Lecture 05: Camera Placement

September 10, 2019

PowerPoint Then SageMath

- Begin with overview and motivation.
- Then dive into SageMath Notebook.

Begin: Pinhole Camera Model

			Pinhole camera model - Wik	ipedia				
and and a man					2	Not logged in	Talk Contributions Cre	ate account Log i
δ Ω H Article	Talk			Read	Edit	View history	Search Wikipedia	Q
2 雑 7								
WIKIPEDIA P	inhole can	nera mod	el					
The Free Encyclopedia Fro	m Wikipedia, the free e	encyclopedia						
lein nage	For broader coverag	ne of this tonic see	Epipolar geometry					
contents		e or this topic, see	Epipolal geometry.					
eatured content		This article inclu	udes a list of references, b	out its sources rem	ain u	nclear because	e it has insufficient	
Current events	2	inline citations	. Please help to improve t	this article by introd	ucing	more precise c	itations. (February	
onate to Wikipedia		2008) (Learn how	and when to remove this temp	plate message)				
Vikipedia store The	e pinhole camera me	odel describes the	mathematical relationship	between the coord	linates	of a point		
in t	hree-dimensional spa	ace and its projectio	on onto the image plane o	f an <i>ideal</i> pinhole c	amera	, where		
the	camera aperture is c	described as a point	t and no lenses are used t	to focus light. The r	nodel	does not	116	
bout Wikipedia	lude, for example, ge	ometric distortions	or blurring of unfocused o	bjects caused by le	nses a	and finite		
community portal size	ed apertures. It also o	does not take into a	ccount that most practical	cameras have only	y discr	ete image		
	ordinates. This means	s that the ninhole ca	amera model can only be	used as a first orde	r annr	ovimation		

What links here Related changes Upload file Special pages Permanent link Some of the effects that the pinhole camera model does not take into account can be compensated, for

general, decreases from the center of the image to the edges as lens distortion effects increase.

example by applying suitable coordinate transformations on the image coordinates; other effects are sufficiently small to be neglected if a high quality camera is used. This means that the pinhole camera model often can be used as a reasonable description of how a camera depicts a 3D scene, for example in computer vision and computer graphics.

5

A diagram of a pinhole camera.

Visualize View Volume (View 1)

Visualize View Volume (View 2)

Consider Some Key Points

View Volume - Frustum

Frustum Continued

Camera Coordinate System

Formally, the view reference coordinate system

- Eye point E,
 - aka. Focal point,PRP, ...
- Image u is red
- Image v is green
- VUP is yellow
- Camera w(z) is blue

Need to Orient the Camera

- Define a "look at" point L. Points E and L define Gaze G.
- Solution for rotation R now similar to axis in axis-angle.
- VUP defines which way is up.

Color coded camera axes: red for u, green for v, blue for w.

Point the Z-Axis away.

- Somewhat counter intuitive at first.
- Standard convention
 - camera looks down the negative z-axis.
- Away from look-at point

Gaze Direction

- We have to points in 3D
 - E is the position of the eye given in world.
 - L is the position of the look at point in world.
 - G is the vector indicating gaze direction.
 - Therefore:

$$G = L - E$$

• So, the Z axis of the camera is defined as:

$$W = \frac{E - L}{\|E - L\|}$$

Visualize E, L and W

One of 3 Rows Defined

- Similar to first step in axis angle formulation.
- We have a vector pointing in the Z direction.

$$R = \begin{vmatrix} ? & ? & ? & 0 \\ ? & ? & ? & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Where recall ...
$$W = \begin{vmatrix} x_w \\ y_w \\ z_w \end{vmatrix} = \frac{E - L}{\|E - L\|}$$

Resolving U and V

- Consider life in a world with Gravity.
- Gravity means there is an "up".
- Photographers keep their cameras level.
- Which of these looks right to you

W & VUP Define Horizontal

- The horizontal axis u is perpendicular to
- ... a plane defined by the W and VUP.

$$U = \frac{VUP \times W}{\|VUP \times W\|}$$
$$R = \begin{vmatrix} x_u & y_u & z_u & 0 \\ ? & ? & 2 & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Last Axis Must Be ...

Given the first two axis, the third is

 $V = W \times U$

• There is no need to normalize V

$$R = \begin{vmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Now SageMath ...

CS410 Fall2019/lectures/ cs410lec05n01 Logout Logout File Edit View Insert Cell Kernel Widgets Help Trusted SageMath 8.8 E E E Image And		localhost:8888/notebooks/CS410%2	0Fall2019/lectures/cs410lec05n0		0	ð
<pre> pupter cs410lec05n01 Last Checkpoint: a few seconds ago (autosaved)</pre>	CS410 Fall2019/lecture	s/	cs4	10lec05n01		+
File Edit View Insert Cell Kernel Widgets Help Tusted SageMath 8.8 O Image: SageWath 2.2 Image: SageWath 2.2	💭 jupyter cs410lec05n0	D1 Last Checkpoint: a few seconds ago	(autosaved)		Logout	
<pre></pre>	File Edit View Insert	Cell Kernel Widgets Help		Trusted	SageMath 8.8 O	
<pre>Camera Placement: Viewing a House Part 1 This notebook illustrates how to place a camera in world coordinates. To make the visualization more complete, a simple house model is included in the world coordinates. This notebook provides a visualization of the canoncial view volume. Ross Beveridge September 10, 2019 In [12]: *display latex latex.matrix_delimiters(left='[', right=']') latex.vector_delimiters(left='[', right=']') To get started let us create a 3D polygonal house model. As you begin to think about 3D modeling it would be valuable to experiment a bit with this code. As is often the case with languages like Python, there is more going on in these few lines of code than you might at first appreciate. In [13]: VVL = Matrix(zz, ([0,0,30,1],[0,10,30,1],[8,16,30,1],[16,10,30,1],[16,0,30,1],[0,0,54,1],</pre>		Run 📕 C 🕨 Code	•			
[0,10,54,1],[8,16,54,1],[16,10,54,1],[16,0,54,1])); VVL = VVL.transpose(); hereaFrank = (0,1,2,2,4), hereaPack = (5,6,7,0,0).	Camera Plac This notebook illustr house model is inclu Ross Beveridge Sep In [12]: %display latex latex.matrix_de latex.vector_de To get started let us experiment a bit witt code than you might In [13]: VVL = Matrix(ZZ VVL = VVL.trans	cement: Viewing a Hou rates how to place a camera in world of uded in the world coordinates. This not otember 10, 2019 elimiters (left=' ', right=' ' elimiters (left='[', right=']' create a 3D polygonal house model. A h this code. As is often the case with la t at first appreciate. create a 3D polygonal house model. A h this code. As is often the case with la t at first appreciate. create a 3D polygonal house model. A h this code. As is often the case with la t at first appreciate. create a 3D polygonal house model. A h this code. As is often the case with la t at first appreciate. create a 3D polygonal house model. A	se Part 1 coordinates. To make the visualization m tebook provides a visualization of the ca)) As you begin to think about 3D modeling anguages like Python, there is more goin ,16,30,1],[16,10,30,1],[16,0,3 16,10,54,1],[16,0,54,1]));	ore complete inoncial view g it would be v ng on in these 30,1],[0,0,	, a simple volume. valuable to e few lines of	

First Major Aside: The House

• 3D Example needs something to 'lookat'

An array of vertices

Perhaps the first thing to notice about this example is the way in which vertices are expressed. Namely, in a 4 x N matrix where N is the number of vertices; N = 10 for the house.

pretty	<pre>pretty_print("VVL = ", VVL)</pre>									
VVL =	0	0	8	16	16	0	0	8	16	16
	0	10	16	10	0	0	10	16	10	0
	30	30	30	30	30	54	54	54	54	54
	1	1	1	1	1	1	1	1	1	1

SageMath 3D Drawing of House

• Pay attention to structure, axes, colors ...

Configuring a Camera

• Interact with SageMath to see different camera placements and view volumes.

