
Lecture 23:
Before Fall Break Loose Ends

November 21, 2019

Five Topics Today

• Reflections on Debugging in CS 410

• Z-buffers and psydo-depth

• Thin Lens Modeling Kept Simple

• Six Degree of Freedom Mapping

• Overview Programming Assignment 5

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 2

CS 410 and Debugging
• About Debuggers
– Need them for segmentation fault line numbers
– Otherwise, a mixed blessing (too much info.)

• Small scale testing
– Render something simple!
– Instrument your code (means print statements)
– Compute it two ways

• Bigger more complex issues
– Spreadsheets can be very useful!

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 3

Projection Pipeline and Depth

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 4

Render this Rectangle

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 5

What colors and when.

Z-Buffer Red Plane

Green Plane Blue Plane

Using a Z-Buffer
• Record depth at every vertex
• For every pixel in polygon (previous lecture)
– Interpolate to get depth at specific pixel.
– Is depth less then currently recorded?
• Yes: Record in Z-Buffer and paint pixel
• No: Move along, nothing to do here

• “Paint” is shorthand for compute the surface
illumination for that position on the polygon.

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 6

About depth: the z-value
• Z-buffering based upon pseudo-depth is key

to modern polygon rendering.

• Depth already revealed in SageMath
notebook on the Canonical View Volume.

• Here let us briefly dive into the calculation of
pseudo-depth using essentially that example.

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 7

SageMath Notebook
• Emphasize the z coordinate of transform

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 8

First the Symptom

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 9

Near = -25
Far = -75

Near = -25
Far = -750

Near = -25
Far = -7500

Remember, the house lies between z of 30 and 54 in world coordinates.

Even pushing the far clipping plane 2 orders of magnitude further back
from -75 still results in the house occupying most of the pseudo-depth
range between 0 and 1.

Back to the Math
• Camera at origin no world cam. rotation

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 10

Pseudo-depth

!" At near and far
• Equation:

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 11

!" = 2 ∗ &'(∗)*'(
&'(−)*'(∗ " −

&'(+)*'(
&'(−)*'(

!" = 2 ∗ &'(∗)*'(
&'(−)*'(∗)*'(−

&'(+)*'(
&'(−)*'(

!" = 2 ∗ &'(− &'(−)*'(
&'(−)*'(

!" = &'(−)*'(
&'(−)*'(

!" = 1

Let . equal /012

Similarly …

Let . equal 312

!" = −1

Plot actual Depth to Pseudo-depth

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 12

Far = -75

Plot actual Depth to Pseudo-depth

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 13

Far = -750

Plot actual Depth to Pseudo-depth

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 14

Far = -7,500

Interpolate Z-value

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 15

Z-value 0.86

Z-value 0.72 Z-value 0.74

Z-value ??? There are various
ways to interpolate
in order to arrive at
an estimated z-value
for a interior point
on any given
triangle.

Common is to first
interpolate up the
sides and then to
interpolate across.

Z-Buffer Summary
• A Z-buffer is an array of doubles
• Size of the frame buffer / image
• Initialized to -1.0, i.e. far clipping plane
• Now consider a specific triangle
• For each pixel to be filled
– Interpolate pixels z-value
– Test if larger then what is in the Z-buffer
– If yes then “paint” that pixel for that triangle

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 16

What if you Want Depth?
• Mapping may be inverted.

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 17

! = 2 ∗ %&' ∗ ()&'
%&' − ()&' ∗ +! + %&' + ()&'

+! = 2 ∗ %&' ∗ ()&'
%&' − ()&' ∗ ! −

%&' + ()&'
%&' − ()&'

There are worse things
then checking your
work in a symbolic
math package.

Thin Lens Modeling

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 18

Screen

Lens

Aperture

Optical Axis

Thin Lens Model
• Parallel rays on one side converge at focal point on the

other side.
• Rays diverging from the focal point become parallel.

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 19

Thin Lens

FRFL

f

Optical Axis

Thin Lens Model
• Thus many paths join together.

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 20

Thin Lens

FR

fR

Optical Axis

fR

FL

Thin Lens Constraints
#1 All rays emanating from a single point in

space must converge on a single point in
the image plane (definition of focus)

#2 Any ray entering the lens parallel to the axis
on one side goes through the focus point on
the other side

#3 Any ray entering the lens from the focus
point on one side emerges parallel to the
axis on the other side

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 21

Fundamental Equation
of Thin Lenses

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 22

Note: P is “not too far” from optical axis

Thin Lens

FR Optical Axis
FL

P Z + f

f

p

Q

R

S
s

f

Z O

z

Fundamental Equation (II)
• The ray PQ (parallel to the optical axis) must

be deflected to pass through FR by property
#2

• The ray PR must be deflected so that it
becomes parallel to the optical axis by
property #3

• After deflection, PQ & PR must intersect at p,
by property #1.

• Now, use similar triangles….

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 23

Fundamental Eq. (III)

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 24

FR Optical Axis
FL

P

p

Q

R

S
sOf

Z

Y

y

Y

y
f

z

f
y

Z
Y
=

Substitute for y and solve: f2 = zZ, or

Out of Focus Images

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 25

What happens when ffzfZ
111

¹
+

+
+

FR

Optical Axis FL

Out-of-focus
image planes

Spherical Blurring

Ray Tracing with a Thin Lens

Same picture as before – new question:
Given a point p in the camera (a pixel), where in
the world is P such that all rays through the lens
from P to p focus perfectly?

Thin Lens

FR Optical Axis
FL

P Z + f

f

p

Q

R

S
s

f

Z O

z

11/21/19 26CS 510, Image Computation, ©Ross Beveridge & Bruce Draper

Point of Focus
• The position of P = (X, Y, Z) can be calculated

by finding the intersection of two rays that
converge at (a, b, z)

• One ray goes through the left focal point,
strikes the lens at (a, b, L), and proceeds
parallel to the optic axis to (a, b, z)

• One ray goes from (X, Y, Z) parallel to the
optic axis until is strikes the lens, and is then
reflected through the right focal point to (a, b,
z)

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 27

No, we will s
implify

Keep It Simple
• Arbitrarily set a depth for perfect focus.

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 28

Eye
PixelDepth to Focus

Target

Compute the 3D target point by going an amount tau along the ray from the pixel.
Instead of firing one ray from the pixel 3D position to the target, fire k from
slightly different pixel coordinates sampled around the true position.

Keep It Simple
• Showing a couple of sample rays.

11/21/19 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper 29

Eye
Pixel

Target

Example Sample Pattern

The size of the sample pattern
is exaggerated above.

Review 6 DOF from Lec 22

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 30

