Lecture 9:
 Parametric Forms and Ray Triangle Intersection
 October 1, 2019

SageMath cs410lec09n01

$\mathrm{A} 1=[1,2] ; \mathrm{A} 2=[6,1]$
$\mathrm{B} 1=[2,6] ; \mathrm{B} 2=[5,1]$
LA = line([A1,A2], color="darkred")
LB = line([B1,B2], color="darkgreen")
bnd $=7$
show(LA $+L B, x \min =0, y \min =0$, $x \max =b n d, y m a x=b n d$, aspect_ratio=1)

Surface the Parametric Form

```
t = var('t')
def lapx(t) : return (A1[0]+(A2[0]-A1[0])*t)
def lapy(t) : return (A1[1]+(A2[1]-A1[1])*t)
def lbpx(t) : return (B1[0]+(B2[0]-B1[0])*t)
def lbpy(t) : return (B1[1]+(B2[1]-B1[1])*t)
LAP = parametric_plot((lapx(t),lapy(t)),(t,0.0,1.0),color='darkred')
LBP = parametric_plot((lbpx(t),lbpy(t)),(t,0.0,1.0),color='darkgreen' )
bnd = 7
show(LAP + LBP, xmin=0, ymin=0, xmax=bnd, ymax=bnd, aspect_ratio=1)
```

The same thing written out in linear algebraic format.

$$
\left|\begin{array}{l}
x(t) \\
y(t)
\end{array}\right|=\left|\begin{array}{l}
a 1 x \\
a 1 y
\end{array}\right|+\left(\left|\begin{array}{l}
a x 2 \\
a y 2
\end{array}\right|-\left|\begin{array}{l}
a 1 x \\
a 1 y
\end{array}\right|\right) t
$$

SageMath draws an identical figure.

Lines Know No Bounds

Any Value of t Will Do

```
LA = line([A1,A2], color="darkred")
LB = line([B1,B2], color="darkgreen")
LAP = parametric_plot((lapx(t),lapy(t)),(t,-10.0,10.0),color='darkred', alpha=0.25)
LBP = parametric_plot((lbpx(t),lbpy(t)),(t,-10.0,10.0),color='darkgreen', alpha=0.25)
bnd = 7
show (LA + LB + LAP + LBP, xmin=0, ymin=0, xmax=bnd, ymax=bnd, aspect_ratio=1)
```

- Consider how to draw an un-bounded line
- Not really possible
- This is suggesting graphics concept of clipping
- But for the illustration, large bounds work
- So notice t-values are beteen -10 and 10

Code to Sample

```
k = 32.0
A1v = vector(A1); A2v = vector(A2);
B1v = vector(B1); B2v = vector(B2);
tss = [i/(k-1) for i in range(k)]
ptsa = [A1v + (A2v - A1v) * t for t in tss]
ptsb = [B1v + (B2v - B1v) * t for t in tss]
gptsa = [point(p,color='darkred') for p in ptsa]
gptsb = [point(p,color='darkgreen') for p in ptsb]
bnd = 7
show(sum(gptsa) + sum(gptsb), xmin=0, ymin=0, xmax=bnd, ymax=bnd, aspect_ratio=1)
```

- Python is making this 'easy'
- How, by allowing enumeration of list elements
- Here 32 points are created that are evenly sampled along the two line segments

How About Intersection

- Pair of equations in two unknowns

$$
\begin{aligned}
& -\left(a x_{1}-a x_{2}\right) t+a x_{1}=-\left(b x_{1}-b x_{2}\right) s+b x_{1} \\
& -\left(a y_{1}-a y_{2}\right) t+a y_{1}=-\left(b y_{1}-b y_{2}\right) s+b y_{1}
\end{aligned}
$$

- We will shortly consider turning this into a matrix inversion problem, but not yet.

Solution

- Courtesy of SageMath solve command

$$
\begin{aligned}
& s=-\frac{a x_{2}\left(a y_{1}-b y_{1}\right)-a x_{1}\left(a y_{2}-b y_{1}\right)-\left(a y_{1}-a y_{2}\right) b x_{1}}{\left(a y_{1}-a y_{2}\right) b x_{1}-\left(a y_{1}-a y_{2}\right) b x_{2}-a x_{1}\left(b y_{1}-b y_{2}\right)+a x_{2}\left(b y_{1}-b y_{2}\right)} \\
& t=\frac{\left(a y_{1}-b y_{2}\right) b x_{1}-\left(a y_{1}-b y_{1}\right) b x_{2}-a x_{1}\left(b y_{1}-b y_{2}\right)}{\left(a y_{1}-a y_{2}\right) b x_{1}-\left(a y_{1}-a y_{2}\right) b x_{2}-a x_{1}\left(b y_{1}-b y_{2}\right)+a x_{2}\left(b y_{1}-b y_{2}\right)}
\end{aligned}
$$

- For our specific example

$$
\left[s=\left(\frac{21}{22}\right), t=\left(\frac{17}{22}\right)\right]
$$

Now Draw It

```
ax1 = A1[0]; ax2 = A2[0]; ay1 = A1[1]; ay2 = A2[1]
bx1 = B1[0]; bx2 = B2[0]; by1 = B1[1]; by2 = B2[1]
eq1v = ax1 + (ax2 - ax1) * t == bx1 + (bx2 - bx1) * s
eq2v = ay1 + (ay2 - ay1) * t == by1 + (by2 - by1) * s
resv = solve([eq1v,eq2v], s, t)
```

tstar $=$ resv[0][1].rhs()
LA = line([A1,A2], color="darkred")
LB = line([B1,B2], color="darkgreen")
poi $=$ point((lapx(tstar), lapy(tstar)),size=64,color='orange')
bnd $=7$
show(LA + LB + poi, $\left.x m i n=0, y m i n=0, ~ x m a x=b n d, y m a x=b n d, ~ a s p e c t _r a t i o=1\right)$

New Topic: Ray Triangle Intersection

Triangle Warm-up

How do you 'drive' from the red to the green point?

Ray/Triangle Intersections

- Ray/Triangle intersections are efficient and can be computed directly in 3D
- No need for ray/plane intersection
- Solution relies on the following implicit definition of a triangle:

$$
\begin{gathered}
P=A+\beta(B-A)+\gamma(C-A) \\
\beta \geq 0, \gamma \geq 0, \beta+\gamma \leq 1
\end{gathered}
$$

Implicit Triangles

Triangle Parametric Form

- There are two free parameters
- They select points inside the triangle ... and outside it as well!

$$
\begin{gathered}
P(\beta, \gamma)=A+\beta(B-A)+\gamma(C-A) \\
P(\beta, \gamma)==\left[\begin{array}{c}
-(a x-b x) \beta-(a x-c x) \gamma+a x \\
-(a y-b y) \beta-(a y-c y) \gamma+a y \\
-(a z-b z) \beta-(a z-c z) \gamma+a z
\end{array}\right]
\end{gathered}
$$

Find Ray Plane Intersection

- If they intersect, there is a solution to:

$$
\begin{gathered}
{\left[\begin{array}{c}
d x t+l x \\
d y t+l y \\
d z t+l z
\end{array}\right]=\left[\begin{array}{c}
-(a x-b x) \beta-(a x-c x) \gamma+a x \\
-(a y-b y) \beta-(a y-c y) \gamma+a y \\
-(a z-b z) \beta-(a z-c z) \gamma+a z
\end{array}\right]} \\
{\left[\begin{array}{c}
d x t+l x \\
d y t+l y \\
d z t+l z
\end{array}\right]+\left[\begin{array}{c}
(a x-b x) \beta+(a x-c x) \gamma-a x \\
(a y-b y) \beta+(a y-c y) \gamma-a y \\
(a z-b z) \beta+(a z-c z) \gamma-a z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Standard 3x3 Linear System

- Rearranging terms we have a standard:

$$
M X=Y
$$

- Expanded this is ...

$$
\left[\begin{array}{ccc}
a x-b x & a x-c x & d x \\
a y-b y & a y-c y & d y \\
a z-b z & a z-c z & d z
\end{array}\right] *\left[\begin{array}{c}
\beta \\
\gamma \\
t
\end{array}\right]=\left[\begin{array}{c}
a x-l x \\
a y-l y \\
a z-l z
\end{array}\right]
$$

Solve for Intersection

- Using favorite linear system method
- More on this soon
-What if the matrix is singular?
- then the plane doesn't intersect the ray
- The point is inside the triangle and in front of the camera if and only if
$-\beta \geq 0$
$-\Upsilon \geq 0$
$-\beta+\gamma \leq 1$
$-\mathrm{t}>0$
- Note: Knowing tyields the point of intersection

Using Cramer＇s Rule

－One approach users Cramer＇s Rule

－en．wikipedia．org／wiki／Cramer\％27s＿rule
C
↔ ㅁ
Cramer＇s rule－Wikipedia，the free encyclopedia
غارسیى
Français
한국어
हिन्दी
İslenska
Italiano
עברית
Latina
Latviešu
Magyar
Nederlands
日本語
Norsk bokmål
Consider a system of n linear equations for n unknowns，represented in matrix multiplication form as follows：

$$
A x=b
$$

where the $n \times n$ matrix A has a nonzero determinant，and the vector $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ is the column vector of the variables．Then the theorem states that in this case the system has a unique solution，whose individual values for the unknowns are given by：

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)} \quad i=1, \ldots, n
$$

The efficiency of this approach compared to a numerical package depends upon details，including the care taken implementing the actual code．For example，using early exit strategies．

Here In Full Glory

$$
\begin{gathered}
M=\left[\begin{array}{ccc}
a x-b x & a x-c x & d x \\
a y-b y & a y-c y & d y \\
a z-b z & a z-c z & d z
\end{array}\right] \\
M_{1}=\left[\begin{array}{ccc}
a x-l x & a x-c x & d x \\
a y-l y & a y-c y & d y \\
a z-l z & a z-c z & d z
\end{array}\right], \quad M_{2}=\left[\begin{array}{cc}
a x-b x & a x-l x \\
a y-b y & a y-l y \\
a z-b z & a z-l z \\
a z
\end{array}\right], \quad M_{3}=\left[\begin{array}{cc}
a x-b x & a x-c x \\
a y-b y & a x-l x \\
a z-b z & a z-c z \\
a z-l z
\end{array}\right] \\
\beta=\frac{\left|M_{1}\right|}{|M|}=\frac{((a z-c z) d y-(a y-c y) d z)(a x-l x)-((a z-c z) d x-(a x-c x) d z)(a y-l y)+((a y-c y) d x-(a x-c x) d y)(a z-l z)}{((a z-c z) d y-(a y-c y) d z)(a x-b x)-((a z-c z) d x-(a x-c x) d z)(a y-b y)+((a y-c y) d x-(a x-c x) d y)(a z-b z)} \\
\gamma=\frac{\left|M_{2}\right|}{|M|}=\frac{((a z-l z) d y-(a y-l y) d z)(a x-b x)-((a z-l z) d x-(a x-l x) d z)(a y-b y)+((a y-l y) d x-(a x-l x) d y)(a z-b z)}{((a z-c z) d y-(a y-c y) d z)(a x-b x)-((a z-c z) d x-(a x-c x) d z)(a y-b y)+((a y-c y) d x-(a x-c x) d y)(a z-b z)} \\
t=\frac{\left|M_{3}\right|}{|M|}=\frac{((a y-l y)(a z-c z)-(a y-c y)(a z-l z))(a x-b x)-((a x-l x)(a z-c z)-(a x-c x)(a z-l z))(a y-b y)+((a x-l x)(a y-c y)-(a x-c x)(a y-l y))(a z-b z)}{((a z-c z) d y-(a y-c y) d z)(a x-b x)-((a z-c z) d x-(a x-c x) d z)(a y-b y)+((a y-c y) d x-(a x-c x) d y)(a z-b z)}
\end{gathered}
$$

Without serious effort to collect terms this solution will run slower than a numerical solver.

However, collecting terms is not that difficult.

SageMath Worked Example

CO Jupyter cs410lec09n03 Last Checkpoint: 09/18/2018 (autosaved)

File		Edit	View		Insert		Cell	Kernel		Widgets		Help		Trusted	SageMath 8.8
圆	$+$	2t	Col	b	*	\downarrow	M Run	-	C	+	Code	$*$	䀜		

Ray Triangle Intersection Example

Here is worked numerical example of Ray Triangle intersection with a 3D visualization of the process and result.
Ross Beveridge, October 1, 2019

The actual 3D position of the 3 triangle corners as well as the ray starting point and direction are given here at the head of the file. Initially the example is setup using these values:
$\mathrm{Av}=\operatorname{vector}(\mathrm{SR}, 3,(3,0,0)) ; \mathrm{Bv}=\operatorname{vector}(\mathrm{SR}, 3,(0,3,0)) ; \mathrm{Cv}=\operatorname{vector}(\mathrm{SR}, 3,(0,0,3)) ; \mathrm{Lv}=\operatorname{vector}(\mathrm{SR}, 3,(0,0,0)) ; \mathrm{Dv}=\operatorname{vector}(\mathrm{SR}, 3,(1,1,1)) ;$
To further explore consider these alternatives:
Av = vector(SR, 3, (6,0,0)); Bv = vector(SR, 3, (0,6,0)); Cv = vector(SR, 3, (0,0,6)); Lv = vector(SR, 3, (1,1,1)); Dv = vector(SR, 3, (1,1,1));
$\mathrm{Av}=\operatorname{vector}(\mathrm{SR}, 3,(6,0,0)) ; \mathrm{Bv}=\operatorname{vector}(\mathrm{SR}, 3,(0,6,0)) ; \mathrm{Cv}=\operatorname{vector}(\mathrm{SR}, 3,(0,0,6)) ; \mathrm{Lv}=\operatorname{vector}(\mathrm{SR}, 3,(1,1,1)) ; \mathrm{Dv}=\operatorname{vector}(\mathrm{SR}, 3,(1,0,0)) ;$
$\mathrm{Av}=\operatorname{vector}(\mathrm{SR}, 3,(6,0,0)) ; \mathrm{Bv}=\operatorname{vector}(\mathrm{SR}, 3,(0,6,0)) ; \mathrm{Cv}=\operatorname{vector}(\mathrm{SR}, 3,(0,0,6)) ; \mathrm{Lv}=\operatorname{vector}(\mathrm{SR}, 3,(0,0,0)) ; \mathrm{Dv}=\operatorname{vector}(\mathrm{SR}, 3,(0,1,1)) ;$

Problem / Opportunity

- You have two ways to compute the same three values.
- One, at least, is rife with chances to make errors when being converted to code.
- But, that same option holds promise of efficiency through early termination.
How would one write code to confidently debug and test a relatively complicated geometric computation ...

Example 1 Visualization

Ray from origin in direction $(1,1,1)$ with triangle pinned at 3 out each of the X, Y and Z axes.

