Lecture 18:
Rendering with Shading

October 31, 2019

Three Shading Options

What about the space between vertices?

>
~
—
S
N
3
3
g
>
—
(%]
Q
c
~
(@]
(@)
3
=
0]
Q
~+
[
=
(0]
(%]
S~
—+
(1)

09/dasq|exidAineag/d

oydpneun

3dI-Su

Flat Shading

lllumination is computed at every vertex

The average illumination is the average of the
illumination at the vertices

Polygon filling then paints this color
Downside:

— 3D structure (from angle changes) is lost
— Boundaries between surfaces become artifacts

lllumination at a vertex?

« Wait a minute
— lllumination depends on the surface normal
— What' s the surface normal at a vertex?
— It’ s ambiguous — vertex shared by surfaces!

e Solution #1:

— User-set vertex normals
— OpenGL uses this solutions

« Solution #2:
— Average adjoining surface normals

How users set normals

 How do you pick a normal?

« Case #1: polygonal approximation to a
smooth surface

\ |

— Set normals to underlying “true” normal

Rule(s) to set normals (1)

« Case #2: Truly polygonal object

— Double up : create multiple vertices at one
position, one for each adjacent surface.

— Each vertex now has normal of associated
surface.

>

Smooth (Gouraud) Shading

« Compute the illumination at every vertex

* Interpolate colors along edges

— Between vertices

* When filling the polygon, interpolate colors

between scan-line intersections

Smooth Shading Example

((ry+rp)/2,...)

(r2, 92, by)

Phong Shading

 Calculate normals at vertices
* Interpolate normals along edges
* When polygon filling:

— Interpolate normals between scan-line
intersections

— Calculate color using interpolated normals

Warning: do not confuse Phong Shading
with Phong Reflectance

Selecting a Shading Model

« Case 1: Object is curved
— Phong shading (most realistic)
— Smooth shading (slightly faster)

« Case 2: Large flat surface, divided into
multiple polygons
— Same as above

« Case 3: Flat surface, true boundaries
— Flat shading
— Replicate vertices (for normals)

Not so subtle distinction

« Smooth shading discards 3-D normals
— Operates solely with R,G,B values.
— Direction to lights within surfaces fixed.

* Phong shading adjust 3-D normals.

— lllumination better within surfaces.

— What about direction to lights?

10/31/19

: spotlights & tessellation M[=] B3

Example of Case

CSU CS 410, Fall 2019, © Ross Beveridge

2

Impact of polygon
size on appearance

Source:
www.opengl.com

In this example, is
illumination being
recomputed internal to
surface faces?

12

More on Normals - Blender

docs.blender.org/manual/fi/dev/modeling/meshes/editing/norma & © t w

Blender 2.79 Manual

‘A®)blender

» Modeling » Meshes » Editing » Normals <<

Normals

Getting Started
User Interface
Editors
Data System
5 Modeling
Introduction
B Meshes
Introduction
Structure
Primitives
Selecting
B Editing
Introduction
Basics

Vertex Tools

Introduction

In geometry, a normal is a direction or line that is perpendicular to something, typically a triangle or
surface but can also be relative to a line, a tangent line for a point on a curve, or a tangent plane for
a point on a surface.

A visualization of the face normals of a torus.

In the figure above, each blue line represents the normal for a face on the torus. The lines are each
perpendicular to the face on which they lie. The visualization can be activated in the Mesh Display

_ panel.

10/31/19

CSU CS 410, Fall 2019, © Ross Beveridge

Normals — Blender Manual —+

13

Part of P4 — A Smoother Cow

Your P3 ray
tracer essentially
creates this
illumination of
the cow object.

Put essentially
the Phong model
into your ray
tracer.

10/31/19 CSU CS 410, Fall 2019, © Ross Beveridge

14

P4 - Smoothing Approach

* |dentify shared vertices
— Lookup vertex numbers for a given triangle

« Compute true normal for every surface
— Here assume A then B then C traversal

— Compute the average normal at a vertex
« Exclude adjacent faces too far off in orientation

» Use beta and gamma to interpolate normals
Ni;=Q—-p—y)Ny+ BNg +yN¢

A Glimpse at Shaders

 Original OpenGL and the Fixed Pipeline

— Example: Gouraud Shading

* Modern OpenGL means writing shaders

— Vertices
— Fragments

In CS410, know the
role shaders play.
Do not expect to
know how to write
shaders.

10/31/19

! S
; *_ W A
°h Q

en.wikipedia.org/wiki/OpenC R (4] t 2
OpenGL Shading Language - Wikipedia

& Not logged in Talk Contributions Create account Login

“} Article Talk Read Edit View history Search Wikipedia Q
T 25

2’ .
wWikpepiA OpenGL Shading Language

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

Tools

From Wikipedia, the free encyclopedia

Not to be confused with Open Shading Language.

OpenGL Shading
Language (abbreviated:
GLSL), is a high-level
shading language with a
syntax based on the C
programming language. It

was created by the OpenGL [—————

ARB (OpenGL Architecture . . , -
Review Board) to give i e \

developers more direct - |

. ardw: o wsptay [Goaphics
control of the graphics — m('.’"""""(. L el
Video games outsource rendering calculations to &

pipeline without having to
the GPU over OpenGL in real-time. Shaders are written

use ARB assembly

in OpenGL ling Language and compiled. The

CSU CS 410, Fall 2019, © Ross Beveridge

16

One More Glimpse

v © th O

Gouraud shading | Learn OpenGL ES —+

000 (< ([

www.learnopengles.com/tag/gouraud-shading/

Learn OpenGL ES

Learn how to develop mobile graphics using OpenGL ES 2

Tag: Gouraud shading Search...

Android Lesson Three: Moving cecentrosrs
to Per-Fragment Lighting

CHIP-8, Rust, and more
¢ New Roundup + Support for
Android Studio

¢ Learning Java by Building
Android Games — a New
Android Game Codine Rooks for

https://www.learnopengles.com/tag/gouraud-shading/

10/31/19 CSU CS 410, Fall 2019, © Ross Beveridge 17

