Today's topics

- In-Memory cluster computing
 - Apache Spark

Large Scale Data Analytics
In-Memory Cluster Computing: Apache Spark
RDD Dependency in Spark

Dependency between RDDs

- Narrow dependency
- Wide dependency

Dependency between RDDs

- Narrow dependency
 - Each partition of the parent RDD is used by at most one partition of the child RDD
Dependency between RDDs [3/4]

- **Wide dependency**
 - Multiple child partitions may depend on a single partition of parent RDD

Dependency between RDDs [4/4]

- **Narrow dependency**
 - Pipelined execution on one cluster node
 - e.g. a map followed by a filter
 - Failure recovery is more straightforward

- **Wide dependency**
 - Requires data from all parent partitions to be available and to be shuffled across the nodes
 - Failure recovery could involve a large number of RDDs
 - Complete re-execution may be required

Interface used to represent RDDs in Spark

- `partitions()`
 - Returns a list of partition objects
- `preferredLocations(p)`
 - List nodes where partition p can be accessed faster due to data locality
- `dependencies()`
 - Return a list of dependencies
- `iterator(p, parentIters)`
 - Compute the elements of partition p given iterators for its parent partitions
- `partitioner()`
 - Return metadata specifying whether the RDD is hash/range partitioned

Spark cluster and resources

- Each application gets its own executor processes
 - Must be up and running for the duration of the entire application
 - Run tasks in multiple threads
- Isolate applications from each other
 - Scheduling side (each driver schedules its own tasks)
 - Executor side (tasks from different applications run in different VMs)
- Data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system
Spark cluster

- Spark is agnostic to the underlying cluster manager
 - As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN)

Driver program must listen for and accept incoming connections from its executors throughout its lifetime

- Driver program must be network addressable from the worker nodes
- Driver program should run close to the worker nodes
 - On the same local area network

Cluster Manager Types

- **Standalone**
 - Simple cluster manager included with Spark

- **Mesos**
 - Fine-grained sharing option
 - Frequently shared objects for Interactive applications
 - Mesos master determines the machines that handle the tasks

- **Hadoop YARN**
 - Resource manager in Hadoop 2

Dynamic Resource Allocation

- Dynamically adjust the resources that the applications occupy
 - Based on the workload
 - Your application may give resources back to the cluster if they are no longer used

- Only available on coarse-grained cluster managers
 - Standalone mode, YARN mode, Mesos coarse grained mode

Jobs in Spark application

- "Job"
 - A Spark action (e.g. save, collect) and any tasks that need to run to evaluate that action

 - Within a given Spark application, multiple parallel tasks can run simultaneously
 - If they were submitted from separate threads
Job scheduling

- User runs an action (e.g., count or save) on an RDD
- Scheduler examines that RDD's lineage graph to build a DAG of stages to execute
- Each stage contains as many pipelined transformations as possible
 - With narrow dependencies
- The boundaries of the stages are the shuffle operations
 - For wide dependencies
 - For any already computed partitions that can short circuit the computation of a parent RDD

Example of Spark job stages

![Example of Spark job stages](image)

Default FIFO scheduler

- By default, Spark's scheduler runs jobs in FIFO fashion
- First job gets the first priority on all available resources
 - Then the second job gets the priority, etc.
 - As long as the resource is available, jobs in the queue will start right away

Fair Scheduler

- Assigns tasks between jobs in a "round robin" fashion
 - All jobs get a roughly equal share of cluster resources
- Short jobs that were submitted when a long job is running can start receiving resources right away
 - Good response times, without waiting for the long job to finish
 - Best for multi-user settings

Fair Scheduler Pools

- Supports grouping jobs into pools
 - With different options (e.g., weights)
 - "High-priority" pool for more important jobs
- This approach is modeled after the Hadoop Fair Scheduler
- Default behavior of pools
 - Each pool gets an equal share of the cluster
 - Inside each pool, jobs run in FIFO order
 - If the Spark cluster creates one pool per user
 - Each user will get an equal share of the cluster
 - Each user's queries will run in order
Understanding closures

• To execute jobs, Spark breaks up the processing of RDD operations into tasks to be executed by an executor.

• Prior to execution, Spark computes the task’s closure.
 - The closure is those variables and methods that must be visible for the executor to perform its computations on the RDD.
 - This closure is serialized and sent to each executor.

• `counter` (in line 4) is referenced within the `foreach` function, it’s no longer the `counter` (in line 1) on the driver node.

• `counter` (in line 1) will still be zero.

• In local mode, in some circumstances the `foreach` function will actually execute within the same JVM as the driver.
 - `counter` may be actually updated.

Solutions?

• Closures (e.g. loops or locally defined methods) should not be used to mutate some global state.
 - Spark does not define or guarantee the behavior of mutations to objects referenced from outside the closures.

• Accumulator provides a mechanism for safely updating a variable when execution is split up across worker nodes in a cluster.

Accumulators

• Spark natively supports accumulators of numeric types, and programmers can add support for new types.

• If accumulators are created with a name, they will be displayed in Spark's UI.
Accumulators

- Accumulator updates performed inside actions only
 - Spark guarantees that each task's update to the accumulator will only be applied once
 - Restarted tasks will not update the value

```java
Accumulator accum = sc.parallelize(1).reduce((a, b) -> a + b);
double update = accum.add(3.0);
```

Large Scale Data Analytics

In-Memory Cluster Computing: Apache Spark

Key-Value pairs

Why Key/Value Pairs?

- Pair RDDs
 - Spark provides special operations on RDDs containing key/value pairs
 - Pair RDDs allow you to act on each key in parallel or regroup data across the network

- reduceByKey()
 - Aggregates data separately for each key

- join()
 - Merge two RDDs by grouping elements with the same key

Creating Pair RDDs (using the first word as the key)

- Pair RDDs are allowed to use all the transformations available to standard RDDs

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduceByKey()</td>
<td>Combine values with the same key</td>
<td>(1, 2), (3, 4)</td>
<td>[(1, 2), (3, 4)]</td>
</tr>
<tr>
<td>groupByKey()</td>
<td>Group values with the same key</td>
<td>(1, 2), (3, 4)</td>
<td>[(1, [2, 3]), (4, [5, 6])]</td>
</tr>
<tr>
<td>combineByKey()</td>
<td>Combine values with a different result type</td>
<td>(1, 2), (3, 4)</td>
<td>[(1, x), (2, y)]</td>
</tr>
</tbody>
</table>
Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapValues(func)</td>
<td>Apply a function to each value of a pair RDD without changing the key</td>
<td>rdd.mapValues(x => x + 1)</td>
<td>{(1, 3), (3, 5), (3, 7)}</td>
</tr>
<tr>
<td>flatMapValues(func)</td>
<td>Apply a function that returns an iterator</td>
<td>rdd.flatMapValues(x => (x, x + 1))</td>
<td>{(1, 2), (3, 4), (3, 6), (3, 5)}</td>
</tr>
<tr>
<td>keys()</td>
<td>Return an RDD of just the keys</td>
<td>rdd.keys()</td>
<td>{1, 3, 3}</td>
</tr>
<tr>
<td>values()</td>
<td>Return an RDD of just the values</td>
<td>rdd.values()</td>
<td>{2, 4, 6}</td>
</tr>
<tr>
<td>sortByKey()</td>
<td>Return an RDD sorted by the key</td>
<td>rdd.sortByKey()</td>
<td>{(1, 2), (3, 4), (3, 5)}</td>
</tr>
</tbody>
</table>

Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)} other={(3, 9)})

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>subtractByKey()</td>
<td>Remove elements with a key present in the other RDD</td>
<td>rdd.subtractByKey(other)</td>
<td>{(1, 2)}</td>
</tr>
<tr>
<td>join()</td>
<td>Inner join</td>
<td>rdd.join(other)</td>
<td>{(3, (4, 9)), (3, (6, 9))}</td>
</tr>
<tr>
<td>rightOuterJoin()</td>
<td>Perform a join where the key must be present in the other RDD</td>
<td>rdd.rightOuterJoin(other)</td>
<td>{(3, (Some(4), 9)), (3, (Some(6), 9))}</td>
</tr>
<tr>
<td>leftOuterJoin()</td>
<td>Perform a join where the key must be present in the first RDD</td>
<td>rdd.leftOuterJoin(other)</td>
<td>{(1, (2, None)), (3, (4, Some(9))), (3, (6, Some(9)))}</td>
</tr>
<tr>
<td>coGroup()</td>
<td>Group keys from both RDDs sharing the same key</td>
<td>rdd.coGroup(other)</td>
<td>{(1, (2, []), ([2]), (3, ([4, 6]), ([3, 9]))}</td>
</tr>
</tbody>
</table>

Pair RDDs are **still RDDs**

- Supports the **same functions as RDDs**

```java
Function< Tuple2< String, String >, Boolean > lengthWordFilter =
    new Function< Tuple2< String, String >, Boolean>() {
    public Boolean call( Tuple2< String, String > keyValue) {
        return (keyValue._2().length() < 20);
    }
};
JavaPairRDD< String, String > result =
    pairs.filter(lengthWordFilter);
```

Filter on Pair RDDs

Aggregations with Pair RDDs

- **Aggregate statistics across all elements with the same key**

  ```scala
  reduceByKey()    
  ```
 - Similar to reduce()
 - Takes a function and use it to combine values
 - Runs several parallel reduce operations
 - One for each key in the dataset
 - Each operations combines values that have the same keys
 - `reduceByKey()` is not implemented as an action that returns a value to the user program.
 - There can be a large number of keys
 - It returns a new RDD consisting of each key and the reduced value for that key
 - Therefore this is a transformation
Example

- Key-value pairs are represented using the Tuple2 class

```java
JavaPairRDD<String, Integer> pairs =
    lines.mapToPair(s -> new Tuple2<>(s, 1));
JavaPairRDD<String, Integer> counts =
    pairs.reduceByKey((a, b) -> a + b);
```

Word count example

```java
JavaRDD<String> lines =
    sc.textFile("s3://..." + "S3data/" + "data.txt");
JavaPairRDD<String, Integer> words =
    lines.flatMap(s -> {
        return s.split(" ");
    }).mapToPair(s -> new Tuple2<>(s, 1));
JavaPairRDD<String, Integer> wordCounts =
    words.reduceByKey((a, b) -> a + b);
wordCounts.foreach(r -> {
    System.out.println(r._1 + " ": " + r._2);
});
```

combineByKey()

- The most general of the per-key aggregation functions
- Most of the other per-key combiners are implemented using it
- createCombiner()
 - If combineByKey() finds a new key
 - This happens the first time a key is found in each partition, rather than only the first time the key is found in the RDD
- mergeValue()
 - If it is not a new value in that partition
- mergeCombiners()
 - Merging the results from each partition

```java
public static class AvgCount implements Serializable {
    public float avg;
    public AvgCount() {
    }
    public AvgCount(float avg) {
        this.avg = avg;
    }
    public AvgCount(AvgCount a, AvgCount b) {
        this.avg = a.avg + b.avg;
    }
    public float getAvg() {
        return this.avg;
    }
    public float call(String s) {
        this.avg += Float.parseFloat(s);
        return this.avg;
    }
    public Tuple2<String, Integer> call(String s) {
        return new Tuple2<>(s, 1);
    }
}
```

Per-key average using combineByKey()

```java
public static class AvgCount implements Serializable {
    public float avg;
    public AvgCount() {
    }
    public AvgCount(float avg) {
        this.avg = avg;
    }
    public AvgCount(AvgCount a, AvgCount b) {
        this.avg = a.avg + b.avg;
    }
    public float getAvg() {
        return this.avg;
    }
    public float call(String s) {
        this.avg += Float.parseFloat(s);
        return this.avg;
    }
    public Tuple2<String, Integer> call(String s) {
        return new Tuple2<>(s, 1);
    }
}
```

Per-key average using combineByKey()

```java
public static class AvgCount implements Serializable {
    public float avg;
    public AvgCount() {
    }
    public AvgCount(float avg) {
        this.avg = avg;
    }
    public AvgCount(AvgCount a, AvgCount b) {
        this.avg = a.avg + b.avg;
    }
    public float getAvg() {
        return this.avg;
    }
    public float call(String s) {
        this.avg += Float.parseFloat(s);
        return this.avg;
    }
    public Tuple2<String, Integer> call(String s) {
        return new Tuple2<>(s, 1);
    }
}
```

Tuning the level of parallelism

- When performing aggregations or grouping operations, we can ask Spark to use a specific number of partitions
 - `reduceByKey((x, y) -> x + y, 10)`
- `repartition()`
 - Shuffles the data across the network to create a new set of partitions
- `Expensive operation`
- Optimized version: `coalesce()`
 - Reduces data movement
 - A subset of current nodes will be kept
groupByKey()

- Group our data using the key in our RDD
- On an RDD consisting of keys of type K and values of type V
- Results will be RDD of type $\{K, \text{Iterable}[V]\}$

cogroup()

- Grouping data from multiple RDDs
- Over two RDDs sharing the same key type, K, with the respective value types V and W gives us back RDD $\{K, \text{Iterable}[V], \text{Iterable}[W]\}$

joins

- **Inner join**
 - Only keys that are present in both pair RDDs are output
- **leftOuterJoin(other) and rightOuterJoin(other)**
 - One of the pair RDDs can be missing the key
 - **leftOuterJoin(other)**
 - The resulting pair RDD has entries for each key in the source RDD
 - **rightOuterJoin(other)**
 - The resulting pair RDD has entries for each key in the other RDD

Actions on pair RDDs (example({(1,2),(3,4),(3,6)}))

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>countByKey()</td>
<td>Count the number of elements for each key</td>
<td>rdd.countByKey()</td>
<td>${(1,1),(3,2)}$</td>
</tr>
<tr>
<td>collectAsMap()</td>
<td>Collect the result as a map to provide easy lookup at the driver</td>
<td>rdd.collectAsMap()</td>
<td>Map{1,2}, 3,4,6</td>
</tr>
<tr>
<td>lookup(key)</td>
<td>Return all values associated with the provided key</td>
<td>rdd.lookup(3)</td>
<td>[4, 6]</td>
</tr>
</tbody>
</table>

Why partitioning?

- Consider an application that keeps a large table of user information in memory
- An RDD of (UserID, UserInfo) pairs
- The application periodically combines this table with a smaller file representing events that happened in the last five minutes
Using `partitionBy()`

- Transforms `userData` to hash-partitioned RDD

Questions?