Local Search for a Globally Optimal Solution

Russell and Norvig Chapter 4
Limitations of hill climbing

- Can we find a globally optimal solution?
 - Can’t guarantee that. A good alternative: an approach that will give that “with high probability”.

- Need a more thorough exploration of the state space
Limitations of hill climbing

- An algorithm that never makes downhill moves will get stuck in local minima
Simulated Annealing

- Physical systems are good at finding minimum energy configurations: a physical system slowly cooled down to absolute zero will settle into its minimum energy configuration.
- This is called **annealing**
- Mimic this using a probabilistic process
Simulated Annealing

- **Simulated annealing** [Kirkpatrick, Gelatt, Vecchi, 1983].
 - T large ⇒ probability of accepting an uphill move is large.
 - T small ⇒ uphill moves are almost never accepted.
 - Idea: turn knob to control T.
 - Cooling schedule: T = T(i) at iteration i.

- **Physical analogy.**
 - When we take a molten solid and freeze it very abruptly, we do not expect to get a perfect crystal.
 - Annealing: cool material gradually from high temperature, allowing it to reach equilibrium at succession of intermediate lower temperatures.
 - Algorithm will find optimal solution with high probability if using a sufficiently slow cooling schedule.
Example

Temperature: 25.0

Simulated annealing for TSP
Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem
 schedule, a mapping from time to temperature

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
 T ← schedule[t]
 if T = 0 then return current.
 next ← a randomly selected successor of current
 ∆E ← current.VALUE - next.VALUE
 if ∆E > 0 then current ← next
 else current ← next with probability $e^{∆E/T}$

Temperature controls the probability of non-increasing steps.
Properties of Simulated Annealing

- As the number of moves at a given temperature goes to infinity, the probability of a state becomes proportional to $\exp(-E/T)$ (Boltzmann distribution).
- If temperature is lowered slowly enough - global optimum will be found with high probability. A lot of research into what makes a good cooling schedule.
- Widely used in a variety of applications (VLSI layout, airline scheduling, etc.)
Beam Search

- Variant of hill climbing:
 - Initially: \(k \) random states
 - Next: determine all successors of \(k \) states
 - If any successor is optimal → done
 - Else select \textbf{k best} from successors and repeat.

- Major difference with random-restart search:
 - Information is shared among \(k \) search threads.

- Can suffer from lack of diversity (somewhat addressed by stochastic beam search which chooses k-best randomly according to their value).
Genetic algorithms

- Keep a population of solutions that undergo recombination and mutation
Genetic algorithms

The state is the genetic material that makes an individual chromosome.

- **Initial Population**

- **Fitness Function**

- **Selection**

- **Crossover**

- **Mutation**

Note: cross-over should happen with a certain probability: if an individual is already highly fit, it’s not a good idea to change it too much.
Crossover (aka recombination)

One-point crossover

Two-point crossover
function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

input: population, a set of individuals
FITNESS-FN, a function quantifying the quality of an individual

repeat

new_population ← empty set

for i = 1 to SIZE(population) do

x ← RANDOM_SELECTION(population, FITNESS_FN)
y ← RANDOM_SELECTION(population, FITNESS_FN)
child ← REPRODUCE(x, y)
MUTATE(child)
add child to new_population

population ← new_population

until some individual is fit enough or enough time has elapsed

return the best individual
Solving TSP

- Represent a tour as a permutation \((i_1, \ldots, i_n)\) of \(\{1, 2, \ldots, n\}\)

- Fitness of a solution: negative of the cost of the tour

- Initialization: a random set of permutations

- Need to define crossover and mutation operations.
Crossover

- **Order** crossover: choose a subsequence of a tour from one parent and preserve the relative order of the cities from the other.

Example:

\[p_1 = (1 \ 2 \ 3 \ | \ 5 \ 4 \ 6 \ 7 \ | \ 8 \ 9) \]
\[p_2 = (4 \ 5 \ 2 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 3) \]
\[c_1 = (x \ x \ x \ | \ 5 \ 4 \ 6 \ 7 \ | \ x \ x) \]
\[c_2 = (x \ x \ x \ | \ 1 \ 8 \ 7 \ 6 \ | \ x \ x) \]

The tour in \(p_2 \), starting from its second cut point, is
\[9 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 8 \rightarrow 7 \rightarrow 6. \]

Remove the cities already in \(c_1 \), obtaining the partial tour \(9 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 8 \). Insert this partial tour after the second cut point of \(c_1 \), resulting in \(c_1 = (2 \ 1 \ 8 \ | \ 5 \ 4 \ 6 \ 7 \ | \ 9 \ 3) \).
Crossover (2)

- **Partially Mapped (PMX) crossover:** choose a subsequence of a tour from one parent and preserve the order and position of as many cities as possible from the other parent.
PMX crossover

\[
p_1 = (1 \ 2 \ 3 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 8 \ 9)
\]
\[
p_2 = (4 \ 5 \ 2 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 3)
\]
\[
c_1 = (x \ x \ x \ | \ 4 \ 5 \ 6 \ 7 \ | \ x \ x)
\]
\[
c_2 = (x \ x \ x \ | \ 1 \ 8 \ 7 \ 6 \ | \ x \ x)
\]

Swap defines a mapping:

\[
1 \leftrightarrow 4, \ \ 8 \leftrightarrow 5, \ \ 7 \leftrightarrow 6, \ \ 6 \leftrightarrow 7.
\]

The easy ones:
\[
c_1 = (x \ 2 \ 3 \ | \ 1 \ 8 \ 7 \ 6 \ | \ x \ 9)
\]
\[
c_2 = (x \ x \ 2 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3)
\]

For the rest, use the mapping:
\[
c_1 = (4 \ 2 \ 3 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 5 \ 9)
\]
\[
c_2 = (1 \ 8 \ 2 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3).
\]
Mutation

Can use a 2-opt operation:

Select two points along the permutation, cut it at these points and re-insert the reversed string.

Example:

\[(1\ 2\ |\ 3\ 4\ 5\ 6\ |\ 7\ 8\ 9) \rightarrow (1\ 2\ |\ 6\ 5\ 4\ 3\ |\ 7\ 8\ 9)\]
The knapsack problem
Local search: summary

- Why I like local search algorithms
 - Easy to implement
 - Widely applicable
 - Provide good results
Online search

- So far we have assumed deterministic actions and fully-known environments
 - Permits off-line search

- Consider a new problem:
 - A robot is placed in the middle of a maze
 - The task is to find the exit
 - Actions are deterministic but the environment is unknown

Difference from offline agents: An online agent can only expand the node it is physically in.

What search strategies are applicable?
Online agents

- Difference from offline agents: An online agent can only expand the node it is physically in.
- Therefore agent needs to work locally: Online DFS, IDS.
- Possible only when actions are reversible.
- Heuristic search: LRTA*