
Lecture 23:
Before Fall Break Loose Ends

November 21, 2019



Five Topics Today

• Reflections on Debugging in CS 410

• Z-buffers and psydo-depth

• Thin Lens Modeling Kept Simple

• Six Degree of Freedom Mapping

• Overview Programming Assignment 5
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CS 410 and Debugging
• About Debuggers
– Need them for segmentation fault line numbers
– Otherwise, a mixed blessing (too much info.)

• Small scale testing 
– Render something simple!
– Instrument your code (means print statements)
– Compute it two ways

• Bigger more complex issues
– Spreadsheets can be very useful!
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Projection Pipeline and Depth
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Render this Rectangle
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What colors and when.

Z-Buffer Red Plane

Green Plane Blue Plane



Using a Z-Buffer
• Record depth at every vertex
• For every pixel in polygon (previous lecture)
– Interpolate to get depth at specific pixel.
– Is depth less then currently recorded?
• Yes: Record in Z-Buffer and paint pixel
• No: Move along, nothing to do here

• “Paint” is shorthand for compute the surface 
illumination for that position on the polygon.
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About depth: the z-value
• Z-buffering based upon pseudo-depth is key 

to modern polygon rendering.

• Depth already revealed in SageMath 
notebook on the Canonical View Volume.

• Here let us briefly dive into the calculation of 
pseudo-depth using essentially that example. 
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SageMath Notebook
• Emphasize the z coordinate of transform
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First the Symptom
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Near = -25
Far    = -75

Near =    -25
Far    = -750

Near =      -25
Far    =  -7500

Remember, the house lies between z of 30 and 54 in world coordinates.

Even pushing the far clipping plane 2 orders of magnitude further back 
from -75 still results in the house occupying most of the pseudo-depth 
range between 0 and 1. 



Back to the Math
• Camera at origin no world cam. rotation
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Pseudo-depth



!" At near and far
• Equation: 
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Plot actual Depth to Pseudo-depth
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Far = -75



Plot actual Depth to Pseudo-depth
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Far = -750



Plot actual Depth to Pseudo-depth

11/21/19 CSU CS 410, Fall 2019, © Ross Beveridge 14

Far = -7,500



Interpolate Z-value
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Z-value 0.86

Z-value 0.72 Z-value 0.74

Z-value ??? There are various 
ways to interpolate 
in order to arrive at 
an estimated z-value 
for a interior point 
on any given 
triangle.

Common is to first 
interpolate up the 
sides and then to 
interpolate across. 



Z-Buffer Summary
• A Z-buffer is an array of doubles
• Size of the frame buffer / image
• Initialized to -1.0, i.e. far clipping plane
• Now consider a specific triangle 
• For each pixel to be filled
– Interpolate pixels z-value
– Test if larger then what is in the Z-buffer
– If yes then “paint” that pixel for that triangle
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What if you Want Depth?
• Mapping may be inverted.
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! = 2 ∗ %&' ∗ ()&'
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There are worse things 
then checking your 
work in a symbolic 
math package.



Thin Lens Modeling
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Optical Axis



Thin Lens Model
• Parallel rays on one side converge at focal point on the 

other side.
• Rays diverging from the focal point become parallel.
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Thin Lens Model
• Thus many paths join together.
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Thin Lens Constraints
#1 All rays emanating from a single point in 

space must converge on a single point in 
the image plane (definition of focus)

#2 Any ray entering the lens parallel to the axis 
on one side goes through the focus point on 
the other side

#3 Any ray entering the lens from the focus 
point on one side emerges parallel to the 
axis on the other side
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Fundamental Equation 
of Thin Lenses
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Note: P is “not too far” from optical axis
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Fundamental Equation (II)
• The ray PQ (parallel to the optical axis) must 

be deflected to pass through FR by property 
#2

• The ray PR must be deflected so that it 
becomes parallel to the optical axis by 
property #3

• After deflection, PQ & PR must intersect at p, 
by property #1.

• Now, use similar triangles….
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Fundamental Eq. (III)
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Substitute for y and solve: f2 = zZ,  or 



Out of Focus Images
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Ray Tracing with a Thin Lens

Same picture as before – new question:
Given a point p in the camera (a pixel), where in 
the world is P such that all rays through the lens 
from P to p focus perfectly?
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Point of Focus
• The position of P = (X, Y, Z) can be calculated 

by finding the intersection of two rays that 
converge at (a, b, z)

• One ray goes through the left focal point, 
strikes the lens at (a, b, L), and proceeds 
parallel to the optic axis to (a, b, z)

• One ray goes from (X, Y, Z) parallel to the 
optic axis until is strikes the lens, and is then 
reflected through the right focal point to (a, b, 
z)
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No, we will s
implify



Keep It Simple
• Arbitrarily set a depth for perfect focus.
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Eye
PixelDepth to Focus

Target

Compute the 3D target point by going an amount tau along the ray from the pixel.
Instead of firing one ray from the pixel 3D position to the target, fire k from 
slightly different pixel coordinates sampled around the true position.



Keep It Simple
• Showing a couple of sample rays.
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Eye
Pixel

Target

Example Sample Pattern

The size of the sample pattern 
is exaggerated above. 



Review 6 DOF from Lec 22
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