Informed Search

Russell and Norvig chap. 3
Not all search directions are equally promising.
Informed: use problem-specific knowledge
Add a sense of direction to search: work toward the goal
Heuristic functions: a way to provide information to a search algorithm
What determines a search strategy

function TREE-SEARCH(*problem*) **return** a solution or failure

Initialize frontier using the initial state of problem

do
 if the frontier is empty **then return** failure
 choose leaf node from the frontier
 if node is a goal state **then return** solution
 else expand the node and add resulting nodes to the frontier

A search strategy is determined by the order in which nodes in the frontier are processed
Best-first search

- Informed search strategy: expand the node that **appears** best
- Factors going into determination of best:
 - Current cost of the solution path
 - Estimated distance to the nearest goal state
- Node is selected for expansion based on an *evaluation function* \(f(n) \)
- Implementation:
 - *Fringe* is a queue sorted by value of \(f \)
 - Special cases: greedy search, A* search
Heuristics

Heuristic: “A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions”

- The heuristic function $h(n)$ estimates cost of the cheapest path from node n to goal node.
- If n is a goal node $h(n)=0$
Greedy best-first search

- Expand node on the frontier closest to goal
- Determination of closest based upon the heuristic function h
Greedy search: An example

- Consider path planning between two cities
- Use the straight line distance heuristic, h_{SLD}

- The greedy solution is (A, C, D)
- The least cost solution is (A, B, D)
A* Search

- Order states by their total estimated cost
- Always select the node with the lowest value
- Total estimated cost:

 \[f(n) = g(n) + h(n) \]

- \(g(n) \) the cost to reach \(n \)
- \(h(n) \) the estimated cost to the goal

A* Search

- Order states by their total estimated cost
- Always select the node with the lowest value
- Total estimated cost:

\[f(n) = g(n) + h(n) \]

- \(g(n) \) the cost to reach \(n \)
- \(h(n) \) the estimated cost to the goal
- Uniform cost search is a special case where \(h(n)=0 \).

Repeated states

- **BFS/DFS:**
 - Add to frontier only if state not already visited.

- **A***:
 - If node represents state already visited, update cost according to lower total estimated cost.
Heuristic functions

Heuristics for the 8 puzzle:

- $h_1 = \text{the number of misplaced tiles}$
 - $h_1(s) = 8$
- $h_2 = \text{the sum of the distances of the tiles from their goal positions (manhattan distance)}$
 - $h_2(s) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$
Comparison of heuristics

Even very simple heuristics like h_1 and h_2 can significantly reduce the search cost:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Depth 10</th>
<th>Depth 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterative Deepening</td>
<td>47,127</td>
<td>3,473,941</td>
</tr>
<tr>
<td>A^* with h_1</td>
<td>93</td>
<td>539</td>
</tr>
<tr>
<td>A^* with h_2</td>
<td>39</td>
<td>113</td>
</tr>
</tbody>
</table>
A* in Romania

Goal: shortest route from Arad to Bucharest
A* in Romania

Get to Bucharest starting at Arad

- \(f(Arad) = c(Arad, Arad) + h(Arad) = 0 + 366 = 366 \)
A* in Romania

(b) After expanding Arad

- Expand Arrad and determine $f(n)$:
 - $f(\text{Sibiu})=c(\text{Arad},\text{Sibiu})+h(\text{Sibiu})=140+253=393$
 - $f(\text{Timisoara})=c(\text{Arad},\text{Timisoara})+h(\text{Timisoara})=118+329=447$
 - $f(\text{Zerind})=c(\text{Arad},\text{Zerind})+h(\text{Zerind})=75+374=449$
- Best choice is Sibiu
A* in Romania

(c) After expanding Sibiu

- Expand Sibiu and determine $f(n)$
 - $f(\text{Arad}) = c(\text{Sibiu, Arad}) + h(\text{Arad}) = 280 + 366 = 646$
 - $f(\text{Fagaras}) = c(\text{Sibiu, Fagaras}) + h(\text{Fagaras}) = 239 + 179 = 415$
 - $f(\text{Oradea}) = c(\text{Sibiu, Oradea}) + h(\text{Oradea}) = 291 + 380 = 671$
 - $f(\text{Rimnicu Vilcea}) = c(\text{Sibiu, Rimnicu Vilcea}) + h(\text{Rimnicu Vilcea}) = 220 + 192 = 413$

- Best choice is Rimnicu Vilcea
A* in Romania

(d) After expanding Rimnicu Vilcea

Expand Rimnicu Vilcea and determine $f(n)$
- $f(\text{Craiova}) = c(\text{Rimnicu Vilcea, Craiova}) + h(\text{Craiova}) = 360 + 160 = 526$
- $f(\text{Pitesti}) = c(\text{Rimnicu Vilcea, Pitesti}) + h(\text{Pitesti}) = 317 + 100 = 417$
- $f(\text{Sibiu}) = c(\text{Rimnicu Vilcea, Sibiu}) + h(\text{Sibiu}) = 300 + 253 = 553$

Best choice is Fagaras
A* in Romania

(e) After expanding Fagaras

- Expand Fagaras and determine $f(n)$
 - $f(\text{Sibiu}) = c(\text{Fagaras, Sibiu}) + h(\text{Sibiu}) = 338 + 253 = 591$
 - $f(\text{Bucharest}) = c(\text{Fagaras, Bucharest}) + h(\text{Bucharest}) = 450 + 0 = 450$
- Best choice is Pitesti!
A* in Romania

(f) After expanding Pitesti

- Expand Pitesti and determine $f(n)$
 - $f(Bucharest) = c(Pitesti, Bucharest) + h(Bucharest) = 418 + 0 = 418$
- Best choice is Bucharest
- Note values along optimal path!!
- Is the solution optimal?
A* in Romania

(f) After expanding Pitesti

Whole subtrees of the search tree got pruned!
Admissible heuristics

A heuristic is admissible if it **never overestimates** the cost to reach the goal (optimistic)

Formally:
1. \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \)
2. \(h(n) \geq 0 \) so \(h(G)=0 \) for any goal \(G \).

Examples:
- \(h_{SLD}(n) \) never overestimates the actual road distance
- Heuristics for 8 puzzle
A heuristic is consistent if:

\[h(n) \leq c(n, a, n') + h(n') \]

Given a consistent heuristic:

\[f(n') = g(n') + h(n') \]
\[\geq g(n) + c(n, a, n') + h(n') \]
\[\geq g(n) + h(n) = f(n) \]

A consequence of consistency: \(f(n) \) non-decreasing along a path

c(\(n, a, n' \)): cost of getting to \(n' \) from \(n \) using action \(a \)
Consistency and admissibility

- Consistency implies admissibility
- Hard to find heuristics that are admissible but not consistent
- Focus on consistent heuristics for proving optimality of A*
Consistency and admissibility

- Consistency implies admissibility
- Proof by induction on the length of the path from a goal node.

Notation: \(h^*(n) \) – cost of getting from node \(n \) to a goal

- Base case: Let \(n \) be any node such that the goal \(g \) is reachable from it by a single edge.
 \[
 h(n) \leq c(n, a, g) + h(g) = c(n, a, g) = h^*(n)
 \]
Consistency and admissibility

- Consistency implies admissibility

Induction step: consider a node n.
From the admissibility of h:
$h(n) \leq c(n, a, n') + h(n')$
 $\leq c(n, a, n') + h^*(n')$ (by induction hypothesis)
 $\leq h^*(n)$
Lemma: Whenever A* selects a node \(n \) for expansion the optimal path to that node has been found (assuming consistent heuristic).

Suppose not: Then there is an unexpanded node \(n' \) on the optimal path to \(n \).

From monotonicity: \(f(n) \geq f(n') \), so \(n' \) should have already been expanded.

Therefore whenever a goal node is expanded, it is the lowest cost, i.e. optimal goal node.
A* expansion contours

- Expansion represented as contours of states with equal f value
- A* expands all nodes with $f(n) < C^*$
- A* may expand nodes on the goal contour
Properties of A*

- A* expands all nodes with $f(n) < C^*$
- But there can still be exponentially many such nodes!
When a heuristic is “almost” admissible

- Graceful Decay of Admissibility

 If a heuristic rarely overestimates cost by more than δ, then the A algorithm will rarely find a solution whose cost is more than δ greater than the cost of the optimal solution.*

- Means:
 - So long as we undershoot almost all the time, and bound how much we overshoot, we seldom get in trouble, and the trouble is minor.
Evaluation of A*

- Completeness: YES
 - Unless there are infinitely many nodes with $f < f(G)$, and regardless of the heuristic
Evaluation of A*

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
Evaluation of A*:

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
- Space complexity: also exponential.
Evaluation of A*

- Completeness: YES
- Time complexity:
 - Number of nodes with $f(n) < C^*$ can be exponential
- Space complexity: also exponential.
- Optimality: YES
 - A* does not expand any node with $f(n) > C^*$
- Also optimally efficient (no other optimal algorithm is guaranteed to expand fewer nodes)
Memory-bounded heuristic search

- Some solutions to the A* space problem (maintaining completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Like IDS, but cutoff information is the f-cost \((g+h)\) instead of depth
 - Expands by contour
Memory-bounded heuristic search

- Some solutions to A* space problems (maintaining completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Recursive best-first search (RBFS)
 - (Simplified) Memory-bounded A* ((S)MA*)
 - SMA*: Drop the worst-leaf node when memory is full (regenerate it later if necessary; back up the value of the forgotten node to its parent)
Comparing heuristics

Heuristics for the 8 puzzle:

- h_1 = the number of misplaced tiles
- h_2 = the sum of the distances of the tiles from their goal positions (manhattan distance)
- For every state s, $h_2(s) \geq h_1(s)$
- We say that h_2 dominates h_1
- A dominating heuristic is better for search. WHY?
Inventing heuristics

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
 - Relaxed 8-puzzle for h_1: a tile can move anywhere.
 - Relaxed 8-puzzle for h_2: a tile can move to any adjacent square.
 - Another relaxation: a tile can move to any blank square.

- Admissibility: The optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem. This cost is a lower bound on the cost of the real problem. Construct a database of solutions for subproblems.
Inventing heuristics

- Having the best of all worlds: given admissible heuristics h_1, \ldots, h_m

 $$h(n) = \max(h_1(n), \ldots, h_m(n))$$

 is a dominating admissible heuristic.

- Useful in the context of the subproblems approach.
Inventing heuristics

- Learning from experience:
 - Experience = solving lots of 8-puzzles
 - A learning algorithm can be used to predict costs for states that arise during search.
A* with search.py