Lecture 22: Texture Mapping

November 19, 2019

Now to Texture mapping

Image from http://www.minecraftercamp.com

Adding surface detail

- Surfaces in the world have appearance
 - They are seldom one flat color.
 - They have true texture repeating patterns.
 - They have structured markings.
 - They have tiny changes in surface height.
- Purists view (don't try this!)
 Use ever more even smaller uniform triangles.
- Pragmatists view
 - Paint surfaces with images texture mapping.

Texture Mapping

- Use projective geometry to compute where vertices appear in the image
- Apply shading to determine the color of pixels
 or –
- Map an existing texture onto a surface
 - Textures supercede/augment the specification of surface material
 - Leaves room for distinction diffuse vs. specular

Mapping

 Guess what? The underlying problem is to apply a geometric transformation

(0,0)

(1,1)

t,s coordinates

Mapping (II)

- Textures are color images
 - Logical texture coords run from (0,0) to (1,1)
 - Coordinates fixed regardless of image size
- Polygons are 2D surfaces in a 3D space
- The transformation from texture coordinates to surface coordinates is expressed as – you guessed it – a matrix

Texture Matrices

• Given vertices and the corresponding texture coordinates...

$$\begin{bmatrix} t \\ s \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

How many correspondences are needed?Maps from surface to texture

Worked Example - Before

- Consider point correspondences
 - Pairs of points in texture and 3-D coordinates
 - Three such pairs of points yield six constraints
 - Constraints match free variables six.
- Specifically
 - Point (0,0) matches point (1,2,3)
 - Point (1,1) matches point (2,2,2)
 - Point (0,1) matches point (3,2,2)

Worked Example

Texture Mapping (II)

- The fragment processor computes a reflectance color for every pixel
- When textures are enabled,
 - The fragment processor also computes a texture value for every pixel
 - Using the pixel to do texture mapping
- These values are multiplied together to produce the final value

Issue #1: Sampling

• The mapping from surface points to texture coordinates produces real values

Sampling

- Nearest-neighbor:
 - pick the closest texture pixel
- Bilinear:
 - linearly interpolate in both dimensions
- Bicubic:
 - fit a 3rd order surface to 16 surrounding points
 - Not as expensive as it sounds

Sampling (III)

 A better solution is for the texture map to be roughly the same size as the surface projection.

- A MipMap is an image pyramid built from a texture map
 - Example: if the texture is 64x64, the pyramid also includes 32x32, 16x16, etc.

Issue #2: Getting Textures

WEB!

- millions of textures people use them for backgrounds of web pages a lot! You can download them in bulk packages, etc..
- Build your own
 - Make them "seamless"
 - When tiled, you cannot see the edges of the tiles.

Just for example ...

Texture Makers

- There are tons of them.. Some examples:
 - ftp://zdftp.zdnet.com/pub/private/sWIIB/graphics_ multimedia_tools/graphics_tools/terltx32.zip
 - http://www.backgroundmagic.com/software/BGM.
 zip
 - http://www.metaworkshop.com/ftp/twinst.zip
 - http://216.156.212.112/photoseam.exe

Example in SketchUp - Cube

Import a Texture Image

Place Texture on Face

View the Result

Position/Reset-Position

The Essence of Tiling

View the Result

Support for 'Painting' Textures

Final Result – Textured Cube

Alas - .obj support marginal

- Texture vertices do come through.
- File linkage to texture map does not.

000	• • • • • • • • • • • • • • • • • • •				
🖵 🛀 💾 🛛 🕥 (s 🛈 🙆	چ چ	III 🕐		
<pre># Alias OBJ Model File # Exported from SketchUp, # File units = meters</pre>	(c) 2000-2012	Trimble Naviga	ation Limited		
mtllib test03.mtl		R			
g Mesh1 Model				11	
usemtl m_024 v 1 0 0 vt 4.02933 0 vn 0 0 -1 v 0 0 0 vt 0 0 vt 0 1 0 vt 0 -4.02933 v 1 1 0 vt 4.02933 -4.02933 f 1/1/1 2/2/1 3/3/1 4/4/1					
-: test03.obj Top	(1,0) (Te	ext Fill)			
Fill column set to 78 (was	5 70)			11.	

More Examples

Textures

Surface

Texture Map from Image

Texture in Blender

Credit where credit is due – YouTube video: "Blender 2.8 Beginner Textures and Materials Tutorial"