
Lecture 16:
Clipping, Rasterization &

Z-buffering
October 24, 2019

Today
• At this point

mapping polygon
vertices into the
Canonical View
Volume is well
understood.

• Today is about
coloring pixels
while accounting
for depth.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 2

Partly Visible

Q: Given a
polygon, which
parts do you draw?

(This gives rise to
clipping)

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 3

Start More Simply: Line Clipping

Q: Given a line segment, which parts do you draw?
(This is called clipping)

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 4

Step Back – A Line is …
• Three common representations
• Function – think about early algebra

– Probably first you encountered
– Not too useful

• Implicit Function
– Roots (zeroes) of an equation
– … again with the dot product

• Parametric form
– Parameter specifies points on line

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 5

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 6

Clipping - Brute force

Intersect each line segment with all four
boundaries of the clipping rectangle.

What does this do?
Think in terms of half-planes...

2D Cohen-Sutherland Clipping

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 7

1001 1000 1010

0001 0000 0010

0101 0100 0110

Cohen Sutherland Bit Encoding

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 8

Cohen-Sutherland Clipping III
• AND together bit codes; any line with a non-

zero result can be trivially rejected. Why?

• OR together bit codes; if result is zero, line
can be trivially accepted. Why?

• Otherwise, intersect line with boundary
represented by non-zero OR bit and recurse.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 9

Example

1001 1000 1010

0001 0000 0010

0101 0100 0110

A
B

A = 0001
B = 0100
A or B = 0101

Bottom edge & left
edge intersect line

Pick one & replace
endpoint with
intersection

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 10

C = 0000
B = 0100
C or B = 0100

Bottom edge
intersects line

Replace endpoint with
intersection

1001 1000 1010

0001 0000 0010

0101 0100 0110

C
B

Line Cut 1

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 11

Line Cut 2

C = 0000
D = 0000
C or D = 0000

Finished

1001 1000 1010

0001 0000 0010

0101 0100 0110

C D

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 12

Back to Polygons
• Clipping non-convex polygons is tricky
– Solution: convex polygons
• “Doctor, doctor, it hurts when I do this…”

• Clipping convex polygons is simple:
– Clip polygon boundaries.
– Connect disconnected vertices along image

boundaries

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 13

Odd-even parity rule

A point is inside a polygon if any ray from the
point to infinity crosses an odd number of edges

(assume every line includes lower or left endpoint)

Try it, draw a star
in PowerPoint.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 14

Polygon Filling

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 15

Question: how to fill in an arbitrary polygon?

Which pixels should be filled in?

Start simpler ...

Which pixels should be filled in?

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 16

Surprised?

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 17

What happened to the top pixels?
To the rightmost pixels? Why is this good?

General Rules for Filling Polygons

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 18

1) No pixel belongs to more than one polygon

2) As always, efficiency matters and

3) remember that endpoints are integral

4) Odd-even Parity Rule
(Look for it – it is there in simpler form …)

Back to the Rectangle

Filling the Top and Bottom Rows would
cause adjacent rectangles to “double fill” pixels

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 19

Why Not “Double-Fill” Pixels?
• Inefficient (obviously)

• If polygons have different color, then
final color depends on the order in which
the polygons are drawn

• Extra darkening when using alpha
blending

This last point may lead to “flicker”,
irregular boundaries

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 20

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 21

Polygon Filling - Approach
§ Fill in left and lower integer boundaries, but

not right or upper boundaries.
§ If boundaries fall between pixels,

§ round left boundaries to the right,
§ round right boundaries to the left.

§ Fill in polygons by computing intersections of
boundaries with scan lines.

§ Fill between pairs of intersections.
§ This is the actual algorithm!

Polygon Filling Illustrated
Polygon:

0 1 2 3 4 5 6

4

3

2

1

0

Intersections:

(0,4) (0,4) (6,4) (6,4)

(0,3) (1.5,3) (4.5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(1.5,1) (4.5,1)

(3,0) (3,0)

= fill = ???

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 22

Details of Polygon Filling: Rounding

Q: Given an intersection at a fractional x
value, which pixels do we fill?

A1: Algorithmically, always round intersection
values up.

A2: Visually, this will have the effect of filling
to the inside of the fractional boundary
only.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 23

In Other Words

0 1 2 3 4 5 6

4

3

2

1

0

Intersections:

(0,4) (0,4) (6,4) (6,4)

(0,3) (1.5,3) (4.5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(1.5,1) (4.5,1)

(3,0) (3,0)

2 5

2 5

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 24

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 25

Q: Given intersections at integer x values, do
we fill them?

A: For intersection pair, will fill from the first
element (inclusive) to the second element
(exclusive).

Integer Boundaries

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 26

0 1 2 3 4 5 6

4

3

2

1

0

Intersections:

(0,4) (0,4) (6,4) (6,4)

(0,3) (2,3) (5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(2,1) (5,1)

(3,0) (3,0)

[[))

[)

In Other Words

Boundary Top & Bottoms

Q: If lines (boundaries) end at a scan-line, do

they intersect that scan-line?

A1: Ignore all horizontal boundaries (!)

A2: Boundaries are (set-theoretically) “open”

at the top, so they intersect every line up

to but not including the top scan-line.

They are closed at the bottom, so they do
intersect the bottom scan-line

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 27

In Other Words
Polygon: Intersections:

0 1 2 3 4 5 6

4

3

2

1

0

(0,4) (0,4) (6,4) (6,4)

(0,3) (2,3) (5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(2,1) (5,1)

(3,0) (3,0)

[[)
)

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 28

Finally … Shared Vertices
• What to do about the (3,0) (3,0) case?
• Different texts say different things!
– Foley & van Dam say fill it
• inclusive of first intersection; may double fill

– Hearn & Baker say don’t
• Because intersecting lines don’t vertically span the

vertex
– Today’s answer: Maybe

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 29

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 30

Polygon: Intersections:

0 1 2 3 4 5 6

4

3

2

1

0

(0,4) (0,4) (6,4) (6,4)

(0,3) (2,3) (5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(2,1) (5,1)

(3,0) (3,0)

= fill = Maybe

[[)
)

Final Result

= ???

Psuedo-Code
For(y = ymin; y < ymax; y++) {

ignore horizontal boundaries;
intersect scanline with boundaries;
ignore top vertex;
sort intersections

by increasing x coordinate;
for every pair of intersections {

for(x = ceil(first);
x < ceil(last); x++) {
fill(x, y);

}
}

}

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 31

Your turn

Which black pixels should be filled in?

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 32

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 33

Solution

Comments
• Symmetric polygons may not be drawn

symmetrically
• Isolated pixels from continuous polygons.

How?
• As always, efficiency matters.
– How do you make this fast?
– Where is most of the computation.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 34

Depth: Using a Z-Buffer
• Record depth at every vertex
• For every pixel in polygon (previous lecture)
– Interpolate to get depth at specific pixel.
– Is depth less then currently recorded?
• Yes: Record in Z-Buffer and paint pixel
• No: Move along, nothing to do here

• “Paint” is shorthand for compute the surface
illumination for that position on the polygon.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 35

About depth: the z-value
• Z-buffering based upon pseudo-depth is key

to modern polygon rendering.

• Depth already revealed in SageMath
notebook on the Canonical View Volume.

• Here let us briefly dive into the calculation of
pseudo-depth using essentially that example.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 36

SageMath Notebook
• Emphasize the z coordinate of transform

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 37

First the Symptom

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 38

Near = -25
Far = -75

Near = -25
Far = -750

Near = -25
Far = -7500

Remember, the house lies between z of 30 and 54 in world coordinates.

Even pushing the far clipping plane 2 orders of magnitude further back
from -75 still results in the house occupying most of the pseudo-depth
range between 0 and 1.

Back to the Math
• Camera at origin no world cam. rotation

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 39

Pseudo-depth

!" At near and far
• Equation:

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 40

!" = 2 ∗ &'(∗)*'(
&'(−)*'(∗ " −

&'(+)*'(
&'(−)*'(

!" = 2 ∗ &'(∗)*'(
&'(−)*'(∗)*'(−

&'(+)*'(
&'(−)*'(

!" = 2 ∗ &'(− &'(−)*'(
&'(−)*'(

!" = &'(−)*'(
&'(−)*'(

!" = 1

Let . equal /012

Similarly …

Let . equal 312

!" = −1

Plot actual Depth to Pseudo-depth

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 41

Far = -75

Plot actual Depth to Pseudo-depth

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 42

Far = -750

Plot actual Depth to Pseudo-depth

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 43

Far = -7,500

Interpolate Z-value

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 44

Z-value 0.86

Z-value 0.72 Z-value 0.74

Z-value ??? There are various
ways to interpolate
in order to arrive at
an estimated z-value
for a interior point
on any given
triangle.

Common is to first
interpolate up the
sides and then to
interpolate across.

Z-Buffer Summary
• A Z-buffer is an array of doubles
• Size of the frame buffer / image
• Initialized to -1.0, i.e. far clipping plane
• Now consider a specific triangle
• For each pixel to be filled
– Interpolate pixels z-value
– Test if larger then what is in the Z-buffer
– If yes then “paint” that pixel for that triangle

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 45

What if you Want Depth?
• Mapping may be inverted.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 46

! = 2 ∗ %&' ∗ ()&'
%&' − ()&' ∗ +! + %&' + ()&'

+! = 2 ∗ %&' ∗ ()&'
%&' − ()&' ∗ ! −

%&' + ()&'
%&' − ()&'

There are worse things
then checking your
work in a symbolic
math package.

