Lecture 24: Bicubic Surfaces \& Splines
 December 5, 2019

Parametric Bicubic Surfaces

- The goal is to go from curves in space to curved surfaces in space.
- To do this, we will parameterize a surface in terms of two free parameters, s \& t
- We will extend the Bezier curve in detail.
- Other surfaces are similar in concept.

Building a Bezier Surface Patch

1) Imagine a Bezier curve Gb1(t) in space.
2) Imagine three more Bezier curves, Gb2(t) Gb3(t) and Gb4(t)
3) Let all four curves be parameterized by a single t
4) For $t=0$, we have four points: $\mathrm{Gb} 1(0), \mathrm{Gb} 2(0), \mathrm{Gb} 3(0)$ and Gb4(0). Use these as the control points for another Bezier curve.
5) Repeat step \#4 for all values of t

Bicubic Surfaces

Mapping from (s, t) to $(\mathrm{x}, \mathrm{y}, \mathrm{z})$

Basic Math - Version 1

$$
\begin{aligned}
& Q(s, t)=S M b G b(t) \\
& S= {\left[\begin{array}{cccc}
s^{3} & s^{2} & s & 1
\end{array}\right], T=\left[\begin{array}{lll}
t^{3} & t^{2} & t \\
1
\end{array}\right] } \\
& M b= {\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], G b(t)=\left[\begin{array}{c}
G b 1(t) \\
G b 2(t) \\
G b 3(t) \\
G b 4(t)
\end{array}\right] } \\
& G b i(t)=T M b G i
\end{aligned}
$$

... and the Geometry

Specify four 4×3 geometry matrices, one for per curve.
$G 1=\left[\begin{array}{ccc}x_{1,1} & y_{1,1} & z_{1,1} \\ x_{1,2} & y_{1,2} & z_{1,2} \\ x_{1,3} & y_{1,3} & z_{1,3} \\ x_{1,4} & y_{1,4} & z_{1,4}\end{array}\right] G \mathcal{Q}=\left[\begin{array}{lll}x_{2,1} & y_{2,1} & z_{2,1} \\ x_{2,2} & y_{2,2} & z_{2,2} \\ x_{2,3} & y_{2,3} & z_{2,3} \\ x_{2,4} & y_{2,4} & z_{2,4}\end{array}\right] G \mathcal{}=\left[\begin{array}{ccc}x_{3,1} & y_{3,1} & z_{3,1} \\ x_{3,2} & y_{3,2} & z_{3,2} \\ x_{3,3} & y_{3,3} & z_{3,3} \\ x_{3,4} & y_{3,4} & z_{3,4}\end{array}\right] G 4=\left[\begin{array}{ccc}x_{4,1} & y_{4,1} & z_{4,1} \\ x_{4,2} & y_{4,2} & z_{4,2} \\ x_{4,3} & y_{4,3} & z_{4,3} \\ x_{4,4} & y_{4,4} & z_{4,4}\end{array}\right]$

Here is the first Bezier curve of the four.
$G b 1(t)^{T}=\left[\begin{array}{c}\left(-t^{3}+3 t^{2}-3 t+1\right) x_{1,1}+\left(3 t^{3}-6 t^{2}+3 t\right) x_{1,2}+\left(-3 t^{3}+3 t^{2}\right) x_{1,3}+t^{3} x_{1,4} \\ \left(-t^{3}+3 t^{2}-3 t+1\right) y_{1,1}+\left(3 t^{3}-6 t^{2}+3 t\right) y_{1,2}+\left(-3 t^{3}+3 t^{2}\right) y_{1,3}+t^{3} y_{1,4} \\ \left(-t^{3}+3 t^{2}-3 t+1\right) z_{1,1}+\left(3 t^{3}-6 t^{2}+3 t\right) z_{1,2}+\left(-3 t^{3}+3 t^{2}\right) z_{1,3}+t^{3} z_{1,4}\end{array}\right]$

The surface

Recall we are building three functions of two variables.

$$
Q(s, t)^{T}=\left[\begin{array}{l}
x(s, t) \\
y(s, t) \\
z(s, t)
\end{array}\right]
$$

Look just at the first - the x coordinate - function ...

$$
\begin{aligned}
x(s, t) & =\frac{\left(-s^{3}+3 s^{2}-3 s+1\right)}{\left(\left(-t^{3}+3 t^{2}-3 t+1\right) x_{1,1}+\left(3 t^{3}-6 t^{2}+3 t\right) x_{1,2}+\left(-3 t^{3}+3 t^{2}\right) x_{1,3}+t^{3}\right.} \\
& +\frac{\left(3 s^{3}-6 s^{2}+3 s\right)\left(\left(-t^{3}+3 t^{2}-3 t+1\right) x_{2,1}+\left(3 t^{3}-6 t^{2}+3 t\right) x_{2,2}+\left(-3 t^{3}+3 t^{2}\right) x_{2,3}+t^{3} x_{2,4}\right.}{}, \\
& +\frac{\left(-3 s^{3}+3 s^{2}\right)\left(\left(-t^{3}+3 t^{2}-3 t+1\right) x_{3,1}+\left(3 t^{3}-6 t^{2}+3 t\right) x_{3,2}+\left(-3 t^{3}+3 t^{2}\right) x_{3,3}+t^{3} x_{3,4}\right)}{} \\
& \left.\left.+s^{s^{3}\left(\left(-t^{3}+3 t^{2}\right.\right.}-3 t+1\right) x_{4,1}+\left(3 t^{3}-6 t^{2}+3 t\right) x_{4,2}+\left(-3 t^{3}+3 t^{2}\right) x_{4,3}+t^{3} x_{4,4}\right)
\end{aligned}
$$

Alternative Decomposition

Break apart the x, y and z parts of the surface patch Q

$Q_{x}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{llll}x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44}\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{c}u^{3} \\ u^{2} \\ u \\ u \\ 1\end{array}\right|$
$Q_{y}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{llll}y_{11} & y_{12} & y_{13} & y_{14} \\ y_{21} & y_{22} & y_{23} & y_{24} \\ y_{31} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & y_{44}\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{c}u^{3} \\ u^{2} \\ u \\ u \\ 1\end{array}\right|$
$Q_{z}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \\ z_{31} & z_{32} & z_{33} & z_{34} \\ z_{41} & z_{42} & z_{43} & z_{44}\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{c}u^{3} \\ u^{2} \\ u \\ 1\end{array}\right|$

Example Geometry

$G x=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3\end{array}\right]$
$G y=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3\end{array}\right]$
$G z=\left[\begin{array}{lll}5 & 6 & 3\end{array}\right)$
3 5

... here it is in algebra

Note the very simple form of the x and y components.

$$
\begin{aligned}
x(s, t) & =3 t \\
y(s, t) & =3 s \\
z(s, t) & =\left(-3 t^{3}-24 t^{2}-3+21 t\right) s^{3}+\left(33 t^{3}+9 t^{2}+9-36 t\right) s^{2} \\
& +\left(-36 t^{3}+27 t^{2}-6+9 t\right) s+9 t^{3}+5-12 t^{2}+3 t
\end{aligned}
$$

Can you relate the x and y forms back to the geometry?
What is the height (z) of the surface at $Q(0,0)$?

... and here it is in 3D

Another Example

$\left.\left[\begin{array}{l}{\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]} \\ {\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]} \\ {\left[\begin{array}{l}2 \\ 3 \\ 3 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 4 \\ 2 \\ 4\end{array}\right]\left[\begin{array}{l}4 \\ 4 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]}\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]\right] .\left[\begin{array}{l}{\left[\begin{array}{l}1\end{array}\right]}\end{array}\right.$

And another example

$\left[\begin{array}{l}{\left[\begin{array}{c}2.5 \\ 2.5 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{c}2.5 \\ 2.5 \\ 0\end{array}\right]} \\ {\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]} \\ {\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]\left[\begin{array}{l}4 \\ 4 \\ 2.5 \\ 2\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]} \\ {\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}4 \\ 4 \\ 1\end{array}\right]\left[\begin{array}{c}2.5 \\ 2.5 \\ 0\end{array}\right]}\end{array}\right]$

And Now in SageMath

$\rangle\rangle$ 四

CS410 Fall2019/lectures/
cs410lec25n01
JJupyter cs410lec25n01 Last Checkpoint: 2 minutes ago (autosaved)
Logout

In [34]: $\operatorname{var}(' x 11, x 12, x 13, x 14, x 21, x 22, x 23, x 24, x 31, x 32, x 33, x 34, x 41, x 42, x 43, x 44$ ')
$\operatorname{var}(' \mathrm{y} 11, \mathrm{Y} 12, \mathrm{Y} 13, \mathrm{Y} 14, \mathrm{Y} 21, \mathrm{y} 22, \mathrm{Y} 23, \mathrm{y} 24, \mathrm{Y} 31, \mathrm{Y} 32, \mathrm{Y} 33, \mathrm{Y} 34, \mathrm{Y} 41, \mathrm{Y} 42, \mathrm{Y} 43, \mathrm{y} 44$ ')
$\operatorname{var}(' z 11, z 12, z 13, z 14, z 21, z 22, z 23, z 24, z 31, z 32, z 33, z 34, z 41, z 42, z 43, z 44 ')$
GX $=\operatorname{Matrix}(\operatorname{SR}, 4,4,(x 11, x 12, x 13, x 14, x 21, x 22, x 23, x 24, x 31, x 32, x 33, x 34, x 41, x 42, x 43, \times 44))$
GY $=\operatorname{Matrix}(S R, 4,4,(y 11, y 12, y 13, y 14, \mathrm{y} 21, \mathrm{y} 22, \mathrm{y} 23, \mathrm{y} 24, \mathrm{y} 31, \mathrm{y} 32, \mathrm{y} 33, \mathrm{y} 34, \mathrm{y} 41, \mathrm{y} 42, \mathrm{y} 43, \mathrm{y} 44)$) $G Z=\operatorname{Matrix}(\operatorname{SR}, 4,4,(z 11, z 12, z 13, z 14, z 21, z 22, z 23, z 24, z 31, z 32, z 33, z 34, z 41, z 42, z 43, z 44))$ pretty_print(LatexExpr ('Q_\{x\} (u,v) = '), SV.transpose(), MB.transpose(), GX, MB, TV) pretty_print(LatexExpr ('Q_\{y\} $(u, v)=$ '),SV.transpose(), MB.transpose(), GY, MB, TV) pretty_print(LatexExpr('Q_\{z\}(u,v) = '),SV.transpose(), MB.transpose(), GZ, MB, TV) $\left.Q_{x}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{llll|llll}x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44}\end{array}\right| \begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}| | \begin{gathered}u^{3} \\ u^{2} \\ u \\ u \\ 1\end{gathered} \right\rvert\,$ $\left.Q_{y}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{llll||rrrr}y_{11} & y_{12} & y_{13} & y_{14} \\ y_{21} & y_{22} & y_{23} & y_{24} \\ y_{31} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & y_{44}\end{array}\right| \begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}| | \begin{gathered}u^{3} \\ u^{2} \\ u \\ u\end{gathered} \right\rvert\,$ $Q_{z}(u, v)=\left|\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right|\left|\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{llll}z_{11} & z_{12} & z_{13} & z_{14} \\ z_{21} & z_{22} & z_{23} & z_{24} \\ z_{31} & z_{32} & z_{33} & z_{34} \\ z_{41} & z_{42} & z_{43} & z_{44}\end{array}\right|\left|\begin{array}{rrrr|}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|\left|\begin{array}{c}u^{3} \\ u^{2} \\ u \\ 1\end{array}\right|$

The next three equations are correct by the nature of how SageMath is constructing them. Quickly can them to gain a general impression for what is taking place. Then, recognized that while symbolic math packages allow us to see equations in the full

Back to Curves - New Requirements

Note that these 3rd-order segments are neither exactly Hermite nor Bezier curves:

1) The curve from P_{i} to P_{i+3} is only drawn between P_{i+1} and P_{i+2} (otherwise segments would overlap)
2) The curve is not constrained to pass through either P_{i+1} or P_{i+2}.

Therefore, what is their equation?

B-Splines

By convention, the geometry matrix and basis matrix for B-Splines are:

$$
G_{B}=\left[\begin{array}{c}
P_{i} \\
P_{i+1} \\
P_{i+2} \\
P_{i+3}
\end{array}\right] \quad M_{B s}=\frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]
$$

B-Spline Blending Functions

Blend $=\mathrm{TM}_{\mathrm{Bs}}$

$$
\text { Blend }=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]
$$

$$
B_{o}=1 / 6\left(-t^{3}+3 t^{2}-3 t+1\right) P_{i}=-1 / 6(t-1)^{3} P_{i}
$$

$$
B_{1}=1 / 6\left(3 t^{3}-6 t^{2}+4\right) P_{i+1}
$$

$$
B_{2}=1 / 6\left(-3 t^{3}+3 t^{2}+3 t+1\right) P_{i+2}
$$

$$
B_{3}=1 / 6\left(t^{3}\right) P_{i+3}
$$

Plot of Blending Functions

See Cycle in Blending Functions

As the Spline Sequences from one segment to the next, control points are passed from B_{4}, to B_{3}, to B_{2} and finally to B_{1}. Consequently, the weight exerted on the curve rises then falls as indicated by the red curve above.

SageMath Notebook

Example of B-Spline

$$
\begin{aligned}
G_{1} & =\left[\begin{array}{llll}
2 & 5 & 6 & 8 \\
1 & 2 & 5 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \\
G_{2} & =\left[\begin{array}{llll}
5 & 6 & 8 & 5 \\
2 & 5 & 6 & 9 \\
0 & 0 & 0 & 0
\end{array}\right] \\
G_{3} & =\left[\begin{array}{llll}
6 & 8 & 5 & 4 \\
5 & 6 & 9 & 7 \\
0 & 0 & 0 & 0
\end{array}\right] \\
G_{4} & =\left[\begin{array}{llll}
8 & 5 & 4 \\
6 & 9 & 7 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] \\
Q_{j}(t) & =G_{j} \mathrm{~B}(t)
\end{aligned}
$$

Replicating Control Points

More Variations

We have just described uniform, non-rational B-Splines

Uniform means that the control points are evenly spaced (in terms of the parameter t).

It is also possible to have non-uniform B-Splines. Why? because it is easier to interpolate starting and ending points, and it is possible to reduce the continuity at specific join points.

Non-uniform B-Splines

- Every control point must have a corresponding t-value
- This is called a "knot vector"
- If the spacing (in t) between two control points is small, then a sharp curve will result.
- If the spacing (in t) is zero, the curve becomes discontinuous.

The Standard Knot Vector

- The "standard knot vector" begins and ends with a four-fold knot:
- e.g., for 5 control points $\mathrm{T}=(0,0,0,0,1,2,3,4$, 5,5,5,5,)
- This means that the B-Spline will not loose the last point(s), and will behave correctly near the endpoints.

A Brief Comment on NURBS

- Naming: Non-Uniform Rational B-Spline
- Non-Uniform -> knot vector.
- Rational \rightarrow defined with x, y, z, w.
- Points are rational, i.e. $p x=x / w$
- B-Spline -> uses B-Spline geometry
- NURBS Surface
- Compose curves to generate surface
- Recall Bezier Curve to Bezier Surface approach
- The inclusion of w means
- Perspective projection does not distort.

Simple NURBS Illustration

This innage irons Wikisnedia and part of the Wikipedia descripition of NURBES.

