Adversarial Search and Game Playing

Russell and Norvig, Chapter 5

http://xkcd.com/601/
Games

- Games: multi-agent environment
 - What do other agents do and how do they affect our success?
 - Cooperative vs. competitive multi-agent environments.
 - Competitive multi-agent environments give rise to adversarial search a.k.a. games

- Why study games?
 - Fun!
 - They are hard
 - Easy to represent and agents restricted to small number of actions… sometimes!
Relation of Games to Search

- Search – no adversary
 - Solution is (heuristic) method for finding goal
 - Heuristics and CSP techniques can find optimal solution
 - Evaluation function: estimate of cost from start to goal through given node
 - Examples: path planning, scheduling activities

- Games – adversary
 - Solution is strategy (strategy specifies move for every possible opponent reply).
 - Time limits force approximate solutions
 - Examples: chess, checkers, Othello, backgammon
Types of Games

<table>
<thead>
<tr>
<th>Perfect information</th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chess, go, checkers, othello</td>
<td>backgammon</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>Bridge, hearts</td>
<td>Poker, canasta, scrabble</td>
</tr>
</tbody>
</table>

Our focus: deterministic, turn-taking, two-player, zero-sum games of perfect information

zero-sum game: a participant's gain (or loss) is exactly balanced by the losses (or gains) of the other participant.

perfect information: fully observable
Partial Game Tree for Tic-Tac-Toe
COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

Your move is given by the position of the largest red symbol on the grid. When your opponent picks a move, zoom in on the region of the grid where they went. Repeat.

MAP FOR X:

http://xkcd.com/832/
The Tic-Tac-Toe search space

- Is this search space a tree or graph?
- What is the minimum search depth?
- What is the maximum search depth?
- What is the branching factor?
Game setup

- Two players: MAX and MIN
- MAX moves first and they take turns until the game is over.
- Games as search:
 - **initial state**: e.g. starting board configuration
 - **player(s)**: which player has the move in a state
 - **action(s)**: set of legal moves in a state
 - **result(s, a)**: the states resulting from a given move.
 - **terminal-test(s)**: game over? (terminal states)
 - **utility(s,p)**: value of terminal states, e.g., win (+1), lose (-1) and draw (0) in chess.
- Players use search tree to determine next move.
Optimal strategies

- Find the best *strategy* for MAX assuming an infallible MIN opponent.
- Assumption: Both players play optimally.
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node:

\[
\text{MINIMAX}(s) =
\begin{align*}
\text{UTILITY}(s) & \quad \text{If } s \text{ is a terminal} \\
\max_{a \in \text{Actions}(s)} \text{MINIMAX}(& \text{RESULT}(s,a)) & \quad \text{If } \text{PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{MINIMAX}(& \text{RESULT}(s,a)) & \quad \text{If } \text{PLAYER}(s) = \text{MIN}
\end{align*}
\]
Two-ply game tree

MAX

MIN

Definition: ply = turn of a two-player game
Two-ply game tree

The minimax value at a min node is the minimum of backed-up values, because your opponent will do what’s best for them (and worst for you).
Maximizes the worst-case outcome for max.
The minimax algorithm

function MINIMAX-DECISION(*state*) **returns** an action

return arg max_{a ∈ Actions(*state*)} MIN-VALUE(RESULT(*state*,a))

function MAX-VALUE(*state*) **returns** a utility value

if TERMINAL-TEST(*state*) **then return** UTILITY(*state*)

\(v \leftarrow -\infty\)

for each *a* in ACTIONS(*state*) **do**

\(v \leftarrow \max(v, \text{MIN-VALUE}(\text{RESULT(*state*,a)}))\)

return \(v\)

function MIN-VALUE(*state*) **returns** a utility value

if TERMINAL-TEST(*state*) **then return** UTILITY(*state*)

\(v \leftarrow \infty\)

for *a* in ACTIONS(*state*) **do**

\(v \leftarrow \min(v, \text{MAX-VALUE}(\text{RESULT(*state*,a)}))\)

return \(v\)
Properties of minimax

- Minimax explores tree using DFS.
- Therefore:
 - Time complexity: $O(b^m)$ 😞
 - Space complexity: $O(bm)$ 😊
The problem with minimax search

- Number of game states is exponential in the number of moves.
 - Solution: Do not examine every node
 - Alpha-beta pruning
 - Remove branches that do not influence final decision
 - General idea: you can bracket the highest/lowest value at a node, even before all its successors have been evaluated
Pruning

minimax(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))
 = max(3, min(2,x,y), 2)
 = max(3,z,2) where z = min(2,x,y)
 = 3
Alpha-Beta Example

Range of possible values
Alpha-Beta Example (continued)
Alpha-Beta Example (continued)
Alpha-Beta Example (continued)
This node is worse for MAX
Alpha-Beta Example (continued)
Alpha-Beta Example (continued)
Alpha-Beta Example (continued)

MAX

MIN

[3,3] [3,3] [-∞,2] [2,2]
Alpha-Beta Example (continued)
Alpha-Beta Pruning

- \(\alpha \): the best value for MAX (i.e. highest) along a path from the root
- \(\beta \): the best value for MIN (i.e. lowest) along a path from the root
- initially \(\alpha \) and \(\beta \) are \((-\infty, \infty)\).
function ALPHA-BETA-SEARCH(state) returns an action

\[v \leftarrow \text{MAX-VALUE}(\text{state}, -\infty, +\infty) \]

\text{return} the \textit{action} in ACTIONS(state) with value \(v \)

function MAX-VALUE(state, \(\alpha \), \(\beta \)) returns a utility value

\text{if} \ \text{TERMINAL-TEST}(\text{state}) \ \text{then} \ \text{return} \ \text{UTILITY}(\text{state})

\[v \leftarrow -\infty \]

\text{for each} \ a \ \text{in} \ \text{ACTIONS}(\text{state}) \ \text{do}

\[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(\text{state}, a), \alpha, \beta)) \]

\text{if} \ v \geq \beta \ \text{then return} \ v

\[\alpha \leftarrow \text{MAX}(\alpha, v) \]

\text{return} \ v
function MIN-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

v ← +∞
for each a in ACTIONS(state) do
 v ← MIN(v, MAX-VALUE(RESULT(state, a), α, β))
 if v ≤ α then return v
 β ← MIN(β, v)

return v
Alpha-beta pruning

- When enough is known about a node n, it can be pruned.
Final Comments about Alpha-Beta Pruning

- Pruning does not affect final results
- Entire subtrees can be pruned, not just leaves.
- Good move ordering improves effectiveness of pruning
- With “perfect ordering,” time complexity is $O(b^{m/2})$
 - Effective branching factor of \sqrt{b}
 - Consequence: alpha-beta pruning can look twice as deep as minimax in the same amount of time
Is this practical?

- Minimax and alpha-beta pruning still have exponential complexity.
- May be impractical within a reasonable amount of time.
- SHANNON (1950):
 - Terminate search at a lower depth
 - Apply heuristic evaluation function EVAL instead of the UTILITY function
Cutting off search

- Change:
 - if TERMINAL-TEST(state) then return UTILITY(state)
 - if CUTOFF-TEST(state, depth) then return EVAL(state)

- Introduces a fixed-depth limit depth
 - Selected so that the amount of time will not exceed what the rules of the game allow.

- When cutoff occurs, the evaluation is performed.
Heuristic EVAL

- Idea: produce an estimate of the expected utility of the game from a given position.
- Performance depends on quality of EVAL.
- Requirements:
 - EVAL should order terminal-nodes in the same way as UTILITY.
 - Fast to compute.
 - For non-terminal states the EVAL should be strongly correlated with the actual chance of winning.
Heuristic EVAL example

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

In chess:
\[w_1 \text{ material} + w_2 \text{ mobility} + w_3 \text{ king safety} + w_4 \text{ center control} + \ldots \]
How good are computers…

- Let’s look at the state of the art computer programs that play games such as chess, checkers, othello, go…
Checkers

- Chinook: the first program to win the world champion title in a competition against a human (1994)
Components of Chinook:
- Search (variant of alpha-beta). Search space has 10^{20} states.
- Evaluation function
- Endgame database (for all states with 4 vs. 4 pieces; roughly 444 billion positions).
- Opening book - a database of opening moves

Chinook can determine the final result of the game within the first 10 moves.

2007: Checkers is solved. Perfect play leads to a draw.

Chess

- 1997: Deep Blue wins a 6-game match against Garry Kasparov
 - Searches using iterative deepening alpha-beta; evaluation function has over 8000 features; opening book of 4000 positions; end game database.
 - FRITZ plays world champion, Vladimir Kramnik; wins 6-game match.
The best Othello computer programs can easily defeat the best humans (e.g. Logistello, 1997).
Go

Go: humans still much better! (circa 2014)
And then came AlphaGo

- AlphaGo: Google's DeepMind created a program that was able to beat top human players
And then came AlphaGo

- AlphaGo: Google's DeepMind created a program that was able to beat top human players
- Uses a combination of methods: reinforcement learning, deep convolutional networks, and Monte Carlo tree search
AlphaGo Zero

- AlphaGo Zero was trained from scratch just by playing against itself

Mastering the game of Go without human knowledge
Games that include chance

- Possible moves (5-10, 5-11), (5-11, 19-24), (5-10, 10-16) and (5-11, 11-16)
Games that include chance

- Possible moves (5-10, 5-11), (5-11, 19-24), (5-10, 10-16) and (5-11, 11-16)
- [1,1],…,[6,6] probability 1/36, all others - 1/18
- Can not calculate definite minimax value, only expected value
Expected minimax value

\[
\text{EXPECTIMINIMAX}(s) = \begin{cases}
\text{UTILITY}(s) & \text{If } s \text{ is a terminal} \\
\max_a \text{EXPECTIMINIMAX}(\text{RESULT}(s,a)) & \text{If } \text{PLAYER}(S)=\text{MAX} \\
\min_a \text{EXPECTIMINIMAX}(\text{RESULT}(s,a)) & \text{If } \text{PLAYER}(S)=\text{MIN} \\
\sum_r P(r) \text{EXPECTIMINIMAX}(\text{RESULT}(s,r)) & \text{If } \text{PLAYER}(S)=\text{CHANCE}
\end{cases}
\]

\(r\) is a chance event (e.g., a roll of the dice).

These equations can be propagated recursively in a similar way to the MINIMAX algorithm.
TD-Gammon (Tesauro, 1994)

World class program based on a combination of reinforcement Learning, neural networks and alpha-beta pruning to 3 plies.

Move analyses by TD-Gammon have led to some changes in accepted strategies.

White’s turn, with a roll of 4-4

Summary

- Games are fun
- Can be played very well by computers
- They illustrate important points about AI
 - Perfection is (usually) unattainable -> approximation