Lecture 23:
Before Fall Break Loose Ends

November 21, 2019

Five Topics Today

Reflections on Debugging in CS 410
Z-buffers and psydo-depth

Thin Lens Modeling Kept Simple
Six Degree of Freedom Mapping

Overview Programming Assignment 5

CS 410 and Debugging

* About Debuggers
— Need them for segmentation fault line numbers
— Otherwise, a mixed blessing (too much info.)

» Small scale testing
— Render something simple!
— Instrument your code (means print statements)
— Compute it two ways

« Bigger more complex issues
— Spreadsheets can be very useful!

Projection Pipeline and Depth

Render this Rectangle

Z-Buffer Red Plane

What colors and when.

Using a Z-Buffer

* Record depth at every vertex

* For every pixel in polygon (previous lecture)
— Interpolate to get depth at specific pixel.

— Is depth less then currently recorded?
* Yes: Record in Z-Buffer and paint pixel
* No: Move along, nothing to do here
« “Paint” is shorthand for compute the surface
illumination for that position on the polygon.

About depth: the z-value

» Z-buffering based upon pseudo-depth is key
to modern polygon rendering.

» Depth already revealed in SageMath
notebook on the Canonical View Volume.

* Here let us briefly dive into the calculation of
pseudo-depth using essentially that example.

SageMath Notebook

 Emphasize the z coordinate of transform

localhost:8888/notebooks/CS410%20Fall%202018/lectures/cs410lectt &

5410lec19n01

" Jupyter cs410lec19n01 @utosaved)

Logout

File Edit View Insert Cell Kernel Widgets Help Trusted SageMath 8.3 O

B + = @ B 4+ % MRun B C MW Code

H
__ umax+umin 2 near 0 umax-+umin 0
umax=umin umax—umin umax—umin 0
_ vmax+»'m{n 0 2 near __ ymax+vmin 0
vmax—vmin vmax—vmin vmax—vmin 0
2 farnear (far+near)z -
far—near - far—near 0 0 -_— ;:::i:::: ;{}f:}_f::::: Z
__ umax+umin
umax—umin
__ vmax+vmin 2 farnear (far+near)z
vmax—vmin far—near far—near
PCL‘ = | 2jamear (far+near)z and the z term Only P =
Sfar—near far—near Z
Z
In [68]: if (case != 'sym') :
ey I I | 1o !

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge

First the Symptom

Near =-25 Near= -25 Near= -25
Far =-75 Far =-750 Far = -7500

-1.0 -1:6 10 a@ -1.0-10 0.0 1.0 4.0 -1.0 -1:0 0:6 1.0 4.0

Remember, the house lies between z of 30 and 54 in world coordinates.

Even pushing the far clipping plane 2 orders of magnitude further back
from -75 still results in the house occupying most of the pseudo-depth
range between 0 and 1.

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 9

Back to the Math

« Camera at origin no world cam. rotation

(umax+umin)z 2 near

_ 0 — umax-+umin 0
umax—umin umax—umin umax—umin
(vmax+vmin)z 2 near __ ymax+vmin 0
vmax—vmin _ ymax—vmin ymax—vmin
2 farnear (far+near)z 0 0 far+near 2 farnear
far—near far—near far—near far—near
Z 0 0 1 0
__ umax+umin
umax—umin
vmax+vmin 2 farnear (far+near)z
VImax—vmin far—near - far—near
P cc — 2 farnear (far+near)z and the Z term Only pZ —
far—near N far—near <
Z
1 Pseudo-depth

11

V)

1/19 CSU CS 410, Fall 2019, © Ross Beveridge

_—n O O

 Equation: pz

pz At near and far

2 * far x near (far + near)

" (far —near) xz (far — near)
Let z equal near

2 * far x near (far + near)

pz = (far —near) *near (far —near)

2 * far — far — near

7 =
P (far —near)
fClT — near Similarly ...
Pz =
(far — near) Let z equal far

pz =1 pz = —1

CSU CS 410, Fall 2019, © Ross Beveridge

11

Plot actual Depth to Pseudo-depth

e 41
Far =-75
4 0.5
.........................] 0
70 60 -50 40 30
4-0.5
...
®
..
.....
.....
... 1

CSU CS 410, Fall 2019, © Ross Beveridge 12

11/21/19

Plot actual Depth to Pseudo-depth

Far =-750

o
® -4 0.5

CSU CS 410, Fall 2019, © Ross Beveridge

4-0.5

13

11/21/19

Plot actual Depth to Pseudo-depth

Far =-7,500

|
0.5 F

i i | i i i i | i i i i | i i i i | i i i i | i i i i | i i i i | i i i i
-7000 -6000 -5000 -4000 -3000 -2000 -1000

o8l

_

CSU CS 410, Fall 2019, © Ross Beveridge

14

Interpolate Z-value

Z-value 0.86

O

Z-value ???

Y
A
\[/

-0
&8

OO~

P—C-

SO

Z-value 0.72

5
5

NSes Se

Z-value 0.74

CSU CS 410, Fall 2019, © Ross Beveridge

There are various
ways to interpolate
in order to arrive at
an estimated z-value
for a interior point
on any given
triangle.

Common is to first
interpolate up the
sides and then to

interpolate across.

Z-Buffer Summary

A Z-buffer is an array of doubles
Size of the frame buffer / image
Initialized to -1.0, i.e. far clipping plane
Now consider a specific triangle

For each pixel to be filled

— Interpolate pixels z-value

— Test if larger then what is in the Z-buffer

— If yes then “paint” that pixel for that triangle

What if you Want Depth?

* Mapping may be inverted.

2 * far x near (far + near)

pz = (far —near) x z - (far — near)

2 x far x near

7 =
(far —near) * pz + far + near

n [1]: var('y', 'near’','far','z") .
®1 =y = (3"farvasar)/((fav-eer)®s) - (far + near)/(fer - near) There are worse things
N then checking your
Out[2]: y == -(far + near)/(far) + 2*far*near/((far ar)*z)
(311 [eotvetonim) work in a symbolic
Out[3): [z == 2*far*near/((far - near)*y + far + near)] math package-

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 17

Thin Lens Modeling

Optical Axis

Aperture

CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Thin Lens Model

« Parallel rays on one side converge at focal point on the

other side.

« Rays diverging from the focal point become parallel.

11/21/19

CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

19

Thin Lens Model

* Thus many paths join together.

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Thin Lens Constraints

#1 All rays emanating from a single point in
space must converge on a single point in
the image plane (definition of focus)

#2 Any ray entering the lens parallel to the axis
on one side goes through the focus point on
the other side

#3 Any ray entering the lens from the focus
point on one side emerges parallel to the
axis on the other side

Fundamental Equation
of Thin Lenses

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Fundamental Equation (ll)

The ray PQ (parallel to the optical axis) must
be deflected to pass through FR by property
#2

The ray PR must be deflected so that it
becomes parallel to the optical axis by
property #3

After deflection, PQ & PR must intersect at p,
by property #1.

Now, use similar triangles....

Fundamental Eq. (lI1)

Substitute for y and solve: f* = zZ, or

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Out of Focus Images

1 1 1

What happens when Z+f+z+f ?7
. Out-of-focus
: ﬂge planes
Fr
Optical Axis F,
i
Spherical Blurring

Ray Tracing with a Thin Lens

7+ f Thin Lens
P P A 0
L o) Fr s Optical Axis
S‘ F.\ J.\ . J.
R i z
R)

Same picture as before — new question:
Given a point p in the camera (a pixel), where in
the world is P such that all rays through the lens
from P to p focus perfectly?

Point of Focus
* The position of P = (X, Y, Z) ca

converge at (a, b, z)
 One ray goes througita\pieft focal point,

ed through the right focal point to (a, b,

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

11/21/19

Keep It Simple
Arbitrarily set a depth for perfect focus.

Target

D Pixel
S

a
o

Compute the 3D target point by going an amount tau along the ray from the pixel.

Instead of firing one ray from the pixel 3D position to the target, fire k from
slightly different pixel coordinates sampled around the true position.

CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Keep It Simple

» Showing a couple of sample rays.

11/21/19

Target

Pixel

The size of the sample pattern
is exaggerated above.

Example Sample Pattern

CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

29

Review 6 DOF from Lec 22

localhost:8888/notebooks/CS410%20Fall2019/lectures;
: Ju pyter cs410lec22n01 Last Checkpoint: 5 hours ago (unsaved changes) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted SageMath 8.8 O

B + 3 A& B 4+ ¥ MRun B C W Code

B

Texture Coordinates Solve Transform

This is a quick workup of solving for texture coordinates given three pairings. In the next equation the six degree of freedom

transformation mapping from a 3D coordinate on a survace and a 2D coordinate in a texture map is expressed using six free
variables indicated 'a' through 'f'.

Ross Beveridge, November 21, 2019
In (1): var('a', 'b', 'e', 'd', 'e', 'f')
var('x', 'y', 'z")
var('u','v")

TM = Matrix(SR, 2,3, ((a,b,c),(d,e,f)))
UV = Matrix(SR, 2,1, ((u),(v)))
PT = Matrix(SR, 3,1, ((x),(y),(2)))

pretty print(UV, LatexExpr(" = "), TM, PT)

(-G

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge

