Lecture 18: Rendering with Shading

October 31, 2019

Three Shading Options

http://www.ntsc-uk.com/features/tec/BeautyPixelDeep/GouraudPhong.jpg

Flat Shading

- Illumination is computed at every vertex
- The average illumination is the average of the illumination at the vertices
- Polygon filling then paints this color
- Downside:
 - 3D structure (from angle changes) is lost
 - Boundaries between surfaces become artifacts

Illumination at a vertex?

- Wait a minute
 - Illumination depends on the surface normal
 - What's the surface normal at a vertex?
 - It's ambiguous vertex shared by surfaces!
- Solution #1:
 - User-set vertex normals
 - OpenGL uses this solutions
- Solution #2:
 - Average adjoining surface normals

How users set normals

- How do you pick a normal?
- Case #1: polygonal approximation to a smooth surface

- Set normals to underlying "true" normal

Rule(s) to set normals (II)

- Case #2: Truly polygonal object
 - Double up : create multiple vertices at one position, one for each adjacent surface.
 - Each vertex now has normal of associated surface.

Smooth (Gouraud) Shading

- Compute the illumination at every vertex
- Interpolate colors along edges

- Between vertices

When filling the polygon, interpolate colors between scan-line intersections

Smooth Shading Example

Phong Shading

- Calculate normals at vertices
- Interpolate **normals** along edges
- When polygon filling:
 - Interpolate normals between scan-line intersections
 - Calculate color using interpolated normals

Warning: do not confuse *Phong Shading* with *Phong Reflectance*

Selecting a Shading Model

- Case 1: Object is curved
 - Phong shading (most realistic)
 - Smooth shading (slightly faster)
- Case 2: Large flat surface, divided into multiple polygons

- Same as above

- Case 3: Flat surface, true boundaries
 - Flat shading
 - Replicate vertices (for normals)

Not so subtle distinction

- Smooth shading discards 3-D normals
 - Operates solely with R,G,B values.
 - Direction to lights within surfaces fixed.
- Phong shading adjust 3-D normals.
 - Illumination better within surfaces.
 - What about direction to lights?

Example of Case #2

Impact of polygon size on appearance

Source: www.opengl.com

In this example, is illumination being recomputed internal to surface faces?

More on Normals - Blender

Part of P4 – A Smoother Cow

Your P3 ray tracer essentially creates this illumination of the cow object.

Put essentially the Phong model into your ray tracer.

P4 - Smoothing Approach

- Identify shared vertices
 - Lookup vertex numbers for a given triangle
- Compute true normal for every surface
 - Here assume A then B then C traversal
 - Compute the average normal at a vertex
 - Exclude adjacent faces too far off in orientation
- Use beta and gamma to interpolate normals

$$N_i = (1 - \beta - \gamma) N_A + \beta N_B + \gamma N_C$$

A Glimpse at Shaders

- Original OpenGL and the Fixed Pipeline

 Example: Gouraud Shading
- Modern OpenGL means writing shaders
 - Vertices
 - Fragments

In CS410, know the role shaders play. Do <u>not</u> expect to know how to write shaders.

One More Glimpse

	www.learnopengles.com/tag/gouraud-shading/	0	
	Gouraud shading Learn OpenGL ES		+
Learn OpenGL ES Learn how to develop mobile graphics			
Tag: Gouraud shadir	g	Search	٦
Android Lesson Three: Moving		RECENT POSTS	-
to Per-Fragi	ment Lighting	 Happy New Year 2017 Roundug CHIP-8, Rust, and more New Roundup + Support for 	p –
et e e e e e e e e e e e e e e e e e e		 New Roundup + Support for Android Studio Learning Java by Building Android Games — a New Android Game Coding Books for 	or

https://www.learnopengles.com/tag/gouraud-shading/