Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6

<table>
<thead>
<tr>
<th>5</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
CSP example: map coloring

Given a map of Australia, color it using three colors such that no neighboring territories have the same color.
CSP example: map coloring
Constraint satisfaction problems

- A CSP is composed of:
 - A set of variables X_1, X_2, \ldots, X_n with domains (possible values) D_1, D_2, \ldots, D_n
 - A set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$
Constraint satisfaction problems

- A CSP is composed of:
 - A set of variables X_1, X_2, \ldots, X_n with domains (possible values) D_1, D_2, \ldots, D_n
 - A set of constraints C_1, C_2, \ldots, C_m
 - Each constraint C_i limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$

In our example:
- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D_i = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors.
 - E.g. $WA \neq NT$ (if the language allows this) or
 - (WA, NT) in $\{(\text{red}, \text{green}), (\text{red}, \text{blue}), (\text{green}, \text{red}), (\text{green}, \text{blue}), (\text{blue}, \text{red}), (\text{blue}, \text{green})\}$
Constraint satisfaction problems

A state is defined by an assignment of values to some or all variables.

Consistent assignment: assignment that does not violate the constraints.

Complete assignment: every variable is assigned.

Goal: a complete, consistent assignment.

\{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green\}
Constraint satisfaction problems

- Simple example of a formal representation language
- CSP benefits
 - Generic goal and successor functions
 - Useful general-purpose algorithms with more power than standard search algorithms, including generic heuristics
- Applications:
 - Time table problems (exam/teaching schedules)
 - Assignment problems (who teaches what)
Varieties of CSPs

- Discrete variables
 - Finite domains of size $d \Rightarrow O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP
 - Infinite domains (integers, strings, etc.)
- Continuous variables
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).
- Our focus: discrete variables and finite domains
Varieties of constraints

- Unary constraints involve a single variable.
 - e.g. SA ≠ green
- Binary constraints involve pairs of variables.
 - e.g. SA ≠ WA
- Global constraints involve an arbitrary number of variables.

Preferences (soft constraints) e.g. red is better than green often representable by a cost for each variable assignment; not considered here.
Constraint graph

- **Binary CSP:** each constraint relates two variables
- **Constraint graph:** nodes are variables, edges are constraints
Example: cryptarithmetic puzzles

The constraints are represented by a hypergraph

Variables: \(F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \)
Domains: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
Constraints
\[
\text{alldiff}(F, T, U, W, R, O)
\]
\[
O + O = R + 10 \cdot X_1, \text{ etc.}
\]
CSP as a standard search problem

- Incremental formulation
 - *Initial State*: the empty assignment {}.
 - *Successor*: Assign value to unassigned variable provided there is no conflict.
 - *Goal test*: the current assignment is complete.

- Same formulation for all CSPs!

- Solution is found at depth \(n \) (\(n \) variables).
 - What search method would you choose?
Backtracking search

- Observation: the order of assignment doesn’t matter
 ⇒ can consider assignment of a single variable at a time.
 Results in d^n leaves (d: number of values per variable).

- Backtracking search: DFS for CSPs with single-variable assignments (backtracks when a variable has no value that can be assigned)

- The basic uninformed algorithm for CSP
Sudoku solving
Sudoku solving

Constraints:

\text{Alldiff}(A1,A2,A3,A4,A5,A6,A7,A8,A9)

\ ...

\text{Alldiff}(A1,B1,C1,D1,E1,F1,G1,H1,I1)

\ ...

\text{Alldiff}(A1,A2,A3,B1,B2,B3,C1,C2,C3)

\ ...

Can be translated into constraints between pairs of variables.
Let’s see if we can figure the value of the center grid point.

Images from wikipedia and http://www.instructables.com/id/Solve-Sudoku-Without-even-thinking/
Solving Sudoku

Show code for solving sudoku
Constraint propagation

- Enforce local consistency
- Propagate the implications of each constraint
Arc consistency

- $X \rightarrow Y$ is arc-consistent iff for every value x of X there is some allowed value y of Y

- Example: X and Y can take on the values 0…9 with the constraint: $Y=X^2$. Can use arc consistency to reduce the domains of X and Y:
 - $X \rightarrow Y$ reduce X’s domain to $\{0,1,2,3\}$
 - $Y \rightarrow X$ reduce Y’s domain to $\{0,1,4,9\}$
The Arc Consistency Algorithm

function AC-3(csp) returns false if an inconsistency is found and true otherwise

inputs: csp, a binary csp with components \{X, D, C\}

local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do

 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)

 if REVISE(csp, X_i, X_j) then
 if size of \(D_i=0\) then return false
 for each \(X_k\) in \(X_i\).NEIGHBORS – \{X_j\} do
 add \((X_k, X_i)\) to queue

function REVISE(csp, X_i, X_j) returns true iff we revise the domain of \(X_i\)

 revised ← false

 for each \(x\) in \(D_i\) do
 if no value \(y\) in \(D_j\) allows \((x,y)\) to satisfy the constraints between \(X_i\) and \(X_j\)
 then delete \(x\) from \(D_i\)
 revised ← true

 return revised
Arc consistency limitations

- $X \rightarrow Y$ is arc-consistent iff for every value x of X there is some allowed y of Y
- Consider mapping Australia with two colors. Each arc is consistent, and yet there is no solution to the CSP.
- So it doesn’t help in this case
Path Consistency

- Looks at triples of variables
 - The set \(\{X_i, X_j\} \) is path-consistent with respect to \(X_m \) if for every assignment consistent with the constraints of \(X_i, X_j \), there is an assignment to \(X_m \) that satisfies the constraints on \(\{X_i, X_m\} \) and \(\{X_m, X_j\} \)
- The PC-2 algorithm achieves path consistency
K-consistency

- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any k-th variable.
- Not practical!
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- General-purpose heuristics can provide huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure
Most constrained variable

Choose the variable with the fewest legal values (most constrained variable) a.k.a. minimum remaining values (MRV) or “fail first” heuristic

- What is the intuition behind this choice?

$$\text{var} \leftarrow \text{SELECT-UNASSIGNED-VARIABLE(csp)}$$
Most constraining variable

- Select the variable that is involved in the largest number of constraints on other unassigned variables.
- Also called the *degree* heuristic because that variable has the largest degree in the constraint graph.
- Often used as a tie breaker e.g. in conjunction with MRV.
Least constraining value heuristic

- Guides the choice of which value to assign next.
- Given a variable, choose the least constraining value:
 - The value that rules out the fewest values in the remaining variables
 - Why is this a good idea?
Forward checking

- Can we detect inevitable failure early?
 - And avoid it later!
- Forward checking: keep track of remaining legal values for unassigned variables.
- Terminate search direction when a variable has no legal values.
Forward checking

- Assign \{WA=red\}
- Effects on other variables connected by constraints with WA
 - \textit{NT can no longer be red}
 - \textit{SA can no longer be red}
Forward checking

- **Assign** \(Q=\text{green}\)

- **Effects on other variables connected by constraints with WA**
 - \(NT\ can\ no\ longer\ be\ green\)
 - \(NSW\ can\ no\ longer\ be\ green\)
 - \(SA\ can\ no\ longer\ be\ green\)
Forward checking

- If V is assigned blue
- Effects on other variables connected by constraints with WA
 - *SA is empty*
 - *NSW can no longer be blue*
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.
Example: 4-Queens Problem

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]

\[
\begin{array}{ll}
X_1 \\
\{1,2,3,4\} \\
X_2 \\
\{1,2,3,4\} \\
X_3 \\
\{1,2,3,4\} \\
X_4 \\
\{1,2,3,4\} \\
\end{array}
\]
Example: 4-Queens Problem

X1 \{1,2,3,4\}
X2 \{1,2,3,4\}
X3 \{1,2,3,4\}
X4 \{1,2,3,4\}
Example: 4-Queens Problem

- **X1**: \{1,2,3,4\}
- **X2**: \{ , ,3,4\}
- **X3**: \{ ,2, ,4\}
- **X4**: \{ ,2,3, ,\}

Diagram showing a 4x4 grid with queens placed at positions (1,1), (2,2), (3,3), and (4,4), along with the sets representing the positions of the queens in each column.
Example: 4-Queens Problem

- **X1**: \{1,2,3,4\}
- **X2**: \{ , ,3,4\}
- **X3**: \{ ,2, ,4\}
- **X4**: \{ ,2,3, \}

Diagram:

```
1 2 3 4
1 *...*
2 ...
3 *...*
4  
```
Example: 4-Queens Problem

```
Example: 4-Queens Problem

X1
{1,2,3,4}

X2
{ , , 3,4}

X3
{ , , , }

X4
{ ,2,3, }
```
Example: 4-Queens Problem

\[
\begin{align*}
X_1 & \{2,3,4\} \\
X_2 & \{1,2,3,4\} \\
X_3 & \{1,2,3,4\} \\
X_4 & \{1,2,3,4\}
\end{align*}
\]
Example: 4-Queens Problem

\[X_1 \{ \ldots, 2, 3, 4 \} \]
\[X_2 \{ \ldots, \ldots, 4 \} \]
\[X_3 \{ 1, \ldots, \ldots \} \]
\[X_4 \{ 1, 3, 4 \} \]
Example: 4-Queens Problem

Example board:

```
 1 2 3 4
1 ⬤ ⬤ ⬤
2 ⬤ ⬤ ⬤
3 ⬤ ⬤ ⬤
4 ⬤ ⬤ ⬤
```

```
X1 = \{ 2,3,4 \}
X2 = \{ 4 \}
X3 = \{ 1, 3, \}
X4 = \{ 1, 3,4 \}
```
Example: 4-Queens Problem

4-Queens Problem

X1
{1, 2, 3, 4}

X2
{1, , 3, 4}

X3
{1, , , }

X4
{1, , 3, }
Example: 4-Queens Problem

```
1 2 3 4
1 *
2 *
3 *
4 *
```

X1: \{2,3,4\}
X2: \{4\}
X3: \{\}
X4: \{1,3\}

Graph representation:

- X1 connected to X2
- X3 connected to X4
- X1 connected to X3
- X2 connected to X4
Example: 4-Queens Problem

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & \ast & \ast & \ast \\
2 & \ast & \ast & \ast \\
3 & \ast & \ast & \ast \\
4 & \ast & \ast & \ast \\
\end{array}
\]

X1 \{ 2,3,4 \}

X2 \{ 4 \}

X3 \{ 1, , , \}

X4 \{ , , 3, \}
Example: 4-Queens Problem
Forward checking

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- FC does not provide early detection of all failures.
 - Once WA=red and Q=green: NT and SA cannot both be blue!
- MAC (maintaining arc consistency): calls AC-3 after assigning a value (but only deals with the neighbors of a node that has been assigned a value).
The zebra puzzle

In five houses, each with a different color, live five persons of different nationalities, each of whom prefer a different brand of cigarette, a different drink, and a different pet.

- There are five houses.
- The Englishman lives in the red house.
- The Spaniard owns the dog.
- Coffee is drunk in the green house.
- The Ukrainian drinks tea.
- The green house is immediately to the right of the ivory house.
- The Old Gold smoker owns snails.
- Kools are smoked in the yellow house.
- Milk is drunk in the middle house.
- The Norwegian lives in the first house.
- The man who smokes Chesterfields lives in the house next to the man with the fox.
- Kools are smoked in the house next to the house where the horse is kept.
- The Lucky Strike smoker drinks orange juice.
- The Japanese smokes Parliaments.
- The Norwegian lives next to the blue house.

- Now, who drinks water? Who owns the zebra?
The zebra puzzle
Local search for CSP

- Local search methods use a “complete” state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - **reassign** variable values
- Select a variable: random conflicted variable
- Select a value: **min-conflicts heuristic**
 - Value that violates the fewest constraints
 - Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problems like n-Queens
Min-Conflicts

function MIN-CONFLICTS(csp, max_steps) **returns** a solution or failure

inputs: csp, a constraint satisfaction problem

 max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp

for i = 1 to max_steps **do**

 if current is a solution for csp **then return** current

 var← a randomly chosen conflicted variable from csp.VARIABLES

 value← the value v for var that minimizes CONFLICTS(var, v, current, csp)

 set var=value in current

return failure
Problem structure

- How can the problem structure help to find a solution quickly?

- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.

- Improves performance
Suppose each problem has c variables out of a total of n.

Worst case solution cost is $O(n/c \times d^c)$ instead of $O(d^n)$

Suppose $n=80, \ c=20, \ d=2$
- $2^{80} = 4$ billion years at 1 million nodes/sec.
- $4 \times 2^{20} = .4$ second at 1 million nodes/sec
Tree-structured CSPs

Theorem: if the constraint graph has no loops then CSP can be solved in $O(nd^2)$ time.

Compare with general CSP, where worst case is $O(d^n)$.

(a)
Any tree-structured CSP can be solved in time linear in the number of variables.

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering. (label var from X_1 to X_n)
- For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X_j), X_j)
- For j from 1 to n assign X_j consistently with Parent(X_j)
Function TREE-CSP-SOLVER(csp) returns a solution or failure

inputs: csp, a CSP with components X, D, C

n ← number of variables in X

assignment ← an empty assignment

root ← any variable in X

X ← TOPOLOGICALSORT(X, root)

for j = n down to 2 do

 MAKE-ARC-CONSISTENT(PARENT(X_j), X_j)

 if it cannot be made consistent then return failure

for i = 1 to n do

 assignment[X_i] ← any consistent value from D_i

 if there is no consistent value then return failure

return assignment
Nearly tree-structured CSPs

- Can more general constraint graphs be reduced to trees?
- Two approaches:
 - Remove certain nodes
 - Collapse certain nodes
Nearly tree-structured CSPs

- Idea: assign values to some variables so that the remaining variables form a tree.
- Assign \{SA=x\} ← cycle cutset
 - Remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong: have to try all of them
Nearly tree-structured CSPs

- This approach is effective if cycle cutset is small.
- Finding the smallest cycle cutset is NP-hard
 - Approximation algorithms exist
- This approach is called cutset conditioning.
Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values.
- Backtracking=depth-first search with one variable assigned per node.
- Variable ordering and value selection heuristics help significantly.
- Forward checking prevents assignments that lead to failure.
- Constraint propagation does additional work to constrain values and detect inconsistencies.
- Structure of CSP affects its complexity. Tree structured CSPs can be solved in linear time.
Interim class summary

- We have been studying ways for agents to solve problems.
- Search
 - Uninformed search
 - Easy solution for simple problems
 - Basis for more sophisticated solutions
 - Informed search
 - Information = problem solving power
 - Adversarial search
 - $\alpha\beta$-search for play against optimal opponent
 - Early cut-off when necessary
- Constraint satisfaction problems
- What's next?
 - NLP!