Lecture 7
Rays and Spheres

September 17, 2019

To Start — Shooting Rays

\5
62.6 \\ \ '

100.0

8.0

-37.9

8.0

100.0

-37.9

Goal:
Be able to code ray generation from scratch using only a camera
specification and explain that code in linear algebraic terms!

CSU CS 410 Fall 2019 ©Ross Beveridge

This Material is Covered In

— Jupyter cs410lec07n01 issaved)

File Edit View Insert

Cell Kernel

Widgets

Help

lrusted

Logout

SageMath 8.8 O

+

9<

@ B 4 % MHRun B C W Code

ap
B

Shooting Rays into a Scene

This notebook shares much in common with the Part 1 notebook that shows the 3D viewing
volume. Also known as the frustum.

NP R 53.9
This notebook differs from the previous in
from pixels on the image plane and movi y VN o
S svamavr o Y ¥ v -
Ross Beveridge September 17, 2019
W 0 p S
* 8.0
L By N - >
L N ere
s ee s : b N S
A\ - LI
62.6 25.2‘ 3 - a a a A A
100.0 ’ 379

-37.9
53.9

CSU CS 410 Fall 2019 ©Ross Beveridge

Review the Frustum

In this figure you need to
quickly be able to recognize
the following:

* Eye (Camera Position)

* Focal Point

W (Viewplane Normal)

e U (Camera horizontal axis) -
e V (Camera vertical axis) —

* Near clipping plane 0
* Farclipping plane 120.0

* View plane

* Bounded image plane

* Lookat point

* Up vector

.

725

-67.0

8.0

CSU CS 410 Fall 2019 ©Ross Beveridge

8.0

—420*

Camera Specification

* The following is complete — a bit hard to read.

var('ex', 'ey', 'ez'); # Eye position in the world, also focal point position.
var('1lx', 'ly', 'lz'); # Lookat position in the world.

var('upx', 'upy', 'upz'); # The up vector in the world coordinates.
var('right', 'left', 'top', 'bottom'); # View Volume Sides

var('near', 'far'); # Distance to the near and far clipping planes.
var('width', 'height'); # Number of pixels horizontal and vertical

Setup specific Camera

ex = 8; ey = 8; ez = 100; # World origin same as camera

1x 8; ly = 8; lz = 54; # Point toward the positive Z axis

upx = 0; wupy = 1; upz = 0; # Let the world y axis represent UP

near = -30; far = -75; # The near and far clipping planes

left = -30; right = 30;

top = 20; bottom = -20;

width = 2; height = 2;

Build camera system origin and axes in world coordinates

EV = vector (SR, 3); EV[0] = ex; EV[1] = ey; EV[2] = ez;

LV = vector(SR, 3); LV[0] = 1x; LV[1] = ly; LV[2] = 1z;

UP = vector(SR, 3); UP[0] = upx; UP[1l] = upy; UP[2] = upz;

WV = EV - LV; WV = WV / WV.norm();

UV = UP.cross_product(WV); UV = UV / UV.norm();

VV = WV.cross_product(UV);

CSU CS 410 Fall 2019 ©Ross Beveridge

What is a Ray?

* Beware this simple question
— The answer may vary by context.

* For our purposes here, aray is ..
— A pair consisting of a Point and a Vector
— The ray ‘originates’ at the Point P.
— Moves in the direction indicated by vector D.

Rt)=P+tDh t=0 /

This is our first of a parametric object.

A Pixel's Ray

* We want to ‘fire’ a ray from each pixel in an
iImage which we are constructing.

* What is the point where the ray starts?
— The 3D world position of the pixel.

 What direction does it travel?
— The direction defined by
* the focal point (Eye)
* the pixel position.
— Both are measured in world coordinates.

Pixel 3D Coordinates

* Directions needed to arrive at a pixel.
— Begin a the camera focal point (Eye)

— Move on the z-axisto t
— Move on the x-axisto t
— Move on the y-axis to t
— Proper position means

ne image plane
ne ‘proper position’

ne ‘proper position’
converting pixel (i, j) to

distances of travel in the world.

P=E4+nW+ aU + [V

Equation lllustrated

P=E+nW+aU+ LV

-67.0

Now consider:
Is n a positive or negative scalar?
What do we need to compete a and [7?

CSU CS 410 Fall 2019 ©Ross Beveridge

SageMath Code

def pixelPt(i,j):
px = i/(width-1)*(right-left)+left;
py = j/(height-1)*(top-bottom)+bottom;
pixpt = EV + (near * WV) + (px * UV) + (py * VV);
return point(pixpt,size=10);

* near value is negative, e.g. -30 in example

* px is position along U of pixel at index i
— i from O to (width — 1), e.g. 0 to 7 in example
— Test boundary cases:

px(0) = 1" (right — left) + left = left
width — 1
width — 1

CSU CS 410 Fall 2019 ©Ross Beveridge

px(width — 1) = * (right — left) + left = right

64 3D Pixels

It is NOT common to force

students to think of pixels in

terms of 3D world/scene

points so early in learning [),
graphics.

However, once you get used o
to the idea, then camera

placement for ray-tracing will -
become ‘simple’. ’

28.0

8.0

-12.5
28.0

Pay attention to ...
 Bounds on horizontal axes °
Bounds on vertical axes

Is there a center pixel?

100.0

CSU CS 410 Fall 2019 ©Ross Beveridge

Ray From a Pixel: Math

Let P be the pixel point.
Let E be the focal point (Eye).
The ray is:

R(t)=P+tDh D=

P—E
1P —EIl

Expressing direction as a unit length vector is
generally a very good idea.

Ray From a Pixel: Data Structure

* Code view is somewhat different.
* You have many options ...

* Here Is one approach
— Object class for point

— Object class for vector

— Object class for Ray

 ARay includes a Point
* A Ray includes a Vector

Ray in SageMath

def pixelRay(i,]):
px = i/(width-1)*(right-left)+left;
py = j/(height-1)*(top-bottom)+bottom;
pixpt = EV + (near * WV) + (px * UV) + (py * VV);
shoot pixpt - EV; shoot = shoot / shoot.norm();
raypt pixpt + shoot * abs(far-near);
return arrow3d(pixpt, raypt, width=16,color='orange');

» Code creates an orange arrow from pixel
point to a point in the direction of the ray and
a distance (far-near) away from the pixel.

* Note the variable ‘shoot’ plays the role of ‘D’
in the ray equations above.

CSU CS 410 Fall 2019 ©Ross Beveridge

100.0

Rays are enumerated, one ray per
pixel, using the camera specification.
Now let us explore some alternative
configurations.

CSU CS 410 Fall 2019 ©Ross Beveridge

-37.9

Example 1: Optical Axis

Setup specific Camera

ex = 8; ey = 8; ez = 100;

1x = 8; ly = 8; lz = 54; s
upx =0; upy = 1; upz = 0;

near = -30; far = -75; A

left = -20; right = 20; - 4
top = =20; bottom = 20;

width = 3; height = 3;

Is there a pixel centered on the optical axis?

CSU CS 410 Fall 2019 ©Ross Beveridge

= =5; bottom =

Example 2: Zoom

specific Camera

ey = 8;
ly = 8;
upy = 1;
-30; far
-5; right

3; height

ez = 100;
1lz = 54;
upz = 0;
= =-75;

S5;

5;
= 3;

9

100.0

CSU CS 410 Fall 2019 ©Ross Beveridge

Examples: Pixel Density

8.0

-5.7

5.7 8.0 21.7 -5.7 8.0 21.7

Do NOT confuse camera field of view with pixel density, i.e.
the number of pixels in an image.

CSU CS 410 Fall 2019 ©Ross Beveridge

Example 04: Square Pixels?

Setup specific Camera

ex = 8; ey = 8; ez = 90

1x = 8; ly = 8 1lz = 54

upx =0; u = 1; upz = 0; S

ngar = —Zg};, far L=) -65; Th'S IS an 8X8
left = -8; right = 8; . .

top = -4.5; bottom = 4.5; pIXE| |mage.
width = 8; height = 8;

23.6
The aspect ratio
of the frustum
is defined by >0
left, right, top ,
and bottom. N

-17.9 8.0 33.9

CSU CS 410 Fall 2019 ©Ross Beveridge

Example 5: Square is Good

Square Pixels
mean equally
spaced samples
horizontally and
vertically.

Setup specific Camera

ex = 8; ey = 8; ez =
1x = 8; ly = 8; 1z =
upx =0; upy = 1; upz

near = -20; far = -
left = -8; right = 8;
top = -4.5; bottom = 4.
width = 16; height = 9;

CSU CS 410 Fall 2019 ©Ross Beveridge

Example 6: Pixel Zero Zero

On the rainbow map, pixel (0,0,) is red.

py = j/(height-1)*(bottom-top)+top;

. ’ R E . . ®) ' . v o
- . A . + - ™ o
|
® " 8 0 CI -
. . - N ?..' o v
. ® & & & 9
. " @ e« & » @
<
v @9 . @ @
2 @ 2 & »
L
5 @ P . @ @9
5 % % 8 8 0 > o @ ,
. LS O BURL a . " % e % e e e
» S
- ¢ ¢ o a - L [
» a s
N ’ . A . . ’ » v v

CSU CS 410 Fall 2019 ©Ross Beveridge

General Parametric Approach

« Sphere centered at Pc with radius r.

2 2
=7

P-P

2 2
—-r =0

L+sU-P.
substitute
T'=P -L
Yielding a quadratic equation
(sU-T)-(sU-T)-r"=0

Solve quadratic equation for s and take smaller of two real roots

CSU CS 410 Fall 2019 ©Ross Beveridge

But! There is a better way.

Side-steps general parametric approach.
Readily understood in terms of dot products.

If you are looking additional information:

— Glassner, A. (ed) An Introduction to Ray Tracing.
Academic Press, 1989

— http://www.cs.unc.edu/~rademach/xroads-
RT/RTarticle.html

Now, ray sphere intersection.

CSU CS 410 Fall 2019 ©Ross Beveridge

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html

Heavy Reliance on SageMath

: Ju pyte I' ¢s410lec07n02 Last Checkpoint: a few seconds ago (autosaved) Logout

File Edit View Insert Ce Kernel Widgets Help Trusted SageMath 8.8 O

B 4+ = @B 4 v MRun B C » Code

B

Clever Ray Sphere Intersection

This notebook presents a much faster and simpler means of computing the intersection between a sphere and a ray. There are
several 'key insights' about the relative geometry of a ray and sphere that must be understood before the mathematics of this
approach makes geometric sense. To try to help visualize these connections this notebook uses explicit values for an
example.

Ross Beveridge, September 17, 2019

In [13]: var('r'); 10.0
r = 3;
Cv = vector(SR, 3, (5,5,5));
Lv = vector(SR, 3, (1,1,3)); ‘
Uv = vector(SR, 3, (4,3,0)); Uv = Uv / Uv. '
Tv = vector(SR, 3, (Cv - Lv));

pretty print("Sphere center: C = ", Cv);
pretty_print("Ray start: L=", Lv); 5.0
pretty print("Ray direction: U = ", Uv);
pretty print("Base to Center: T = ", Cv

Sphere center: C =(5, 5, 5) |

Ray start: L =(1,1,3)
4 3 88 / 10.0
Ray di tion: U = —, —, 0 ' _ .
y direction (5 5) 5.3 — = 5.0

Base to Center: T =(4, 4, 2)
CSU CS 410 Fall 2019 ©Ross Beveridge

Faster Method

v=(C-L1L)-U

v? + b?% = ¢*

L U
2+b2=r2 mmee—— ‘

dz — (rz _ (CZ _ UZ))
d =12 —(c? —v2)

If d? less than zero, no intersection.
Otherwise, Q =L + (v—d)U

CSU CS 410 Fall 2019 ©Ross Beveridge

Exa m ple 1 Sphere center: C =(5, 5, 5)

Ray start: L =(0, 0, 0)
Ray direction: U = L 26 3 26 2 26
ay direction: 26 V201 3¢ V26, 13 v

Base to Center: T =(5, 5, 5)

10.2

10.2

58
2 b2 —
’ 13

CSU CS 410 Fall 2019 ©Ross Beveridge

Example 2 Sphere center: C =(5, 5, 5)
Ray start: L=(1,0,1)

1 1 1
Ray direction: U = (6 /6, 3 V6, 6 \/6)

Base to Center: T =(4, 5, 4)

7.0

5.0

10.0).0

CSU CS 410 Fall 2019 ©Ross Beveridge

Option: Rays from Focal Point

» Our rays originate from pixel |R(s)=L+sU
in world cordinates L.

» With the unit vector pointing |- L-E
from focal point E to pixel L. |L-E|
« Alternatively, let rays R(S)= E+sl

originate from focal point E.

How might this help?
Intermediate values remain constant across all
pixels when always using the focal point E as the
base of the ray.

