
CS 410 Fall 2019 Second 1/3 of Semester Review 1

CS 410, Fall 2019, Second Third of Semester Review

November 5, 2019

The following is not an exhaustive list of what has been covered, and to be very explicit, the Second Midterm may cover
material discussed in class not been mentioned below. That said, hopefully the following will be a helpful as you review the
broad topics and techniques we have covered since Midterm 1 in CS410.

1. Two of the three kinds of reflectance require explicit light sources, and one does not. Be clear about which is which.
2. One and only one of the 3 types are reflections require knowledge about the relationship between the viewer (camera)

and the position on the surface whose illumination is being computed. Be clear about which of the three types of
illumination requires this extra information, i.e. direction to the camera.

3. You know how to compute the direction to a light source at [3, 4, 1, 0] specified in homogeneous coordinates. As you
think about this light source specification recall programming assignment 3.

4. For a light source located at a position in the world (x, y, z) and a point on a surface (sx, sy, sz), you can write down
the precise values in a vector pointing back to the light source.

5. One might say of diffuse versus specular reflection that one is deep while the other is superficial. While this is
admittedly a somewhat odd statement, it captures something of importance that you in turn can now explain.

6. Of the 3 forms of reflection, specular reflection involves the greatest amount of required information. In particular, it
requires a vector representing the direction to the light source (also required for diffuse), a surface normal (again same
as diffuse), a reflection Ray R that was not required for diffuse illumination, and finally a vector representing the
direction to the camera/viewer. Of these, the reflection Ray R is arguably the most involved to compute. Since it is a
fundamental element in computing specular reflection, you of course understand the construction of how it is
expressed relative to the other known elements.

7. It seems the parameter alpha crops up in many places in computer graphics. It plays a critical role in Phong specular
reflectance and is commonly assigned values such as 5 or 50, or even higher. You can explain precisely what alpha is
doing both in words and with an equation.

8. There is an essential and very interesting aspect of specular reflection and its associated constant(s) k. Namely, there
are 3D modeling packages/languages where k is expressed as a scalar rather than a three-tuple (three scalar constants).
Given your understanding of specular reflection, you can now explain why only a single scalar value is a good choice
in many circumstances. Likewise, you can explain the flexibility introduced by using a three-tuple.

9. Sometimes in 3-D modeling for computer graphics being "two-faced" is not such a bad thing. Be ready to explain
what such an off-handed remark actually means.

10. Two concepts are easily confused. The first is the field of view of a pinhole camera. The second is the resolution, or
pixel density, of an image. In a well-built rendering system, the controls used to modify the field of view are clearly
separate from the controls used to change the pixel density. Having now built your own rendering system, you're
familiar with this distinction, and therefore should have an easy time explaining it to others and fielding questions
relating these two concepts.

11. Given the direction of a ray defined by a vector arriving at a point, as well as the 3D coordinates of the point, and
finally the surface normal, you are able to choose between a series of alternative possible reflection rays provided the
choices are qualitatively distinct. In other words, incorrect choices may be ruled out based on some clear conflict such
as pointing in the overall wrong direction.

12. Both diffuse and specular reflection have dot products as key to their computation. In both cases, a negative value for
the dot product has important geometric implications and also requires explicit handling in code. As you implement a
ray tracer, and when you go to explain the process to others, you are comfortable now with the meaning and proper
handling of those situations where the dot product yields a negative number.

13. For recursive ray tracing, two distinct concepts have been introduced in general terms as well as precisely in
SageMath code. These two concepts are attenuation and reflectivity. Having experimented with both in the
SageMath notebook on recursive ray tracing discussed in lecture, you are comfortable with how each operates and
how they are distinct from each other.

CS 410 Fall 2019 Second 1/3 of Semester Review 2

14. With all other camera and scene parameters left constant, you are now comfortable explaining what happens when
recursion depth is increased. In particular, you can correctly argue the following proposition: with increased recursion
the intensity of any given pixel must remain constant or increase.

15. You should be able to describe the high level and key distinctions between the projective pipeline versus ray tracing
approaches to rendering 3D scenes.

16. Given its relative simplicity when compared to perspective projection, orthographic projection can be easily
overlooked. However, you understand some of the important contexts in which it is most useful and you can define
orthographic projection by writing down an example of an orthographic projection matrix.

17. A predator endowed with orthographic vision (orthographic projection) is not fooled by an elephant hiding behind a
rabbit. Not so for standard issue predators whose eyesight follow the laws of perspective projection. You should have
no trouble sketching an illustration of this admittedly somewhat off-the-wall approach to contrasting orthographic and
perspective projection.

18. In the lecture introducing perspective projection, the first perspective projection matrix was derived for the case where
the image plane is moved an amount d in front of the focal point. The second formulation placed the image plane at
the origin with the focal point behind the image plane by an amount d. The corresponding perspective projection
matrices look similar; swapping 1s and 0s between two positions yields one from the other. However, they behave
differently and understanding these differences is important.

19. Some people in computer graphics choose to think of perspective projection as a linear operator, while others do not.
It matters less who is right then that you can clearly state the crux of each side’s argument. (It would be good to ask
about this item in our review session since the issue has probably not received the attention it deserves.)

20. The terms “frustum" and “canonical view volume” are used nearly interchangeably when describing the perspective
projection pipeline. Both terms now make sense to you, and you should be able to explain them in your own words
and with your own simple illustrations.

21. A complete working model of the perspective projection pipeline has been presented using SageMath. Since you
have experimented with different camera specifications using this notebook, you can associate how an object – in our
case a simple house – appears in the canonical view volume based upon alternative camera specifications.

22. In the perspective projection pipeline SageMath notebook you have a complete symbolic presentation of the
transformations used to transform 3D world coordinates into 2D vertices on an image plane. Therefore, you can
easily recognize and reason about the significant components in this transformation.

23. In the traditional rendering pipeline, mapping polygon vertices into the canonical view volume is only the first step in
a two-step process. That second step involves painting pixels based upon those polygons in such a way that hidden
surfaces are not rendered. At the highest level, this means you can distinguish between the manner in which a ray
tracing algorithm is pixel driven where a rendering pipeline his polygon driven.

24. Cohen and Sutherland introduced a very elegant algorithm for quickly determining if a line segment needed to be
clipped to the image plane and also where it needed to be clipped, i.e. against which side of the four-sided image
plane. While arguably not in common use today, this is an elegant algorithm that you should nonetheless understand.
It stands in for a myriad of more modern techniques where cleverness leads to efficiency.

25. It may be very mechanical, but being able to determine the precise endpoint of a 2D line segment resulting from
clipping against the rectangular image plane it is something you can do and do quickly. Keep in mind this is a special
case of the problem that arises when intersecting two parametric line segments. Consequently, it has a simpler
solution.

26. The odd-even parity rule often that defines what it means for a pixel to be interior to a polygon and also represents a
key aspect of how polygon filling algorithms our encoded. As part of your basic literacy and computer graphics you
understand this rule and can use it to answer questions about whether an example is or is not correctly filled.

27. You can be grateful that you are almost certainly never going to be called upon to write a scan conversion algorithm
that fills pixels given the vertices of a polygon. That said, understanding scan conversion is important if for no other
reason that it represents one of those places in computer graphics where an understanding of actual pixel geometry
along with the interaction of multiple polygons becomes important. It is also important insomuch as processes like
rendering with a Z buffer don't make sense unless you first understand what rendering looks like at the pixel level.

28. Given that we covered polygon filling the semester, you should be able to answer questions about which pixels are in
which pixels are not filled following the basic algorithm introduced in lecture 18.

CS 410 Fall 2019 Second 1/3 of Semester Review 3

29. In modern realizations of the rendering pipeline actual code is written to shade individual vertices and even pixels.
Unfortunately, the complexity in degrees of freedom open to the programmer preclude our studying these shaders in
any detail. However, prior to the introduction of shaders, shading could be counted upon two arise from a hand full of
well understood algorithms. Three that you should understand well our: flat shading, Gouraud Shading and Phong
Shading.

30. Interpolating intermediate values while moving across a polygon comes up again and again as a fundamental
operation in shading polygonal fragments using traditional perspective projection pipeline rendering engines. It also so
happens that in the context of ray tracing surface normal interpolation is important. Fortunately, you understand how
each vertex of a triangle may have a distinct surface normal and also how to use our existing ray- triangle intersection
code to rapidly compute a smoothed normal at any point on the triangle.

31. You now understand the value of a class of approximation algorithms which employ random sampling to create better
and better solutions to a problem. A good example is to calculate PI, and you could sit down easily and write code
(python, etc.) to implement an approximate solution given nothing more than a uniform random number generator
and the recollection that the area of a circle is PI*r**2.

32. Monte Carlo Ray Tracing has a huge computational disadvantage relative to what you are doing in CS410. However,
it has a huge advantage in terms of capturing indirect lighting effects. You are now comfortable explaining why
Monte Carlo Ray Tracing as presented in lecture 17 captures indirect lighting, both mathematically and by example in
a rendered image.

33. In Monte Carlo Ray Tracing as presented, be aware that not all randomly selected unit length vectors used to simulate
diffuse illumination are equally likely. Also, be able to explain why they are not, i.e. how are they generated.

34. In Monte Carlo Ray Tracing as presented, when 100 samples are used per pixel, there will be 100 distinct random
directions chosen for approximating diffuse illumination on the first object hit. If mirror reflection is included for this
object, how many distinct directions are used to initiate reflection? Presuming these hit another non-mirrored surface,
be ready to answer whether the same red, green and blue values are always returned.

