
Lecture 24:
Bicubic Surfaces

& Splines
December 5, 2019
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Parametric Bicubic Surfaces
• The goal is to go from curves in space to 

curved surfaces in space.

• To do this, we will parameterize a surface in 
terms of two free parameters, s & t

• We will extend the Bezier curve in detail. 

• Other surfaces are similar in concept.
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Building a Bezier Surface Patch

12/5/19 CSU CS410 Fall 2019, © Ross Beveridge 3

1) Imagine a Bezier curve Gb1(t) in space.

2) Imagine three more Bezier curves, Gb2(t)
Gb3(t) and Gb4(t)

3) Let all four curves be parameterized by a single t

4) For t=0, we have four points: Gb1(0), Gb2(0), Gb3(0)
and Gb4(0). Use these as the control points for
another Bezier curve.

5) Repeat step #4 for all values of t



Bicubic Surfaces
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Mapping from (s,t) to (x,y,z)



Basic Math – Version 1
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… and the Geometry
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Specify four 4x3 geometry matrices, one for per curve.

Here is the first Bezier curve of the four.



The surface …
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Recall we are building three functions of two variables.

Look just at the first – the x coordinate - function …



Alternative Decomposition

12/5/19 CSU CS410 Fall 2019, © Ross Beveridge 8

Break apart the x, y and z parts of the surface patch Q



Example Geometry
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… here it is in algebra
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Note the very simple form of the x and y components.

Can you relate the x and y forms back to the geometry?

What is the height (z) of the surface at Q(0,0)?
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… and here it is in 3D



Another Example
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And another example



And Now in SageMath
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Note that these 3rd-order segments are neither 
exactly Hermite nor Bezier curves:

1) The curve from Pi to Pi+3 is only drawn between
Pi+1 and Pi+2 (otherwise segments would overlap)

2) The curve is not constrained to pass through either
Pi+1 or Pi+2.

Therefore, what is their equation?

Back to Curves - New Requirements
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B-Splines
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By convention, the geometry matrix and
basis matrix for B-Splines are:
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B-Spline Blending Functions
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Blend = T MBs
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Plot of Blending Functions
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See Cycle in Blending Functions
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As the Spline Sequences from one segment to the 
next, control points are passed from B4, to B3, to 
B2 and finally to B1.  Consequently, the weight 
exerted on the curve rises then falls as indicated 
by the red curve above. 

B4

B3 B2

B1



SageMath Notebook
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Example of B-Spline
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Replicating Control Points
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More Variations
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We have just described uniform, non-rational B-Splines

Uniform means that the control points are evenly spaced
(in terms of the parameter t).

It is also possible to have non-uniform B-Splines. Why?
because it is easier to interpolate starting and ending
points, and it is possible to reduce the continuity at
specific join points.



Non-uniform B-Splines
• Every control point must have a 

corresponding t-value
– This is called a “knot vector”

• If the spacing (in t) between two control 
points is small, then a sharp curve will 
result.

• If the spacing (in t) is zero, the curve 
becomes discontinuous.
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The Standard Knot Vector
• The “standard knot vector” begins and ends 

with a four-fold knot:
– e.g., for 5 control points T = (0, 0, 0, 0, 1, 2, 3, 4, 

5, 5, 5, 5,)

• This means that the B-Spline will not loose 
the last point(s), and will behave correctly 
near the endpoints.
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A Brief Comment on NURBS
• Naming: Non-Uniform Rational B-Spline
– Non-Uniform -> knot vector.
– Rational –> defined with x, y, z, w.

• Points are rational, i.e. px = x / w
– B-Spline -> uses B-Spline geometry

• NURBS Surface
– Compose curves to generate surface

• Recall Bezier Curve to Bezier Surface approach
• The inclusion of w means 
– Perspective projection does not distort.
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Simple NURBS Illustration
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This image from Wikimedia and part of the Wikipedia description of NURBS.


