
Lecture 23:
Hermite and Bezier Curves

December 3, 2019
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Representing Curved Objects
• So far we’ve seen
– Spheres 
– Polygonal objects (triangles)

• Now, polynomial curves
– Hermite curves
– Bezier curves
– B-Splines
– NURBS

• Bivariate polynomial surface patches
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Beyond linear approximation
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Instead of approximating everything by 
zillions of lines and planes, it is possible to 
approximate shapes using higher-order 
curves. Advantages:

• More compact

• Reduces “artifacts”

Use of sphere in ray tracer is an example of 
an implicit curve.



The Pen Metaphore
• Think of putting a pen to paper
• Pen position described by time t
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Seeing the action of drawing is the key, so this static drawing only partly captures 
the point of this slide. 



Design Criteria

• Local control of shape

• Smoothness and continuity

• Ability to evaluate derivatives

• Stability

• Ease of rendering
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Review Forms - Explicit
• Explicit representation: y = f(x)

• Drawbacks:
–Multiple values of y for a single x impossible.
– Not rotationally invariant.
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y = ax3 + bx2 + cx + d



Review Forms - Implicit
• Implicit representation: f(x, y, z) = 0

• Advantages:
– On curve & relative distance to curve tests.

• Drawbacks:
– Enumerating points on the curve is hard.
– Extra constraints needed – half a circle?
– Difficult to express and test tangents.
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Parametric Representations
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We will represent 3D curves using a 
parametric representation, introducing a
new variable t:

Note that x, y and z are dependent on t alone, making it 
clear that there is only one free variable.

Think of t as time associated with movement along the 
curve. 

Q t( ) = x t( ) y t( ) z t( )



Third Order Curves
• Third-order functions are the standard:

• Why 3?
– Lower-order curves cannot be smoothly joined.
– Higher-order curves introduce “wiggles”.

• Without loss of generality: 0 <= t <= 1.
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x t( ) = axt3 + bxt2 + cxt + dx
y t( ) = ayt3 + byt2 + cyt + dy
z t( ) = azt3 + bzt2 + czt + dz



Cubic Examples
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Notation
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T = t3, t2, t,1!" #$
C =

ax ay az
bx by bz
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dx dy dz
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Q t( ) = T ⋅C

Alternatively: Q t( )T =CT ⋅TT



Tangents to Cubic Curves
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The derivative of Q(t) is its tangent:

d
dt Q(t) = [   x(t),    y(t),    z(t)]d

dt
d

dt
d

dt

d
dt Q(t)x = 3axt2 + 2bxt + cx

d
dt Q(t) =   [3t2, 2t, 1, 0] C

The same 
matrix as on 
previous slide

Again the time metaphor is useful, the tangent 
indicates instantaneous direction and speed.



Hermite Curves
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We want curves that fit together smoothly. 
To accomplish this, we would like to specify a 
curve by providing:
• The endpoints 

• The 1st derivatives 
at the endpoints 

The result is called a Hermite Curve.



Hermite Curves (cont.)
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Since Q(t) = TC, we factor C into
two matrices:

G (a 3x4 geometry matrix)
M (a 4x4 basis matrix)

such that C = G • M.

Note: G will hold our geometric constraints
(endpoints and derivatives), while M will
be constant across all Hermite curves.

This step is a big 
deal. It makes 
thinking about 
curve geometry 
tractable.



Let us concentrate on the x component:
P(t)x = axt3 + bxt2 + cxt + dx

Remember that its derivative is:

P(t)x = 3axt2 + 2bxt + cx
d

dt
Therefore

P(0)x
P(1)x

d/dt P(0)x
d/dt P(1)x

0   0   0   1
1   1   1   1
0   0   1   0
3   2   1   0

ax
bx
cx
dx

=
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Therefore:
P(0)x
P(1)x

d/dt P(0)x
d/dt P(1)x

0   0   0   1
1   1   1   1
0   0   1   0
3   2   1   0

ax
bx
cx
dx

=

-1

And taking the inverse:

P(0)x
P(1)x

d/dt P(0)x
d/dt P(1)x

2  -2   1   1
-3  3  -2  -1
0   0   1   0
1   0   0   0

ax
bx
cx
dx

=
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The Hermite Matrix
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OK, that was the x dimension.  
How about the others?

They are, of course, the same:

ax ay az
bx by bz
cx cy cz
dx dy dz

=

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

P 0( )
P 1( )
dP 0( )
dt

dP 1( )
dtM



Punchline
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Since MH and T are known, you can write
down a cubic polynomial curve by inspection
ending at points P(0) and P(1) with tangents
d/dt P(0) and d/dt P(1).

Q t( ) = x t( ) y t( ) z t( ) = T ⋅C = T ⋅MH ⋅

P 0( )
P 1( )

d
dt P 0( )

d
dt P 1( )
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Expand the Math – Look Inside
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Recall Parametric Equation:

Where

Fully Expanded (note transpose)

Q(t) = T MH G

T



If you Prefer 
• There are two equivalent setups
• The difference is solely transposition
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Examples
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G = 

100 100 0
200 200 0
10   10  0
10   10  0

G = 

100  100   0
200  200   0
0    200   0

200    0     0



More Examples
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G = 

100  100   0
200  200   0
0   1000  0

1000    0    0

G = 

100  100    0
200  200    0
100  2000  0
-500  -200  0



Hermite Blending Functions
• Conceptual Realignment 
– Curves are weighted averages of points/vectors.
– Blending functions specify the weighting.
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From Hermite to Bezier
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What’s wrong with Hermite curves? 

Nothing, unless you are using a point-and-click 

interface

Bezier curves are like Hermite curves, except

that the user specifies four points (p1, p2, p3, p4).

The curve goes through p1 & p4.

Points p2 & p3 specify the tangents at 

the endpoints.



More Precisely....

R1 =     P1 = 3(P2 - P1)
d

dt R4 =     P4 = 3(P4 - P3)
d

dt
Tangents at start and end 
are now defined by 
intermediate points.

Q: Why ‘3’? 
Why not R1=(P2-P1)?

A: Think of 4 evenly 
spaced points in a line
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Hermite ® Bezier
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The Hermite geometry matrix is related
to the Bezier geometry matrix by:

= MHBGB

GH = 

P1
P4
R1
R4

=

1  0  0  0
0  0  0  1
-3  3  0  0
0  0 -3  3

P1
P2
P3
P4



Hermite ® Bezier
For Hermite curves,  Q(t) = T MHGH,
where GH = [P1, P4, R1, R4]T, T = [t3, t2, t, 1]

and MH = 

2  -2   1   1
-3  3  -2 -1
0   0   1   0
1   0   0   0

So, Q(t) =T MHMHBGB
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The Bezier Basis Matrix
Q(t) =T(MHMHB)GB

MB = MHMHB =

-1  3  -3   1
3  -6   3   0
-3  3   0   0
1   0   0   0

Q(t) = TMBGB

See page 364 to connect with description in our optional textbook.
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The Bezier Blending Functions

Q(t) = P1(-t3 + 3t2 -3t + 1)
+ P2(3t3 - 6t2 + 3t)
+ P3(-3t3 + 3t2)
+ P4(t3)
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Add them up.

( -t3 + 3t2 - 3t + 1)
+ ( 3t3 - 6t2 + 3t)
+ (-3t3 + 3t2)
+ ( t3)

0t3+0t2+0t+1
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Stay within the Convex Hull

If you graph the four Bezier blending functions
for t=0 to t=1, you find that they are always
positive and always sum to one. 

Therefore, the Bezier curve stays within the
convex hull defined by P1, P2, P3 & P4.
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Examples 1.
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Examples 2.

12/3/19 CSU CS410 Fall 2019, © Ross Beveridge 33



Example 3D
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Bezier Curves are Common
• You have probably already used them.
• For example, in PowerPoint
– Build a shape
– Then select edit points
– Notice the control ‘wings’

• Enhancements
–Ways to introduce constraints
• Smooth Point
• Straight Point
• Corner Point
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Stepping Back

What should you be learning? Should you memorize
MH and MB?  No!  That�s what reference books are for.

You should know what GH and GB are. You should
know how to derive MH from the parametric form of
the cubic equations.  You should know how to derive
MB from MH.  If you understand these concepts, you
can look up or rederive the matrices as necessary.
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de Casteljau Curves

There is another way to motivate curves.

Lets say that I have four control points

P2

P4

P3

P1

Now for something completely different.
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To find the midpoint of the curve corresponding
to those control points:

Connect the point between P1 and P2 where t = 0.5
with the point between P3 & P2 where t = 0.5; 
Do the same with the P2-P3 & P3-P4 lines

P2

t=0.5 t=0.5

t=0.5

P4

P3

P1

t=0.5



Now, connect these two lines at their t = 0.5 points

P2

t=0.5
t=0.5

t=0.5

The t = 0.5 point on the resulting segment is
the midpoint (t = 0.5 point) of some type of curve 
which is made up of weighted averages of the 
control points (we�ll soon see what kind of curve)

t=0.5

t=0.5

P4

P3
t=0.5

P1
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We can extend this idea to any t value. 

To compute the t = 0.25 point, connect the 0.25 points 
of the original lines...

P2

t=0.25
t=0.25

t=0.25

t=0.25

P4

P3

P1

t=0.25
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Now, connect these lines at their t = 0.25 locations,
and find the point where t = 0.25 of the resulting line

In this way, you can compute the 3rd-order curve
for any value of  t

P2

t=0.25
t=0.25

t=0.25

t=0.25

t=0.25

P4

P3

P1

t=0.25



Algebraic Definition
• The equations of the three original lines are:

 = ( )A1 t  + ( ) − 1 t P1 t P2
 = ( )A2 t  + ( ) − 1 t P2 t P3
 = ( )A3 t  + ( ) − 1 t P3 t P4

 = ( )B1 t  + ( ) − 1 t A1 t A2
 = ( )B2 t  + ( ) − 1 t A2 t A3

 = ( )C1 t  + ( ) − 1 t B1 t B2

• The equations of the next two joining lines are:

• Finally, the line between the two joining lines is:
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Begin Substitutions
• Substitute equations for A1 and A2 into B1

=( )B1 t - +( )-t 1 2 P1 2 t ( )-t 1 P2 t2 P3

+ +( )+ -t2 1 2 t P1 ( )- +2 t2 2 t P2 t2 P3

- + + - +P1 2 t P1 t2 P1 2 t P2 2 t2 P2 t2 P3

=( )B1 t +( )-1 t ( )+( )-1 t P1 t P2 t ( )+( )-1 t P2 t P3

=

=

Factoring the result

• Likewise, substitute A2 and A3 into B2

 = ( )B2 t  −  + ( ) − t 1 2 P2 2 t ( ) − t 1 P3 t2 P4
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Resulting Third Order Curve
Substitute equations for B1 and B2 into C1

( )C1 t = ( )-1 t ( )- +( )-t 1 2 P1 2 t ( )-t 1 P2 t2 P3

+ t ( )- +( )-t 1 2 P2 2 t ( )-t 1 P3 t2 P4

( )- - + +3 t t3 3 t2 1 P1
3 2+ ( )- +3 t 6 t 3 t P2

+ +( )- +3 t3 3 t2 P3 t3 P4

=

And After Factoring

=( )C1 t + - +( )-1 t 3 P1 3 t ( )-t 1 2 P2 3 t2 ( )-t 1 P3 t3 P4
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Bezier = de Casteljau

But those last four functions are exactly the 
Bezier blending functions!

The recursive line intersection algorithm
can therefore be used to gain intuition about

the behavior of Bezier functions

Not something completely different afterall.
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