Lecture 15: Phong Reflection Recursive Reflection

October 10, 2019

Today's Goal

Specular Reflection

- Think about reflection and consider
- Two extremes:
 - 1: a diffuse surface,
 - 2: a mirror.
- Specular reflection component
 - Mirrors are extreme (2nd half of this lecture)
 - Mirrors reflect about a single angle
- Metals, for example, combine
 - Diffuse and specular components.

Only Skin Deep

- Diffuse models light "deep" reflection
 - Enters through micro-holes in the surface
 - Bounced from facet to facet,
 - Possibly changing color
 - Exits at a random angle
- Specular reflection is "surface" reflection
 - Light hits a single surface facet, skips off.
 - The color of the light is unchanged.
 - The exit angle depends on the entry angle.
 - Catchy Phrase *equal and opposite*.

Limiting Case - Mirror

- Angle of incidence = Angle of reflection.
- Idealized form only applies to mirrors.

Reflection – Mirror Like Surface

Light Source Reflecting

Reflection and Viewer

• V is the unit vector from the surface point to the camera:

V = (C - S)/IC - SI

• Calculating R is more involved

Reflection Vector

- Let NL be the projection of L onto N
 - Assume N is a unit vector

 $NL = (L \cdot N)N$

• T is defined as

$$\mathsf{T} = \mathsf{N}\mathsf{L} - \mathsf{L} = (\mathsf{L} \cdot \mathsf{N})\mathsf{N} - \mathsf{L}$$

• R is L + 2T

$$R = L + 2((L \cdot N)N - L)$$
$$= 2(L \cdot N)N - L$$

Back to Perfect (for now)

- If V ≠ R, there is no (pure) specular reflection.
- If V = R, then

- Note that k_s is a scalar, measuring the percent of light reflected.
 - Color reflected is that of the light source.

Warning: This is the correct mental model, it is not useful in practice.

Close Counts – Phong Reflection

- In Phong's model, reflection is strongest in the direction of the angle of reflection
- Drops off with the cosine of the deviation from the angle of reflection

Phong Specular Highlights

$$I = k_s B (\cos \Phi)^{\alpha}$$

- Φ is the angle between the viewing ray and the angle of reflection.
- α is the so-called Phong constant, expressing how "shiny" an object is
 - Mirrors: α = 200
 - Dull objects: α = 5 ... 50

Appearance with Changing $\boldsymbol{\alpha}$

• Consider which has the larger alpha?

Phong - The Algebra

• $cos(\Phi) = V \cdot R = V \cdot (2(L \cdot N)N - L)$

$I = k_s B (V \cdot R)^{\alpha}$ $I = k_s B (V \cdot (2(L \cdot N)N - L))^{\alpha}$

Total Reflectance

- Reflectance off a surface point is the sum of:
- Reflection from the ambient light
- Diffuse reflection off of every point light
- Specular reflection off of every point light

$$I = K_a B_a + \sum_{i \in lights} \left(K_d B_i (L_{ip} \cdot N) + k_s B_i (V \cdot R_p)^{\alpha} \right)$$

$$R = 2(L \cdot N)N - L$$

How about Reflections?

- Note reflections
- Granite tabletop
- Visible on base
- Also on handle

This is a featured picture on the English language Wikipedia (Featured pictures) and is considered one of the finest images. (October 2012)

Rationale for Interreflection

- Not all the light striking a surface comes directly from a light source.
- Some reflects from one surface onto another.
- We ignore diffuse reflected light:
 - Because its small, and we can get away with it
 - Because it is very expensive to compute
- Specular reflection much more sensitive
 - Just consider reflections in previous image.

Interreflections

Rays of Reflection

 To add interreflections, we need the light hitting the surface from the reflected viewing ray.

Add to ambient, diffuse and specular

Computing V_{R}

• $R_V = 2(V \cdot N)N - V$

- Just like R_L , but V replaces L

• To be more detailed...

$$N_V = (V \cdot N)N$$
$$T_V = N_V - V = (V \cdot N)N - V$$
$$R_V = V + 2T_V = 2(V \cdot N)N-V$$

Recursive Ray Tracing

- Generalize ray trace light from a ray
 - Ray leaves surface from point of intersection
 - In the direction of R_V
- And how does it compute illumination?
- Exactly as we did it before, when ...
 - Starting at the pixel
 - In the direction of V
- So ray tracing is recursive!

Illustrating Recursive Ray Tracing

Now in SageMath

- Complete implementation in SageMath
- Scene with three spheres and interreflection
- Can modify recursion depth

CS410	localhost:8888/notebooks/CS410%20Fall2019/lectures/cs41	10lec12n01.ipyr (C) cs410lec12n01	1 1 1
💭 jupyter	cs410lec12n01 (autosaved)	Logout	
File Edit \	fiew Insert Cell Kernel Widgets Help	Trusted SageMath 8.8 O	0
	Illumination with Reflection for	or Spheres	
	n this Notebook is a full implementation of ambient, diffus	e and specular reflection - in color -	

