the process for y2 is the same

cos a+ b( ) = cos a( )cos b( )− sin a( )sin b( )
sin a+ b( ) = sin a( )cos b( )+ sin b( )cos a( )

x2 = rcos θ +φ( )
x2 = rcos θ( )cos φ( )− rsin θ( )sin φ( )
x2 = x1 cos φ( )− y1 sin φ( )



The End


