FAQs

• Term project: Proposal
 • 5:00PM October 31, 2019

• Additional readings

Today's topics

• In-Memory cluster computing
 • Apache Spark

Large Scale Data Analytics

In-Memory Cluster Computing: Apache Spark

This material is built based on

• Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphie McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” The 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12)

• Spark Overview, https://spark.apache.org/docs/2.3.0/
• Spark programming guide
 • Job Scheduling
 • https://spark.apache.org/docs/2.3.0-preview/job-scheduling.html
Distributed processing with the Spark framework

- Spark

Cluster Computing
- Spark standalone
- YARN
- Mesos

Storage
- HDFS/File system/
- HBase/Cassandra, etc.

Inefficiencies for emerging applications:
(1) Data reuse
• Data reuse is common in many iterative machine learning and graph algorithms
 - PageRank, K-means clustering, and logistic regression

Inefficiencies for emerging applications:
(2) Interactive data analytics
• User runs multiple ad-hoc queries on the same subset of the data

Existing/Previous approaches
• Hadoop
 - Writing output to an external stable storage system
 - e.g. HDFS
 - Substantial overhead due to data replication, disk I/O, and serialization

• Pregel
 - Iterative graph computations

• HaLoop
 - Iterative MapReduce interface

• Pregel/HaLoop support specific computation patterns
 - e.g. looping a series of MapReduce steps

Large Scale Data Analytics
In-Memory Cluster Computing: Apache Spark
RDD (Resilient Distributed Dataset)

• Read-only, memory resident partitioned collection of records
 - A fault-tolerant collection of elements that can be operated on in parallel

• RDDs are the core unit of data in Spark
 - Most Spark programming involves performing operations on RDDs
Word Count Example

We use a few transformations to build a dataset of (String, Int) pairs called counts and then save it to a file.

```java
JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaPairRDD<String, Integer> counts =
  textFile.flatMap(s -> Arrays.asList(s.split(" "))
    .iterator()).mapToPair(word -> new Tuple2<>(word, 1)).reduceByKey((a, b) -> a + b);

counts.saveAsTextFile("hdfs://...");
```

Overview of RDD

- **Lineage**
 - How it was derived from other dataset to compute its partitions from data in stable storage.
 - RDDs do not need to be materialized at all times.

- **Persistence**
 - Users can indicate which RDDs they will reuse and the storage strategy.

- **Partitioning**
 - Users can specify the partitioning method across machines based on a key in each record.

Spark Programming Interface to RDD:

Transformation

- "transformations"
 - Operations that create RDDs.
 - Return pointers to new RDDs.
 - e.g. map, filter, and join.
 - RDDs can only be created through deterministic operations on either
 - Data in stable storage
 - Other RDDs.

Action

- "actions"
 - Operations that return a value to the application or export data to a storage system.
 - e.g. count: returns the number of elements in the dataset.
 - e.g. collect: returns the elements themselves.
 - e.g. save: outputs the dataset to a storage system.

Example: Console Log Mining

Suppose that a web service is experiencing errors and an operator wants to search terabytes of logs in the Hadoop file system (HDFS) to find the cause.

The user loads the error messages from the logs into the RAM across a set of nodes and query them interactively.

```java
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()  // No work has been performed yet, can use the RDD in future.
```
Example: Console Log Mining [2/3]
- Users can perform further transformations and actions on the RDD

```scala
// To count number of error messages
errors.count()

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning HDFS as an array (assuming time is field number 3 in a tab-separated format)
errors.filter(_.contains("HDFS"))
  .map(_.split('/t')(3))
  .collect()
```

Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will NOT begin to execute until it sees an action
 - Spark internally records metadata to indicate that this operation has been requested

- Loading data from files into an RDD is lazily evaluated

- Reduces the number of passes it has to take over our data by grouping operations together

Benefits of RDDs as a distributed memory abstraction [1/7]

- RDD vs. Distributed Shared Memory (DSM)?
 - How does RDD work differently compared to DSM?
 - Write/Consistency/Fault-Recovery mechanism/Straggler mitigation

- RDDs can only be created ("written") through **coarse-grained transformations**
 - Coarse-grained transformations are applied over an entire dataset
 - Reads on RDDs can still be fine-grained
 - A large read-only lookup table
 - Applications perform bulk writes

- More efficient fault tolerance
 - Lineage-based bulk recovery

Benefits of RDDs as a distributed memory abstraction [2/7]

- RDD vs. DSM- Read operation
 - Either coarse-grained or fine-grained

- DSM
 - The read operation in Distributed shared memory is fine-grained

Benefits of RDDs as a distributed memory abstraction [3/7]

- RDD vs. DSM- Write operation
 - The write operation in RDD is coarse-grained

- DSM
 - The write operation in Distributed shared memory is fine-grained
Benefits of RDDs as a distributed memory abstraction [4/7]
RDD vs. DSM - Consistency

- RDD
 - RDD is immutable in nature
 - Any changes on RDD is permanent
 - The level of consistency is high

- DSM
 - If the programmer follows the rules, the memory will be consistent and the results of memory operations will be predictable

Benefits of RDDs as a distributed memory abstraction [5/7]
RDD vs. DSM - Fault-Recovery Mechanism

- RDD
 - The lost data can be easily recovered in Spark RDD using lineage graph at any moment
 - For each transformation, new RDD is formed
 - RDDs are immutable

- DSM
 - Fault tolerance is achieved by a checkpointing technique which allows applications to roll back to a recent checkpoint rather than restarting

Benefits of RDDs as a distributed memory abstraction [6/7]
RDD vs. DSM - Straggler Mitigation

- Stragglers
 - Nodes taking more time to complete than their peers
 - Due to load imbalance, I/O blocks, garbage collections, etc.

- RDD
 - Creates backup copies of slow tasks
 - without accessing the same memory

- DSM
 - It is quite difficult to achieve straggler mitigation

Benefits of RDDs as a distributed memory abstraction [7/7]
RDD vs. DSM - Memory Cluster Computing: Apache Spark

- Runtime can schedule tasks based on data locality
 - To improve performance

- RDDs degrade gracefully when there is insufficient memory
 - Partitions that do not fit in the RAM are stored on disk

Applications not suitable for RDDs

- RDDs are best suited for batch applications that apply the same operations to all elements of a dataset
 - Steps are managed by lineage graph efficiently
 - Recovery is managed effectively

- RDDs would not be suitable for applications
 - Making asynchronous fine-grained updates to shared state
 - e.g. a storage system for a web application or an incremental web crawler

Large Scale Data Analytics
In-Memory Cluster Computing: Apache Spark
RDD in Spark
RDDs in Spark: The Runtime

User's driver program launches multiple workers, which read data blocks from a distributed file system and can persist computed RDD partitions in memory.

Representing RDDs

- A set of partitions
 - Atomic pieces of the dataset
- A set of dependencies on parent RDDs
- A function for computing the dataset based on its parents
- Metadata about its partitioning scheme
- Data placement

Dependency between RDDs

- Narrow dependency
 - Each partition of the parent RDD is used by at most one partition of the child RDD
- Wide dependency
 - Multiple child partitions may depend on a single partition of parent RDD
Dependency between RDDs

• Narrow dependency
 • Pipelined execution on one cluster node
 • e.g. a map followed by a filter
 • Failure recovery is more straightforward

• Wide dependency
 • Requires data from all parent partitions to be available and to be shuffled across the nodes
 • Failure recovery could involve a large number of RDDs
 • Complete re-execution may be required