Lecture 25: Texture Mapping

December 3, 2020
Now to Texture mapping

Ubiquitous, and sometimes obvious

Image from http://www.minecraftercamp.com
Adding surface detail

• Surfaces in the world have appearance
 – They are seldom one flat color.
 – They have true texture – repeating patterns.
 – They have structured markings.
 – They have tiny changes in surface height.

• Purists view (don’t try this!)
 – Use ever more even smaller uniform triangles.

• Pragmatists view
 – Paint surfaces with images – texture mapping.
Texture Mapping

- Use projective geometry to compute where vertices appear in the image
- Apply shading to determine the color of pixels
 -- or --
- Map an existing texture onto a surface
 - Textures supercede/augment the specification of surface material
 - Leaves room for distinction diffuse vs. specular
Mapping

• Guess what? The underlying problem is to apply a geometric transformation

(0,0)

(1,1)

t,s coordinates

(x,y,z)
Mapping (II)

• Textures are color images
 – Logical texture coords run from (0,0) to (1,1)
 – Coordinates fixed regardless of image size

• Polygons are 2D surfaces in a 3D space

• The transformation from texture coordinates to surface coordinates is expressed as – you guessed it – a matrix
Texture Matrices

• Given vertices and the corresponding texture coordinates...

\[
\begin{bmatrix}
 t \\
 s \\
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
\]

- How many correspondences are needed?
- Maps from surface to texture
Worked Example - Before

• Consider point correspondences
 – Pairs of points in texture and 3-D coordinates
 – Three such pairs of points yield six constraints
 – Constraints match free variables – six.

• Specifically
 – Point (0,0) matches point (1,2,3)
 – Point (1,1) matches point (2,2,2)
 – Point (0,1) matches point (3,2,2)
Worked Example

Match #1: \[
\begin{vmatrix} 0 \\ 0 \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}
\]

Match #2: \[
\begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix} \begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix}
\]

Linear Alg. Setup:
\[
\begin{array}{c}
\begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 3 \end{vmatrix} \begin{vmatrix} a \\ b \\ c \end{vmatrix}
\\
\begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 3 \end{vmatrix} \begin{vmatrix} d \\ e \\ f \end{vmatrix}
\end{array}
\]

Solved in Maple:
\[a = 0 \quad b = \frac{3}{2} \quad c = -1\]
\[d = \frac{1}{2} \quad e = \frac{1}{2} \quad f = -\frac{1}{2}\]

3 equations for first texture coords:
\[0 = a + b + c\]
\[1 = 2a + 2b + 2c\]
\[0 = 3a + 2b + 3c\]
Texture Coordinates Solve Transform

This is a quick workup of solving for texture coordinates given three pairings. In the next equation the six degree of freedom transformation mapping from a 3D coordinate on a surface and a 2D coordinate in a texture map is expressed using six free variables indicated 'a' through 'f'.

Ross Beveridge, December 3, 2020

```python
In [1]:
var('a', 'b', 'c', 'd', 'e', 'f')
var('x', 'y', 'z')
var('u', 'v')
TM = Matrix(SR, 2,3, ((a,b,c),(d,e,f)))
UV = Matrix(SR, 2,1, ((u),(v)))
PT = Matrix(SR, 3,1, ((x),(y),(z)))
pretty_print(UV, LatexExpr("= "), TM, PT)
```

\[
\begin{pmatrix}
 u \\
 v
\end{pmatrix} =
\begin{pmatrix}
 a & b & c \\
 d & e & f
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]
Texture Mapping (II)

• The fragment processor computes a reflectance color for every pixel

• When textures are enabled,
 – The fragment processor also computes a texture value for every pixel
 – Using the pixel to do texture mapping

• These values are multiplied together to produce the final value
Issue #1: Sampling

• The mapping from surface points to texture coordinates produces real values
Sampling

• Nearest-neighbor:
 – pick the closest texture pixel

• Bilinear:
 – linearly interpolate in both dimensions

• Bicubic:
 – fit a 3rd order surface to 16 surrounding points
 – Not as expensive as it sounds
Sampling (III)

• A better solution is for the texture map to be roughly the same size as the surface projection.

• A MipMap is an image pyramid built from a texture map
 – Example: if the texture is 64x64, the pyramid also includes 32x32, 16x16, etc.
Image Pyramid

Visual representation of an image pyramid with 5 levels

© Ross Beveridge 2020 CS CSU
Issue #2: Getting Textures

- WEB!
 - millions of textures – people use them for backgrounds of web pages a lot! You can download them in bulk packages, etc..

- Build your own
 - Make them “seamless”
 - When tiled, you cannot see the edges of the tiles.
Just for example ...
Texture Makers

• There are tons of them. Some examples:
 – http://www.backgroundmagic.com/software/BGM.zip
 – http://216.156.212.112/photoseam.exe
Example in SketchUp - Cube
Import a Texture Image
Place Texture on Face
View the Result
The Essence of Tiling
View the Result
Support for ‘Painting’ Textures
Final Result – Textured Cube
Alas - .obj support marginal

- Texture vertices do come through.
- File name also when using Blender.

```plaintext
# Alias OBJ Model File
# Exported from SketchUp, (c) 2000-2012 Trimble Navigation Limited
# File units = meters
mtllib test03.mtl

g Mesh1 Model
usemtl m_024
v 1 0 0
vt 4.02933 0
vn 0 0 -1
v 0 0 0
vt 0 0
v 0 1 0
vt 0 -4.02933
v 1 1 0
vt 4.02933 -4.02933
```

Fill column set to 78 (was 70)
More Examples

Surface

Textures
Texture Map from Image
A Touch of CS 510

- Consider the following 8 DOF transformation

\[
\begin{align*}
\begin{bmatrix}
u' \\
v' \\
w
\end{bmatrix} &=
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}

u &= u'/w, \quad v = v'/w
\end{align*}
\]

- The most practical way to specify an image transform is by providing 4 point correspondences
Computing Transformations

• Same basic idea we used for 3 points but bigger

\[
\begin{bmatrix}
 u_1 \\
v_1 \\
u_2 \\
v_2 \\
u_3 \\
v_3 \\
u_4 \\
v_4 \\
\end{bmatrix} =
\begin{bmatrix}
x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1u_1 & -y_1u_1 \\
0 & 0 & 0 & x_1 & y_1 & 1 & -x_1v_1 & -y_1v_1 \\
x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2u_2 & -y_2u_2 \\
0 & 0 & 0 & x_2 & y_2 & 1 & -x_2v_2 & -y_2v_2 \\
x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3u_3 & -y_3u_3 \\
0 & 0 & 0 & x_3 & y_3 & 1 & -x_3v_3 & -y_3v_3 \\
x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4u_4 & -y_4u_4 \\
0 & 0 & 0 & x_4 & y_4 & 1 & -x_4v_4 & -y_4v_4 \\
\end{bmatrix} \begin{bmatrix}
a \\
b \\
c \\
d \\
e \\
f \\
g \\
h \\
\end{bmatrix}
\]
Computing...

- So if we want the following mapping:

 \((0,0)\rightarrow(0,0), (0,144)\rightarrow(0,144), (152,0)\rightarrow(152,50), (152,144)\rightarrow(152,94)\)

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 144 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 144 & 1 & 0 & -20736 \\
152 & 0 & 1 & 0 & 0 & 0 & -23104 & 0 \\
0 & 0 & 0 & 152 & 0 & 1 & -7600 & 0 \\
152 & 144 & 1 & 0 & 0 & 0 & -23104 & -21888 \\
0 & 0 & 0 & 152 & 144 & 1 & -14288 & -13536 \\
\end{bmatrix}
\]
...More Computing...

$$M^{-1} = \begin{bmatrix}
-0.014 & -0.023 & 0.007 & 0.023 & 0.014 & 0.022 & -0.007 & -0.022 \\
-0.007 & 0 & 0.007 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.002 & -0.014 & 0.002 & 0.007 & 0.002 & 0.014 & -0.002 & -0.007 \\
-0.007 & -0.007 & 0.007 & 0.007 & 0.007 & 0 & -0.007 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.000 & -0.000 & 0.000 & 0.000 & 0.000 & 0.000 & -0.000 & 0.000 \\
-0.000 & 0 & 0.000 & 0 & 0.000 & 0 & -0.000 & 0
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
0 \\
144 \\
152 \\
50 \\
152 \\
94
\end{bmatrix} = \begin{bmatrix}
a \\
b \\
c \\
d \\
e \\
f \\
g \\
h
\end{bmatrix} = \begin{bmatrix}
3.274 \\
0 \\
0 \\
1.077 \\
1 \\
0 \\
0.01497 \\
0
\end{bmatrix}$$

Remember the earlier WLOG? $c = u_1, \ldots$

What does This say about x? How does This alter it?
...yields

\[
\begin{bmatrix}
3.274 & 0 & 0 \\
1.077 & 1 & 0 \\
.01497 & 0 & 1 \\
\end{bmatrix}
\]
Texture in Blender

Credit where credit is due – YouTube video: “Blender 2.8 Beginner Textures and Materials Tutorial”