
10/10/2019 cs410lec12n01

localhost:8888/notebooks/CS410 Fall2019/lectures/cs410lec12n01.ipynb 1/4

Illumination with Reflection for Spheres

Ross Beveridge, October 10, 2019
In this Notebook is a full implementation of ambient, diffuse and specular reflection - in color - for a scene consisting of multiple light sources and multiple spheres. Also
in this Notebook is an example of recursive ray tracing. In other words, one object may be seen to reflect on the surface of another. The first bit of code that follows is
book keeping to help setup libraries and display defaulst. Read on below to learn more about the substance of this ray tracer.

In [45]:

Earlier versions of this worksheet attempted to avoid full on Object Oriented Programming. Afterall, the purpose of these Notebooks are simple illustrations rather than
complete programs. However, there comes a point, and illuminating a multiple object scene with multiple light sources and with recursive ray tracing, where it is better to
adimt this Notebook is a system. Therefore, much of the start of this Notebook is setting up object classes to make the rest of the illustration simple.

The first object class models a camera. Note that the three camera basis vectors are now calcculated as part of object construction. Also, a minor point, SageMath
vectors of kind RR have been adpopted to represent directions, locations, and even colors in much of this Notebook. These vectors are constructed based upon any
value sequence of three numbers passed into the constructor. Another minor design choice. The left, right, bottom and top bounds of the image plane are passed into
the constructor as a tuple but then unpacked to make access to the min-max bounds on each dimension easier.

In [46]:

The object class used for spheres is named 'globe' in order to avoid name collisions. In particular, there is already a sphere function defined in the context of 3D
graphics. Note the relationship between spheres and materials is captured by an integer index into a materials list that is stored with each globe.

The material object stores the illumination constants which in turn determine the visual appearance of a material. The first three are standard: ambient, diffuse and
specular. The last is the reflection constant. It generally is used to attenuate the strength of reflections during successive recursive calls.

The lights include a location and also an illumination strength - intensity

In [47]:

The ray class follows our standard definition of a ray as point of origination, L, and a direction D.

The ray object also provides a means of keeping track of the closest sphere yet found. There are a varieth of ways to think about this process, but perhaps the simplest
is cacheing. Much of the work done in ray tracing involves finding interesections between rays and obejcts; after going to all that effort, it is wise to keep the best result.
In other words the closest object - provided the ray intersects any objects at all.

import numpy as np
from sage.repl.image import Image
from sage.plot.plot3d.shapes import *
from sage.plot.plot3d.base import SHOW_DEFAULTS
SHOW_DEFAULTS['aspect_ratio'] = (1,1,1)
SHOW_DEFAULTS['frame_aspect_ratio'] = (1,1,1)
SHOW_DEFAULTS['perspective_depth'] = false

def make_unit(x) :
 return x / np.linalg.norm(x)

class Camera :
 def __init__(self, eye, look, up, bnds, near, far, width, height) :
 self.eye = np.array(eye)
 self.look = np.array(look)
 self.up = np.array(up)
 self.umin = bnds[0]
 self.umax = bnds[1]
 self.vmin = bnds[2]
 self.vmax = bnds[3]
 self.near = near
 self.far = far
 self.width = width
 self.height = height
 self.setupUVW()

 def setupUVW(self) :
 Wv = make_unit(self.eye - self.look)
 Uv = make_unit(np.cross(self.up, Wv))
 self.V = np.cross(Wv,Uv)
 self.U = Uv
 self.W = Wv

class Globe :
 def __init__(self, c, r, m) :
 self.C = np.array(c) # Sphere center as a vector
 self.r = float(r) # Sphere radius
 self.m = m # Index for sphere's material

class Material :
 def __init__(self, a, d, s, r, alpha) :
 self.ka = np.array(a)
 self.kd = np.array(d)
 self.ks = np.array(s)
 self.kr = np.array(r)
 self.alpha = alpha

class Light :
 def __init__(self, p, e) :
 self.P = np.array(p)
 self.E = np.array(e)

10/10/2019 cs410lec12n01

localhost:8888/notebooks/CS410 Fall2019/lectures/cs410lec12n01.ipynb 2/4

In [48]:

Customizable Scene Description
The actual instantiations of cameras, lights, materials and objects follow. There are two cameras intensionally identical up to, but not including, pixel resolution. This
allows the Notebook to provide an interactive 3D model of the entire scene as well as to render at a typically much higher resolution the ray traced scene.

The scene is described by a combination of one ambient light source, a list of point light sources, a list of materials and a list of objects. All of these, materials, lights and
objects, are implemented using the classes defined above.

In [49]:

Visualizing in 3D the relative position of different objects, light sources, and the camera can be difficult. Here the power of the Sage Notebook 3D drawing package is
utilized to setup a 3D model of the scene. A small point, the text 'go_' infront of a variable name means 'graphics object' and 'gol' means graphics object list. This
naming convention helps keep distinct the objects being drawn by the show command from objects directly associated with ray tracing below.

In [50]:

The next 3D visualization should be helpful as you try to work out in your head the relationships between the camera field of view, the object, and the light sources. Note
the pixel resolution, typically 8x8, used in this 3D interactive fgure comes from camera object number one.

class Ray :
 def __init__(self, L, D) :
 self.L = np.array(L)
 self.D = make_unit(np.array(D))
 self.best_t = float('inf')
 self.best_sph = None
 self.best_pt = None

 def sphere_test(self, sph) :
 Tv = np.array(sph.C - self.L)
 v = np.dot(Tv, self.D)
 csq = np.dot(Tv, Tv)
 disc = sph.r^2 - (csq - v^2)
 if (disc > 0) :
 tval = v - sqrt(disc)
 if (tval < self.best_t) and (tval > 0.00001) :
 self.best_t = tval
 self.best_sph = sph
 self.best_pt = self.L + tval * self.D
 return True
 else :
 return False

There are two versions of the camera, identical but for resolution. First is for
3D scene visualization and the second is for ray tracing a rendered image.
cam1 = Camera((50,50,100),(50,50,10),(0,1,0),(-2.5,2.5,-2.5,2.5),-5,-100,8,8)
cam1 = Camera((50,50,75),(50,50,10),(0,1,0),(-3.6,3.6,-3.6,3.6),-5,-100,8,8)

cam2 = copy(cam1);
cam2.width = 512
cam2.height = 512

mats = [Material((0.2, 0.2, 0.2),(1.0, 1.0, 1.0),(0.5, 0.5, 0.5),(0.9, 0.9, 0.9),64),
 Material((0.7, 0.6, 0.2),(0.7, 0.6, 0.2),(0.5, 0.5, 0.5),(0.9, 0.9, 0.9),16),
 Material((0.2, 0.7, 0.2),(0.2, 0.7, 0.2),(0.5, 0.5, 0.5),(0.9, 0.9, 0.9),32)]

lgts = [Light((10,10,100),(0.5, 0.5, 0.5)),Light((90,90,100),(0.5, 0.5, 0.5))]
ambi = vector(RR, 3, (0.2, 0.2, 0.2))

objs = [Globe((50,50,20), 18, 0), Globe((32,68,42), 9, 1), Globe((68,32,42), 9, 2)]

depth = 6

def pixel_ray(i, j, c) :
 px = RR(i/(c.width - 1)*(c.umax - c.umin) + c.umin)
 py = RR(j/(c.height - 1)*(c.vmin - c.vmax) + c.vmax)
 Lv = c.eye + (c.near * c.W) + (px * c.U) + (py * c.V)
 Dv = Lv - c.eye
 return Ray(Lv, Dv)

def gol_axes(gbox) :
 im3 = identity_matrix(3)
 bmin = [gbox[0] * x for x in im3.rows()]
 bmax = [gbox[1] * x for x in im3.rows()]
 rgba = ['red', 'green', 'blue']
 return [line3d([bmin[i], bmax[i]], color=rgba[i], thickness=5) for i in range(3)]

def go_ray(r) :
 rayfar = r.L + r.D * abs((cam1.far - cam1.near))
 return [point(r.L, size=10), arrow3d(r.L, rayfar, width=4,color='orange')]

def go_globe(i) :
 mcolor = mats[objs[i].m].kd
 return Sphere(objs[i].r,color=Color(list(mats[objs[i].m].kd))).translate(objs[i].C)

10/10/2019 cs410lec12n01

localhost:8888/notebooks/CS410 Fall2019/lectures/cs410lec12n01.ipynb 3/4

In [51]:

The code below is the heart of the multi-object (spheres) ray tracing algorithm. The first function take an argument which is a list where results of the test for intersection
with a single ray and object (sphere) is store.

The ray trace function takes four arguments:

The first is a ray.
The second is a vector to which red, green and blue illumination is added. Initial call should set to vector(RR, 3, (0.0, 0.0, 0,0)).
The third is a reflection attenuation. For a ray leaving a pixel the attenutation is vector(RR, 3, (1.0, 1.0, 1.0)). Otherwise it will be the reflection constants for the
material.
The fourth is a reflection level, i.e. a counter used to terminate recursion after say one 'bounce', two 'bounces, etc.

In this Notebook the scene properties are treated as global properties. A more flexitble design might create a scene object that encapsulates all the light sources, all the
objects and all the object material. Then a pointer to this object could serve as a fifth argument.

The logic inside ray trace may be summarizes as:

Find the closest surface to intersect ray, if any. If no intersection leave the color accumulator unchanged and return.
Calcualte the ambient, diffuse and specular illumination components for the point of intersection. Add these to the color accumulator.
Test if the recursion level is greater than zero, and if so call ray trace with level decremented and the reflection attenutation multiplied by the reflection constants for
the current material.

As a convenience the function always returns the color accumulator. Note this is handy of the initial value is built in the first call. However, if the color accumulator is
named and used by name in the first call this return feature is not necessary.

rays = [pixel_ray(i,j,cam1) for i in range(cam1.width) for j in range(cam1.height)]
gol_rays = [e for sub in map(go_ray, rays) for e in sub]
go_eye = point(cam1.eye, color='magenta', size=16)
gol_globes = [go_globe(i) for i in range(len(objs))]
gol_lights = [point(lgts[i].P, color=Color(list(lgts[i].E)),size=16) for i in range(len(lgts))]
figcon = go_eye + sum(gol_rays) + sum(gol_globes) + sum(gol_lights) + sum(gol_axes((-25,100)))
figcon.show()

10/10/2019 cs410lec12n01

localhost:8888/notebooks/CS410 Fall2019/lectures/cs410lec12n01.ipynb 4/4

In [52]:

In [53]:

In [54]:

In [55]:

Out[54]:

def ray_find(ray) :
 for s in objs :
 ray.sphere_test(s)
 return ray.best_sph

def ray_trace(ray, accum, refatt, level) :
 if (ray_find(ray) != None) :
 N = make_unit(ray.best_pt - ray.best_sph.C)
 mat = mats[ray.best_sph.m]
 color = ambi * mat.ka
 for lt in lgts :
 toL = make_unit(lt.P - ray.best_pt)
 NdotL = np.dot(N,toL)
 if (NdotL > 0.0) :
 color += mat.kd * lt.E * NdotL
 toC = make_unit(ray.L - ray.best_pt)
 spR = make_unit((2 * NdotL * N) - toL)
 CdR = np.dot(toC, spR)
 if (CdR > 0.0) :
 color += (mat.ks * lt.E) * CdR**mat.alpha
 for i in range(3) : accum[i] += refatt[i] * color[i]
 if (level > 0) :
 Uinv = -1 * ray.D
 refR = make_unit((2 * np.dot(N, Uinv) * N) - Uinv)
 ray_trace(Ray(ray.best_pt, refR), accum, mat.kr * refatt, (level - 1))
 return accum

def render() :
 img = Image('RGB', (cam2.width, cam2.height), 'black')
 pix = img.pixels()
 for i in range(cam2.width) :
 for j in range(cam2.height) :
 ray = pixel_ray(i, j, cam2)
 rgb = np.array([0.0, 0.0, 0.0])
 ray_trace(ray, rgb, np.array([1.0, 1.0, 1.0]), depth)
 pix[i,j] = tuple(map(lambda(x) : ZZ(max(0,min(255,round(255.0 * x)))), rgb))
 return img
res = render()

res

res.save('test1016.png')

