Midterm 1
Date: October 14, 2019 (in class)
Time: 4:00 ~ 5:15 PM (75 minutes)
Total: 20 points
8 points: 16 True/False questions: 0.5 points each
12 points: 4 groups of comprehensive questions with 4-6 sub questions per group

20% of the total score will be directly related to the quizzes.

Closed book, NO computer, No cheat sheets

A. Topics covered
1. Data Collection, Sampling, and Preprocessing
 - Types of analytics
 - Types of data sources
 - Sampling
 - Types of data elements
 - Outliers

2. MapReduce
 - Summarization Patterns (numerical summarization, inverted index)
 - Filtering Patterns (Bloom filter, Top 10, Distinct)
 - Data Organization Patterns (Partitioning, Total Order Sorting)
 - Join Patterns (Replicated join, composite join)

3. How MapReduce Works
 - Managing Job (submission, execution, and monitoring)
 - Fault tolerance
 - Shuffle and Sort
 - Combiner and Partitioner
 - Input/output Format (InputSplits, record reader)

4. Link Analyses
 - Inverted index
 - Regular PageRank algorithm
 - PageRank algorithm with Taxation
 - Calculation PageRank algorithm with Dead ends
 - Using MapReduce to calculate PageRank values (Matrix/vector multiplication, handling sparse matrix)
 - Understanding link farm and link spam
 - Spam mass and TrustRank
5. Clustering

- kMeans clustering algorithm
- Canopy algorithm
- Implementing kMeans with MapReduce

B. Sample “Comprehensive Problems”

Sample Question A.

Suppose that 10 items are registered to the initial Bloomfilter B using the same set of hash functions. Assume that the current bloomfilter has the state depicted below.

\[h_1(x) = x \mod 15 \]
\[h_2(x) = (x+3) \mod 15 \]
\[h_3(x) = (x+2) \mod 15 \]

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(A) The integer 4 is not a member of the set. (True/False) (Answer. True)

(B) The integer 9 may be a member of the set. (True/False) (Answer. True)

(C) The integer 1 must be a member of the set. (True/False) (Answer. False)

(D) Assume you create a Bloomfilter (with n bits) using MapReduce and you have only 1 file to insert. If your file contains 10 blocks and 10 mappers generate a local Bloomfilter, what will be the input for your reducer? (Answer: c)

- a. 1 block of data
- b. 1 local Bloomfilter
- c. 10 local Bloomfilters
- d. 10 blocks of data
Sample Question B.

Consider that you are calculating PageRank values for web pages. There are 10 Billion web pages and you have created a 10 Billion x 10 Billion transition matrix M. As a part of iterative computations, you use the MapReduce computing framework without Taxation. The k-th iteration of the MapReduce job will create a vector v^k with 10 Billion items. The j-th item in v^k is calculated using the following formula:

$$
v_j^{(k+1)} = \sum_m m_{ij} v_j^{(k)}
$$

Question 1. What are the values m_{ij} stored in the transition matrix M? (Answer: b)

a. The total number of times that web page i has been visited
b. The probability that page i is to be visited from the j-th page
c. The page i’s page rank value after j-th iteration
d. Random number generated by server

Question 2. What are the values v_j for the k-th iteration? (Answer: b)

a. The average PageRank value of the page j after the k-th step
b. The probability that the surfer was at the node j at the $(k-1)$-th step
c. The highest PageRank value of the page j after the k-th step
d. The lowest PageRank value of the page j after the k-th step

Question 3. Assume that each of the Mappers calculate $m_{ij} v_j$. The reducers aggregate values to generate each of the entries of the vector v^{k+1}. What should be the key for each output from the Mapper? (Answer: a)

a. i
b. j
c. m_{ij}
d. v_j