Lecture 16:
Clipping, Rasterization &
Z-buftering

October 24, 2019

-1.0 -1

Today

At this point
mapping polygon
vertices into the
Canonical View
Volume is well

0.0

6:0

0

- T

understood.

* Today is about
coloring pixels
while accounting
for depth.

0.0

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Partly Visible

Q: Given a
polygon, which
parts do you draw?

(This gives rise to
clipping)

10/24/19

00

1.0

0.0

-10

CSU CS 410, Fall 2019, © Ross Beveridge

Start More Simply: Line Clipping

Q: Given a line segment, which parts do you draw?
(This is called clipping)

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Step Back —ALine s ...

 Three common representations

* Function — think about early algebra
— Probably first you encountered
— Not too useful

 Implicit Function

— Roots (zeroes) of an equation
— ... again with the dot product

« Parametric form
— Parameter specifies points on line

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Slide 5

10/24/19

Clipping - Brute force

Intersect each line segment with all four
boundaries of the clipping rectangle.

What does this do?
Think in terms of half-planes...

CSU CS 410, Fall 2019, © Ross Beveridge

Slide 6

2D Cohen-Sutherland Clipping

10/24/19

Cohen Sutherland Bit Encoding

Cohen-Sutherland Clipping IlI

* AND together bit codes; any line with a non-
zero result can be trivially rejected. Why?

» OR together bit codes; if result is zero, line
can be trivially accepted. Why?

» Otherwise, intersect line with boundary
represented by non-zero OR bit and recurse.

Example

A = 0001
B = 0100
A or B = 0101

Bottom edge & left
edge intersect line

Pick one & replace
endpoint with
intersection

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 10

Line Cut 1

—; 0 C = 0000
1001 | 1000 <G—1010 B = 0100
\ C or B = 0100
Bottom edge

intersects line

Replace endpoint with
intersection

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 11

10/24/19

Line Cut 2

CSU CS 410, Fall 2019, © Ross Beveridge

C = 0000
D = 0000
Cor D = 0000

Finished

Back to Polygons

 Clipping non-convex polygons is tricky
— Solution: convex polygons
* “Doctor, doctor, it hurts when | do this...”
 Clipping convex polygons is simple:
— Clip polygon boundaries.

— Connect disconnected vertices along image
boundaries

N

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Odd-even parity rule

g

A point is inside a polygon if any ray from the
point to infinity crosses an odd number of edges
(assume every line includes lower or left endpoint)

Try it, draw a star

In PowerPoint.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 14

Polygon Filling

Question.: how to fill in an arbitrary polygon?

Which pixels should be filled in?

Start simpler ...

Q000000
0§ 0

G (-
000000

Which pixels should be filled in?

Surprised?

Q000000

p—o—Cc—C—o—1

0406601
0 (-
000000

What happened to the top pixels?
1o the rightmost pixels? Why is this good?

0/24/19

General Rules for Filling Polygons

1) No pixel belongs to more than one polygon
2) As always, efficiency matters and
3) remember that endpoints are integral

4) Odd-even Parity Rule
(Look for it — it is there in simpler form ...)

CSU CS 410, Fall 2019, © Ross Beveridge

Back to the Rectangle

&

o—CO—C—C—C—
*0 00 i
O0-0—0-0—-0—0-

Filling the Top and Bottom Rows would
cause adjacent rectangles to “double fill” pixels

Why Not “Double-Fill” Pixels?

e |nefficient (obviously)

e |[f polygons have different color, then
final color depends on the order in which
the polygons are drawn

e Extra darkening when using alpha
blending

This last point may lead to “flicker”,
irregular boundaries

Polygon Filling - Approach

» Fill in left and lower integer boundaries, but
not right or upper boundaries.

* |[f boundaries fall between pixels,
» round left boundaries to the right,
» round right boundaries to the left.

= Fill in polygons by computing intersections of
boundaries with scan lines.

» Fill between pairs of intersections.
= This is the actual algorithm!

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 21

Polygon Filling Illustrated

Polygon: Intersections:
(0,4) (0,4) (6,4) (6,4)

(0,3) (1.5,3) (4.5,3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

(1.5,1) (4.5,1)

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Details of Polygon Filling: Rounding

Q: Given an intersection at a fractional x
value, which pixels do we fill?

Al: Algorithmically, always round intersection
values up.

A2: Visually, this will have the effect of filling
to the inside of the fractional boundary

only.

In Other Words

Intersections:
(0,4) (0,4) (6,4) (6,4)
0,3) 0215,3> (45./5,3> (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

Integer Boundaries

Q: Given intersections at integer x values, do
we fill them?

A: For intersection pair, will fill from the first

element (inclusive) to the second element
(exclusive).

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge Slide 25

In Other Words

Intersections:
4 (0,4) (0,4) (6,4) (6,4)
3 - (D—ONO {} [(0,3) 2.3) [(5.3) (6,3)

(0,2) (0,2) (3,2) (3,2)
(6,2) (6,2)

10— P00 (e sy
0@?@ ?HH} 5060

Slide 26

Boundary Top & Bottoms

Q: If lines (boundaries) end at a scan-line, do
they intersect that scan-line?

Al: Ignore all horizontal boundaries (!)
A2: Boundaries are (set-theoretically) “open”
at the top, so they intersect every line up

to but not including the top scan-line.

They are closed at the bottom, so they do
intersect the bottom scan-line

In Other Words

Intersections:

(6:2) (6.2)

Finally ... Shared Vertices

* What to do about the (3,0) (3,0) case?

* Different texts say different things!
— Foley & van Dam say fill it
* inclusive of first intersection; may double fill

— Hearn & Baker say don't

» Because intersecting lines don’t vertically span the
vertex

— Today’s answer: Maybe

Final Result

10/24/19

CSU CS 410, Fall 2019, © Ross Beveridge

Intersections:

(0,3) (2,3) (5,3) (6,3)
€6:29(0,2) (3,2))[(3,2)

(6:2) (6.2)
2,1) (5,1)

Slide 30

10/24/19

Psuedo-Code

FOr(Y = Vmini ¥ < Ymax; Yt+) A
ignore horizontal boundaries;
intersect scanline with boundaries;
ignore top vertex;
sort intersections
by increasing x coordinate;
for every pair of intersections {
for(x = ceil(first);
X < ceil(last); x++) {
£fill(x, y)i

CSU CS 410, Fall 2019, © Ross Beveridge

Your turn
—O—0—0—0—0—0r
00—~
O 0-0—0-—0-0-

Which black pixels should be filled in?

Solution

Q00000
Q000

fomemes
000000

Slide 33

Comments

« Symmetric polygons may not be drawn
symmetrically

* |solated pixels from continuous polygons.
How?

» As always, efficiency matters.
— How do you make this fast?
— Where is most of the computation.

Depth: Using a Z-Buffer

* Record depth at every vertex

* For every pixel in polygon (previous lecture)
— Interpolate to get depth at specific pixel.

— Is depth less then currently recorded?
* Yes: Record in Z-Buffer and paint pixel
* No: Move along, nothing to do here
« “Paint” is shorthand for compute the surface
illumination for that position on the polygon.

About depth: the z-value

» Z-buffering based upon pseudo-depth is key
to modern polygon rendering.

» Depth already revealed in SageMath
notebook on the Canonical View Volume.

* Here let us briefly dive into the calculation of
pseudo-depth using essentially that example.

SageMath Notebook

 Emphasize the z coordinate of transform

localhost:8888/notebooks/CS410%20Fall%202018/lectures/cs410lectt &

5410lec19n01

" Jupyter cs410lec19n01 @utosaved)

File Edit View Insert Cell Kernel Widgets Help Trusted
+ = & B 2+ ¥ MRun B C MW Code *
_ umax+umz:n 2 near 0 — umax-+umin 0
wmax=umin umax—umin umax—umin 0
_ vmax+»'m{n 0 2 near __ ymax+vmin 0
vmax—vmin vmax—vmin vmax—vmin 0
2 farnear (far+near)z =
e — 0 0 _ far+near 2 farnear || -
—_— far—near far—near 1
| 0 0 1 0
__ umax+umin
umax—umin
__ vmax+vmin 2 farnear (far+near)z
vmax—vmin far—near far—near
P, = | 2pumear garenean: | and the z term only pz =
cc 2jornear (fartnear)z
Sfar—near - far—near Z
1
In [68]: if (case != 'sym') :

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

Logout

SageMath 8.3 O

First the Symptom

Near =-25 Near= -25 Near= -25
Far =-75 Far =-750 Far = -7500

-1.0 -1:6 10 a@ -1.0-10 0.0 1.0 4.0 -1.0 -1:0 0:6 1.0 4.0

Remember, the house lies between z of 30 and 54 in world coordinates.

Even pushing the far clipping plane 2 orders of magnitude further back
from -75 still results in the house occupying most of the pseudo-depth
range between 0 and 1.

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 38

10/24/19

2 farnear
far—near

Back to the Math

« Camera at origin no world cam. rotation

(umax+umin)z
umax—umin

(vmax+vmin)z
vmax—vmin
(far+near)z

far—near

4

umax+umin
umax—umin

vmax+vmin
ymax—vmin

2 farnear (far+near)z

far—near far—near

<

umax+umin

2 near O
umax—umin

umax—umin

0

2 near __ vmax+vmin 0
vmax—vmin vmax—vmin

far+near 2 farnear
0 o lmmear Zlamed
far—near far—near
0 0 1 0
2 farnear (far+near)z

far—near - far—near

and the z term only pz =
Z

Pseudo-depth

CSU CS 410, Fall 2019, © Ross Beveridge

_—n O O

pz At near and far

2 * far x near (far + near)

 Equation: pz= (Far —near) =z _ (far — near)

Let z equal near

2 * far x near (far + near)

pz = (far —near) *near (far —near)

2 x far — far — near

7 =
P (far —near)
fClT — near Similarly ...
Pz =
(far — near) Let z equal far

pz =1 pz = —1

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge

40

Plot actual Depth to Pseudo-depth

e 41
Far =-75
4 0.5
.........................] 0
70 60 -50 40 30
4-0.5
...
®
..
.....
.....
... 1

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 41

10/24/19

Plot actual Depth to Pseudo-depth

Far =-750

o
® -4 0.5

CSU CS 410, Fall 2019, © Ross Beveridge

4-0.5

42

10/24/19

Plot actual Depth to Pseudo-depth

Far =-7,500

|
0.5 F

i i | i i i i | i i i i | i i i i | i i i i | i i i i | i i i i | i i i i
-7000 -6000 -5000 -4000 -3000 -2000 -1000

o8l

_

CSU CS 410, Fall 2019, © Ross Beveridge

43

10/24/19

SO

Interpolate Z-value

Z-value 0.86

O

Z-value ???

Y
A
\[/

-0
&8

OO~

P—C-

Z-value 0.72

5
5

NSes Se

Z-value 0.74

CSU CS 410, Fall 2019, © Ross Beveridge

There are various
ways to interpolate
in order to arrive at
an estimated z-value
for a interior point
on any given
triangle.

Common is to first
interpolate up the
sides and then to

interpolate across.

44

Z-Buffer Summary

A Z-buffer is an array of doubles
Size of the frame buffer / image
Initialized to -1.0, i.e. far clipping plane
Now consider a specific triangle

For each pixel to be filled

— Interpolate pixels z-value

— Test if larger then what is in the Z-buffer

— If yes then “paint” that pixel for that triangle

What if you Want Depth?

* Mapping may be inverted.

2 * far x near (far + near)

pz = (far —near) x z - (far — near)

2 x far x near

7 =
(far —near) * pz + far + near

n [1]: var('y', 'near’','far','z") .
®1 =y = (3"farvasar)/((fav-eer)®s) - (far + near)/(fer - near) There are worse things
N then checking your
Out[2]: y == -(far + near)/(far) + 2*far*near/((far ar)*z)
(311 [eotvetonim) work in a symbolic
Out[3): [z == 2*far*near/((far - near)*y + far + near)] math package-

10/24/19 CSU CS 410, Fall 2019, © Ross Beveridge 46

