Lecture 14: Perspective Projection October 17, 2019

3D Viewing as Virtual Camera

To take a picture with a camera, or to render an image with computer graphics, we need to:

- 1. Position the camera/viewpoint in 3D space
- 2. Orient the camera/viewpoint in 3D space
- 3. Transform objects into Camera Coordinates
- 4. Crop scene/objects to frustum
- 5. Project remaining objects to the image plane

Perspective ...

Orthographic Projection

Is Perspective Always Better?

No! Technical programs, including for example Maple, often favor orthographic projection.

Math: Orthographic Projection

Simply drop a dimension.

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{0} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

 Think of a bug hitting a windshield.

- No more z axis!
 - no more bug

Photo by Brian, Jeff Booth site www.jeffbooth.net (creative common License)

Perspective Projection

- Light rays pass through the focal point.
 a.k.a. Eye, principal reference point, or PRP.
- The image plane is an infinite plane in front of (or behind) the focal point.
- Images are formed by rays of light passing through the image plane
- Common convention:
 - Image points are (u,v)
 - World points are (x,y,z)

Why "Pinhole" Camera?

- Because you can build a camera that exactly fits this description:
 - Create a fully-enclosed black box
 - So that no light enters
 - Put a piece of film inside it, facing front
 - Punch a pin-hole in the front face of the box
- What doesn't this camera have?
- What is this camera's depth-of-field?
- Why don't we build cameras this way?

History

• The Camera Obscura - see Wikipedia

- Pre-dates photographic cameras.
 - Theory: Mo-Ti (China, 470-390 BC)
 - Practice: <u>Abu Ali Al-Hasan Ibn al-Haitham</u> (~1000 AD)
 - Western Painting: Johannes Vermeer (~1660 AD)

Pinhole Projection Flip the Bear in the Box

Human Eye - 4 year old view

Room Obscura

230,986 views

Perspective Projection

- Where we place the origin matters
- How we handle z values matters
- Form #1:
 - Origin at focal point, z values constant
- Form #2:
 - Origin at image center, z values are zero
- Form #3: (*next lecture*)

- Origin at focal point, z proportional to depth

Perspective Projection Form #1

The key to perspective projection is that all light rays meet at the PRP (E, focal point).

Notice that we are looking down the Z axis, with the origin at the focal point and the image plane at z = d.

By similar triangles:

Perspective Projection Matrix

Problem: division of one variable by another is a non-linear operation.

Solution: homogeneous coordinates!

Perspective Matrix (II)

What happens to Z?

• What happens to the Z dimension?

- The Z dimension projects to d. Why?
- Because (u, v, d) is a 3D point on the image plane located at z = d!

Perspective Projection Form #2

Leading to the following

$$\begin{bmatrix} x\left(\frac{d}{d+z}\right) \\ y\left(\frac{d}{d+z}\right) \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ \frac{z+d}{d} \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ \frac{z+d}{d} \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ \frac{z}{d+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Now look at what happens to depth.
- Contrast this with previous version.

Let distance d go to infinity.

Formulation #1

Recall formulation #2 when considering how projection changes with increased focal length.