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Abstract

This tutorial introduces the use of the state-of-the-art Satisfiability Modulo Theories Solver Z3.
It integrates a host of theory solvers in an expressive and efficient combination. We here introduce
the supported theories and their solvers using a collectionof examples. Z3 is freely available from
Microsoft Research.
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1 Introduction

Logic is the “Calculus of Computer Science”.
Zohar Manna

Modern software analysis and model-based tools are increasingly complex and multi-faceted soft-
ware systems. However, at their core is invariably a component using logical formulas for describing
states and transformations between system states. In a nutshell, symbolic logic isthe calculusof compu-
tation. The state-of-the artSatisfiability Modulo Theories(SMT) solver, Z3, from Microsoft Research,
can be used to check the satisfiability of logical formulas over one or more theories. SMT solvers of-
fer a compelling match for software tools, since several common software constructs map directly into
supported theories.

This tutorial introduces the use of the state-of-the-art Satisfiability Modulo Theories Solver Z3 from
Microsoft Research. The main objective of the tutorial is tointroduce the reader on how to use Z3
effectively for logical modeling and solving. The tutorialprovides some general background on logical
modeling, but we have to defer a full introduction to first-order logic and decision procedures to excellent
text-books [18, 4, 23].

Z3 is a low level tool. It is best used as a component in the context of other tools that require solving
logical formulas. Consequently, Z3 exposes a number of API facilities to make it convenient fortools to
map into Z3, but there are no stand-alone editors or user-centric facilities for interacting with Z3. The
language syntax used in the front ends favor simplicity in contrast to linguistic convenience.
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2 What is logic?

Logic is the art and science of effective reasoning. In logic, we investigate how to draw general and
reliable conclusions from a collection of facts.Formal logicprovides a precise characterization of well-
formed expressions and valid deductions. It makes possibleto calculate consequences at the symbolic
level. Computer programs can be used to automate such symbolic calculations.

Logic studies the relationship between language, meaning and (proof) method. A logic consists of
a language in which well-formed sentences are expressed; a semantic that distinguishes the valid sen-
tences from the refutable ones; and a proof system for constructing arguments justifying valid sentences.
Examples of logic include: propositional logic, first-order logic, higher-order logic and modal logics. In
this tutorial, we will focus on propositional and first-order logic.

A language consists of logical symbols whose the interpretations are fixed, and non-logical ones
whose the interpretation vary. These symbols are combined together to form well-formed formulas. In
propositional logic (PL), the connectives∨ (or),∧ (and),¬ (not),⇒ (implies) have a fixed interpretation,
whereas the constantsp, q, r may be interpreted at will. We also sayp, q and r are propositional
variables. The set of well-formed PL formulas is described by the following grammar:

formula := constant

| true

| false

| formula ∨ formula

| formula ∧ formula

| formula ⇒ formula

| ¬ formula

| (formula)

The following expressions are well-formed PL formulas:

• (p∨q)⇒ (q∨ p)

• (p∨q)⇒ r

• p∧ ((¬q)∧ ((¬p)∨q))

As a way of reducing the number of necessary parentheses, we assume the following precedence rules:
¬ has higher precedence than∧, ∧ higher than∨, and∨ higher than⇒. Moreover, since∨ and∧ are
associative, we writep∨ (q∨ r) asp∨q∨ r. We say∨ and∧ aremultiary operators. Thus, using these
rules, the examples above can be written as:

• p∨q⇒ q∨ p

• p∨q⇒ r

• p∧¬q∧ (¬p∨q)

We also say a formulap∧q is aconjunction, andp∨q is adisjunction.
An interpretation M is a mapping from propositional variables to truth values{true, false}. Let

F andG be arbitrary PL formulas. Then, the meaning of the connectives∨ (or), ∧ (and),¬ (not), ⇒

7
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(implies) can be given usingtruth-tables.

F G F ∨ G F ∧ G F ⇒ G ¬F
false false false false true true
false true true false true true
true false true false false false
true true true true true false

A formula issatisfiableif it has an interpretation that makes it true. In this case, we say the interpre-
tation is amodelfor the formula. A formula isunsatisfiableif it does not have any model. A formula is
valid if it is true in any interpretation. A PL formula is valid if and only if its negation is unsatisfiable.
For example,

• p∨q⇒ q∨ p is valid,

• p∨q⇒ q is satisfiable, and

• p∧¬q∧ (¬p∨q) is unsatisfiable.

We say two formulasF andG areequivalentif and only if they evaluate to the same value (true or
false) in every interpretation. Examples:

• ¬¬F is equivalent toF

• ¬F ∨F is equivalent totrue

• ¬F ∧F is equivalent tofalse

• F ⇒ G is equivalent to¬F ∨G

• ¬(F ∧G) is equivalent to¬F ∨¬G

• ¬(F ∨G) is equivalent to¬F ∧¬G

• ¬F ⇒ G is equivalent to¬G⇒ F

• F ∨ (G∧H) is equivalent to(F ∨G)∧ (F ∨H)

• F ∧ (G∨H) is equivalent to(F ∧G)∨ (F ∧H)

We say formulasF andG areequisatisfiableif and only if F is satisfiable if and only ifG is. Most
symbolic reasoning engines apply transformations that only preserve satisfiability.

A formula where negation is applied only to propositional variables is said to be innegation normal
form (NNF). A literal is either a propositional variable or its negation. A formula that is a multiary
conjunction of multiary disjunctions of literals is inconjunctive normal form(CNF). A formula that is
a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form(DNF). Most
satisfiability checkers for propositional logic expect theinput formula to be in CNF. Any propositional
logic formula is equivalent to one in NNF, CNF and DNF. For example, the formula

(p∨¬q)∧ (q∨¬(r ∨¬p))

is not in NNF. It can be transformed into an equivalent one by applying the following equivalences:

• ¬¬F is equivalent toF

8
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• ¬(F ∧G) is equivalent to¬F ∨¬G

• ¬(F ∨G) is equivalent to¬F ∧¬G

• F ⇒ G is equivalent to¬F ∨G

After applying these equivalences, we obtain the equivalent formula:

(p∨¬q)∧ (q∨ (¬r ∧ p))

After converting a formula into NNF, it can be converted intoCNF or DNF by applying thedistributivity
rules:

• F ∨ (G∧H) is equivalent to(F ∨G)∧ (F ∨H)

• F ∧ (G∨H) is equivalent to(F ∧G)∨ (F ∧H)

Thus, the formula
(p∨¬q)∧ (q∨ (¬r ∧ p))

is equivalent to the CNF formula

(p∨¬q)∧ (q∨¬r)∧ (q∨ p)

It is straightforward to check whether a formula in DNF is satisfiable or not. Unfortunately, it is
too expensive, in general, to convert a formula into an equivalent one in DNF. The distributivity rule
may produce an exponential blowup. For similar reasons, it is too expensive in general to convert a
formula into an equivalent CNF one. However, there is a linear time translation to CNF that produces an
equisatisfiable (not equivalent) formula. We use the notation F[G] to denote a formulaF that contains a
sub-formulaG. The basic idea consists in introducing new propositional variables that are “names” for
nested sub-formulas. The distributivity rules are replaced by the following rules:

• F[l1∨ l2] −→ F[x]∧ (¬x∨ l1∨ l2)∧ (¬l1∨x)∧ (¬l2∨x)

• F[l1∧ l2] −→ F[x]∧ (¬x∨ l1)∧ (¬x∨ l2)∧ (¬l1∨¬l2∨x)

In the rules above,x is a fresh variable, andl1 andl2 are literals. For example, given the formula

(p∧ (q∨ r))∨ t

Let x1 be a “name” for(q∨ r). The clauses(¬x1∨q∨ r), (¬q∨x1), (¬r ∨x1) are stating thatx1 is true if
and only if(q∨ r) is. Thus, we have

((p∧x1)∨ t) ∧ (¬x1∨q∨ r) ∧ (¬q∨x1) ∧ (¬r ∨x1)

Now, letx2 be a “name” for(p∧x1). Then, we obtain the equisatisfiable CNF formula

(x2∨ t) ∧ (¬x1∨q∨ r) ∧ (¬q∨x1) ∧ (¬r ∨x1) ∧ (¬x2∨ p)∧ (¬x2∨x1)∧ (¬p∨¬x1∨x2)

If the formula input formula is in NNF, then simpler versionsof these rules can be used

• F[l1∨ l2] −→ F[x]∧ (¬x∨ l1∨ l2)

• F[l1∧ l2] −→ F[x]∧ (¬x∨ l1)∧ (¬x∨ l2)

Since the input formula was in NNF in our previous example, byusing the simpler rules, we obtain the
equisatisfiable CNF formula

(x2∨ t) ∧ (¬x1∨q∨ r) ∧ (¬x2∨ p)∧ (¬x2∨x1)

In practice, CNF translators use a mixture of distributivity and the rules above. The idea is to use
distributivity whenever the formula size does not increasetoo much.

9



Z3 - a Tutorial de Moura and Bjørner

3 What is SMT?

The defining problem ofSatisfiability Modulo Theories(SMT) is checking whether a given logical for-
mulaF is satisfiablein the context of some background theory which constraints the interpretation of the
symbols used inF. We say a formulaF is satisfiable, if there is aninterpretationthat makesF true. For
example, the formula

a+b> 3 and a< 0 and b> 0

is satisfiable in the context of the theory of arithmetic, because the interpretation

a 7→ −1, b 7→ 5

makes the formula true. We say a formula isunsatisfiable
It is worth emphasizing thatvalidity is dual to the terminologysatisfiability. Valid sentences are

true under all structures. For example, the sentence(∀x: p(x)) → p(a) is valid. Dually, sentences (the
negation of valid sentences) areunsatisfiableif they are false under all structures. Asatisfiablesentence
is true in at least one structure. For example, the sentencep(a)∨ p(b) is satisfiable, but it is not valid.

10
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4 What is Z3?

Z3 is a state-of-the-art SMT solver from Microsoft Research. It integrates a host of theory solvers in an
expressive and efficient combination. This tutorial introduces these theory solvers using a collection of
examples. A short system description covering Z3 is available from [9].

4.1 Obtaining Z3

Z3 is freely available for academic research purposes from

http://research.microsoft.com/projects/z3.

Z3 is also re-distributed with a host of systems that use Z3. These include the Boogie/Spec# tools [2],
HAVOC [6], Pex1. Z3 can be invoked from Isabelle, but does not necessarily require a download and
instead relies on a stable internet connection.

4.2 Installing Z3

The default installation location for Z3 is the directory

C:/Program Files/Microsoft Research/Z3-<version-number>

Most modern machines use 64 bit hardware and operating systems, the installation location is then:

C:/Program Files/Microsoft Research (x86)/Z3-<version-number>

In other words, Z3 gets installed as a 32-bit application. However, Z3 ships with both 32 and 64 bit
binaries and assemblies. The distribution directory is of the form shown in Figure 1.

Figure 1: Z3 Distribution direc-
tory

It comprises of several directories. The most important di-
rectory isbin it contains the command-line version of Z3, called
z3.exe. It also contains C and managed DLLs, calledz3.dll and
Microsoft.Z3.dll, respectively. The binaries in this directory run
on the Intel/AMD i386 and x64 platforms. A directory containing
binaries compiled exclusively for x64 platforms is calledx64. The
directoriesbin mt andx64 mt contain the parallel versions of Z3.
These versions can spawn multiple copies of Z3 to cooperate solv-
ing a single problem. Theinclude directory contains header files,
theexamples directory contains basic examples, theocaml directory
contains the OCaml interfaces, and theutils directory contains F#
power-pack utilities (See Section 5.7).

1http://research.microsoft.com/pex
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4.3 What is Z3 not?

• A software system with user-friendly UI.

• A theorem prover for proofs by induction.

• A higher-order interactive theorem prover.

• A theorem prover for constructive logic.

12
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di, j Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

max= 8

Solution
t1,1 = 5, t1,2 = 7, t2,1 = 2,
t2,2 = 6, t3,1 = 0, t3,2 = 3

Encoding
(t1,1 ≥ 0)∧ (t1,2 ≥ t1,1+2)∧ (t1,2+1≤ 8) ∧
(t2,1 ≥ 0)∧ (t2,2 ≥ t2,1+3)∧ (t2,2+1≤ 8) ∧
(t3,1 ≥ 0)∧ (t3,2 ≥ t3,1+2)∧ (t3,2+3≤ 8) ∧
((t1,1 ≥ t2,1+3)∨ (t2,1 ≥ t1,1+2)) ∧
((t1,1 ≥ t3,1+2)∨ (t3,1 ≥ t1,1+2)) ∧
((t2,1 ≥ t3,1+2)∨ (t3,1 ≥ t2,1+3)) ∧
((t1,2 ≥ t2,2+1)∨ (t2,2 ≥ t1,2+1)) ∧
((t1,2 ≥ t3,2+3)∨ (t3,2 ≥ t1,2+1)) ∧
((t2,2 ≥ t3,2+3)∨ (t3,2 ≥ t2,2+1))

Figure 2: Encoding of job shop scheduling.

5 Satisfiability Modulo Theories - An Appetizer

We begin by introducing a motivating application and a simple instance of the application that we will
use as a running example to illustrate Satisfiability ModuloTheories as well as using Z3’s different
interfaces.

5.1 A Scheduling Application

Consider the classicaljob shop schedulingdecision problem. In this problem, there aren jobs, each
composed ofm tasks of varying duration that have to be performed consecutively on m machines. The
start of a new task can be delayed as long as needed in order to wait for a machine to become available, but
tasks cannot be interrupted once started. There are essentially two types of constraints in this problem:

• Precedence constraints between two tasks in the same job.

• Resource constraints specifying that no two different tasks requiring the same machine may exe-
cute at the same time.

Given a total timemaxand the duration of each task, the problem consists of deciding whether there
is a schedule such that the end-time of every task is less thanor equal tomax time units. We usedi, j

to denote the duration of thej-th task of jobi. A schedule is specified by the start-time (ti, j ) for the
j-th task of every jobi. The job shop scheduling problem can be encoded in SMT using the theory of
linear arithmetic. A precedence constraint between two consecutive tasksti, j andti, j+1 is encoded using
the inequalityti, j+1 ≥ ti, j + di, j . This inequality states that the start-time of taskj + 1 must be greater
than or equal to the start-time of taskj plus its duration. A resource constraint between two tasks from
different jobsi andi′ requiring the same machinej is encoded using the formula(ti, j ≥ ti′, j +di′, j)∨(ti′, j ≥
ti, j +di, j), which states that the two tasks do not overlap. The start-time of the first task of every jobi must
be greater than or equal to zero, thus we haveti,1 ≥ 0. Finally, the end-time of the last task must be less
than or equal tomax, henceti,m+di,m ≤ max. Figure 2 illustrates an instance of job scheduling problem,
its encoding into an SMT formula, and a satisfying solution.The result is called anSMT formula; it
combines logical connectives (conjunctions, disjunction, negation) with atomic formulas that are linear
arithmetic inequalities.
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z − t1,1 ≤ 0
z − t2,1 ≤ 0
z − t3,1 ≤ 0
t3,2 − z ≤ 5
t3,1 − t3,2 ≤ −2
t2,1 − t3,1 ≤ −3
t1,1 − t2,1 ≤ −2

t3,2 t3,1

t2,1

t1,1

z

0

0

0
-2

-3

-2

5

Figure 3: Difference arithmetic example

5.2 A Solver for Difference Arithmetic

The job shop scheduling decision problem can be solved by combining a SAT solver with a theory solver
for difference arithmetic. Difference arithmetic is a fragment of linear arithmetic where predicates are
restricted to be of the formt − s≤ c, wheret ands are variables andc a numeric constant such as 1 or
3. Every atom in Figure 2 can be put into this form. For example, the atomt3,1 ≥ t2,1+3 is equivalent
to the atomt2,1 − t3,1 ≤ −3. For atoms of the forms≤ c ands≥ c, a special fresh variablez is used.
We sayz is thezero variable, and these atoms are represented in difference arithmetic as s− z≤ c and
z− s≤ −c respectively. For example, the atomt3,2 + 3 ≤ 8 is represented in difference arithmetic as
t3,2 − z≤ 5. A set of difference arithmetic atoms can be checked very efficiently for satisfiability by
searching for negative cycles in weighted directed graphs.In the graph representation, each variable
corresponds to a node, and an inequality of the formt − s≤ c corresponds to an edge froms to t with
weightc. Figure 3 shows a subset of atoms (in difference arithmetic form) from our example in Figure 2,
and the corresponding graph. The negative cycle, with weight −2, is shown by dashed lines. This cycle
corresponds to the following schedule that cannot be completed in 8 time units:

task 1/job 1→ task 1/job 2→ task 1/job 3→ task 2/job 3

Recall that the scheduling problem from Figure 2 is feasible, but it requires assigning a different combi-
nation of atoms to true.

5.3 Scheduling in SMT-LIB v1

(benchmark

:status unknown

:logic QF_IDL

:extrafuns ((t11 Int) (t12 Int) (t21 Int) (t22 Int) (t31 Int) (t32 Int))

:assumption (and (>= t11 0) (>= t12 (+ t11 2)) (<= (+ t12 1) 8))

:assumption (and (>= t21 0) (>= t22 (+ t21 3)) (<= (+ t22 1) 8))

:assumption (and (>= t31 0) (>= t32 (+ t31 2)) (<= (+ t32 3) 8))

:assumption (or (>= t11 (+ t21 3)) (>= t21 (+ t11 2)))

:assumption (or (>= t11 (+ t31 2)) (>= t31 (+ t11 2)))

:assumption (or (>= t21 (+ t31 2)) (>= t31 (+ t21 3)))

:assumption (or (>= t12 (+ t22 1)) (>= t22 (+ t12 1)))

:assumption (or (>= t12 (+ t32 3)) (>= t32 (+ t12 1)))

:assumption (or (>= t22 (+ t32 3)) (>= t32 (+ t22 1)))

:formula true

)

14
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5.4 Scheduling in SMT-LIB v2

SMT-LIB v2, henceforth called smt2, is an update on the SMT-LIB standard. It is based around a set of
commands. Each command changes state or queries propertiesof the current state. You can enter smt2
files using the extensionsmt2, or you can enter smt2 commands from the prompt if you start Z3using
the options:

z3.exe /m /smtc /si

These options tell Z3 to/m maintain state to produce models (this carries a very minor overhead, and it
is disabled by default),/smtc parse in the smt2 format, and/si open an interactive input pipe.

The smt2 version of the scheduling example now takes the form:

(set-logic QF_IDL) ; optional in Z3

(declare-fun t11 () Int)

(declare-fun t12 () Int)

(declare-fun t21 () Int)

(declare-fun t22 () Int)

(declare-fun t31 () Int)

(declare-fun t32 () Int)

(assert (and (>= t11 0) (>= t12 (+ t11 2)) (<= (+ t12 1) 8)))

(assert (and (>= t21 0) (>= t22 (+ t21 3)) (<= (+ t22 1) 8)))

(assert (and (>= t31 0) (>= t32 (+ t31 2)) (<= (+ t32 3) 8)))

(assert (or (>= t11 (+ t21 3)) (>= t21 (+ t11 2))))

(assert (or (>= t11 (+ t31 2)) (>= t31 (+ t11 2))))

(assert (or (>= t21 (+ t31 2)) (>= t31 (+ t21 3))))

(assert (or (>= t12 (+ t22 1)) (>= t22 (+ t12 1))))

(assert (or (>= t12 (+ t32 3)) (>= t32 (+ t12 1))))

(assert (or (>= t22 (+ t32 3)) (>= t32 (+ t22 1))))

(check-sat)

; sat

(model) ; display the model

; ("model" "t11 -> 5

; t12 -> 7

; t21 -> 2

; t22 -> 5

; t31 -> 0

; t32 -> 2")

5.5 Scheduling using the C API

Let us write a self-contained program in C that uses the programmatic APIs to Z3 to solve the scheduling
problem. For this purpose we create a file calledscheduling.cpp, and assume that the file resides under
the Z3 distribution in theexamples/c directory. The file can be compiled by invoking the Microsoft
C++ compilercl from the command-line:

cl ..\..\include\ ..\..\bin\z3.lib scheduling.cpp

15
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# inc lude ” z3 . h ”
# inc lude <i os t ream>

s t a t i c Z 3 a s t m k in t ( Z 3 c o n t e x t c tx , i n t a ) {
re tu rn Z3 mk in t ( c tx , a , Z 3 m k i n t s o r t ( c t x ) ) ;

}

s t a t i c Z 3 a s t mk var ( Z 3 c o n t e x t c tx , Z 3 s t r i n g name ) {
Z3 symbol s = Z 3 m k s t r i ng sym bo l ( c tx , name ) ;
re tu rn Z3 mk cons t ( c tx , s , Z 3m k i n t s o r t ( c t x ) ) ;

}

s t a t i c Z 3 a s t mk lo ( Z 3 c o n t e x t c tx , Z 3 a s t x ) {
re tu rn Z3 mk ge ( c tx , x , m k in t ( c tx , 0 ) ) ;

}

s t a t i c Z 3 a s t mk mid ( Z 3 c o n t e x t c tx , Z 3 a s t x , Z 3 a s t y , i n t a ) {
Z 3 a s t a r g s [ 2 ] = { x , m k in t ( c tx , a ) } ;
re tu rn Z3 mk ge ( c tx , y , Z3 mk add ( c tx , 2 , a r g s ) ) ;

}

s t a t i c Z 3 a s t mk hi ( Z 3 c o n t e x t c tx , Z 3 a s t y , i n t b ) {
Z 3 a s t a r g s [ 2 ] = { y , m k in t ( c tx , b ) } ;
re tu rn Z3 mk le ( c tx , Z3 mk add ( c tx , 2 , a r g s ) , m kin t ( c tx , 8 ) ) ;

}

s t a t i c Z 3 a s t mk precedence (
Z 3 c o n t e x t c tx ,
Z 3 a s t x ,
Z 3 a s t y ,
i n t a ,
i n t b
)

{
Z 3 a s t a r g s [ 3 ] = { mk lo ( c tx , x ) , mk mid ( c tx , x , y , a ) , mk hi ( c tx , y , b ) } ;
re tu rn Z3 mk and ( c tx , 3 , a r g s ) ;

}

s t a t i c Z 3 a s t m k resou rce (
Z 3 c o n t e x t c tx ,
Z 3 a s t x ,
Z 3 a s t y ,
i n t a ,
i n t b
)

{
Z 3 a s t a rgs1 [ 2 ] ={ y , m k in t ( c tx , a ) } ;
Z 3 a s t ineq1 = Z3mk ge ( c tx , x , Z3 mk add ( c tx , 2 , a rgs1 ) ) ;
Z 3 a s t a rgs2 [ 2 ] ={ x , m k in t ( c tx , b ) } ;
Z 3 a s t ineq2 = Z3mk ge ( c tx , y , Z3 mk add ( c tx , 2 , a rgs2 ) ) ;
Z 3 a s t a rgs3 [ 2 ] ={ ineq1 , ineq2 } ;
re tu rn Z3 mk or ( c tx , 2 , a rgs3 ) ;

}

i n t main ( ) {
Z 3 con f ig c fg = Z3 mk conf ig ( ) ;
Z 3 s e t p a r a m v a l u e ( cfg , ”MODEL” , ” t r u e ” ) ;
Z 3 c o n t e x t c t x = Z3 mk contex t ( c fg ) ;

Z 3 a s t t11 = mkvar ( c tx , ” t11 ” ) ;
Z 3 a s t t12 = mkvar ( c tx , ” t12 ” ) ;
Z 3 a s t t21 = mkvar ( c tx , ” t21 ” ) ;
Z 3 a s t t22 = mkvar ( c tx , ” t22 ” ) ;
Z 3 a s t t31 = mkvar ( c tx , ” t31 ” ) ;
Z 3 a s t t32 = mkvar ( c tx , ” t32 ” ) ;

Z 3 a s s e r t c n s t r ( c tx , mk precedence ( c tx , t11 , t12 , 2 , 1 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , mk precedence ( c tx , t21 , t22 , 3 , 1 ) ) ;
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Z 3 a s s e r t c n s t r ( c tx , mk precedence ( c tx , t31 , t32 , 2 , 3 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t11 , t21 , 3 , 2 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t11 , t31 , 2 , 2 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t21 , t31 , 2 , 3 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t12 , t22 , 2 , 3 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t12 , t32 , 3 , 1 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , m k resou rce ( c tx , t22 , t32 , 3 , 1 ) ) ;
Z3 model m = 0 ;
Z3 boo l r = Z 3 check and ge t m ode l ( c tx , &m) ;
i f (m) {

p r i n t f ( ”%s\n” , Z 3 m o d e l t o s t r i n g ( c tx , m) ) ;
Z3 del model ( c tx , m) ;

}

Z 3 d e l c o n t e x t ( c t x ) ;
Z 3 d e l c o n f i g ( c fg ) ;

}

5.6 Scheduling in C#

We will here take advantage of some features that are specificto the .NET API. This API encapsulates Z3
contexts and terms into objects so that it can use the object-oriented conventions from C# and other .NET
languages. It also, very conveniently, includes operator overloading for common operations, including
addition (+), and comparison (<= and>=), and logical disjunction (|).

us ing M i c r o s o f t . Z3 ;

c l a s s Program {
Con tex t c t x ;

Term m k in t ( i n t a ) { re tu rn c t x . MkIntNumeral ( a ) ; }

Term mk var ( s t r i n g name ){ re tu rn c t x . MkConst ( name , c t x . MkIn tSor t ( ) ) ;}

Term mk lo ( Term x ) { re tu rn x >= m k in t ( 0 ) ; }

Term mk mid ( Term x , Term y , i n t a ) { re tu rn y >= ( x + m k in t ( a ) ) ; }

Term mk hi ( Term y , i n t b ) { re tu rn ( y + m k in t ( b ) ) <= m k in t ( 8 ) ; }

Term mk precedence ( Term x , Term y ,i n t a , i n t b ) {
re tu rn c t x . MkAnd(new Term [ ]{ mk lo ( x ) , mk mid ( x , y , a ) , mk hi ( y , b ) } ) ;

}

Term m k resou rce ( Term x , Term y ,i n t a , i n t b ) {
re tu rn ( x >= ( y + m k in t ( a ) ) ) | ( y >= ( x + m k in t ( b ) ) ) ;

}

vo id encode ( ) {
us ing ( Conf ig c fg = new Conf ig ( ) ) {

c fg . SetParamValue ( ”MODEL” , ” t r u e ” ) ;
us ing ( Con tex t c t x = new Con tex t ( c fg ) ) {

t h i s . c t x = c t x ;

Term t11 = mk var ( ” t11 ” ) ;
Term t12 = mk var ( ” t12 ” ) ;
Term t21 = mk var ( ” t21 ” ) ;
Term t22 = mk var ( ” t22 ” ) ;
Term t31 = mk var ( ” t31 ” ) ;
Term t32 = mk var ( ” t32 ” ) ;
c t x . A s s e r t C n s t r ( mkprecedence ( t11 , t12 , 2 , 1 ) ) ;
c t x . A s s e r t C n s t r ( mkprecedence ( t21 , t22 , 3 , 1 ) ) ;
c t x . A s s e r t C n s t r ( mkprecedence ( t31 , t32 , 2 , 3 ) ) ;
c t x . A s s e r t C n s t r ( m kresou rce ( t11 , t21 , 3 , 2 ) ) ;
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c t x . A s s e r t C n s t r ( m kresou rce ( t11 , t31 , 2 , 2 ) ) ;
c t x . A s s e r t C n s t r ( m kresou rce ( t21 , t31 , 2 , 3 ) ) ;
c t x . A s s e r t C n s t r ( m kresou rce ( t12 , t22 , 2 , 3 ) ) ;
c t x . A s s e r t C n s t r ( m kresou rce ( t12 , t32 , 3 , 1 ) ) ;
c t x . A s s e r t C n s t r ( m kresou rce ( t22 , t32 , 3 , 1 ) ) ;
Model m = n u l l ;
LBool r = c t x . CheckAndGetModel ( ou t m) ;
i f (m != n u l l ) {

m. D isp lay ( System . Conso le . Out ) ;
m. D ispose ( ) ;

}
}

}
}

s t a t i c vo id Main ( ) {
Program p = new Program ( ) ;
p . encode ( ) ;

}
} ;

5.7 Scheduling using F# quotations

The Z3 distribution comes with power utilities for the F# programming language. A prolific feature of
F# is the availability ofquotations. Quotations have their origins in LISP: you can quote a pieceof code
and treat it as data. You can also quote code in F#, and access the abstract syntax tree for it. This feature
is used for encoding formulas as F# expressions. It makes forquite legible syntax. The scheduling
constraints using the quotation support from the Z3 distribution can be formulated as follows:

open Microsoft.Z3

open Microsoft.Z3.Quotations

do Solver.prove <@ Logic.declare

(fun t11 t12 t21 t22 t31 t32 ->

not

((t11 >= 0I) && (t12 >= t11 + 2I) && (t12 + 1I <= 8I) &&

(t21 >= 0I) && (t22 >= t21 + 3I) && (t32 + 1I <= 8I) &&

(t31 >= 0I) && (t32 >= t31 + 2I) && (t32 + 3I <= 8I) &&

(t11 >= t21 + 3I || t21 >= t11 + 2I) &&

(t11 >= t31 + 2I || t31 >= t11 + 2I) &&

(t21 >= t31 + 2I || t31 >= t21 + 3I) &&

(t12 >= t22 + 1I || t22 >= t12 + 1I) &&

(t12 >= t32 + 3I || t32 >= t12 + 1I) &&

(t22 >= t32 + 3I || t32 >= t22 + 1I)

)

)

@>

Let us explain some of the features used in the example:

• Solver.prove consumes an expression of typeExpr<bool>, a quoted expression of typebool.
It checks for validity of the formula that results from compiling the expression. Since, we are
interested insatisfiabilityof the scheduling constraints we check for validity of theirnegation.
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• Logic.declare is a function that takes an arbitrary curried lambda expression and creates fresh
constants for the variables that are bound by the lambda expression. In this case, it creates constants
for t11 t12 t21 t22 t31 t32. The F# type inference will infer that these variables have type
BigInteger. Z3 represents these as plain integers.

• The notationbig integerliterals in F# is to suffix numbers with anI, for example1I and8I. For
“normal” integers, such as1 and8, Z3’s quotation compiler uses fixed-size bit-vectors.

5.8 Scheduling in other formats

It is furthermore possible to formulate scheduling constraints using the binary API toOCaml, theSimplify
format that is a legal input format to Z3, and the native low-level format for Z3. The OCaml API follows
the C API closely, using the same naming conventions. We don’t recommend using these two text APIs
for interactive use of Z3. The Simplify format allows tools that have already taken a dependency on
Simplify to use Z3, and the native low-level text format allows dumping interactions from the binary
APIs to a text file for reproducing potential problems.
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6 Configuring Z3

Z3 exposes more than 200 different parameters that allow configuring Z3’s search engine to use different
heuristics and algorithms. You can list the configuration options from the command-line by calling:

z3.exe /ini?

6.1 Auto Configuration

AUTO CONFIG is an option for Z3 that is specific to SMT-LIB benchmarks. SMT-LIB benchmarks are
annotated with alogic, which indicates the set of theories and symbols that are relevant to the formula. By
default, Z3 usesAUTO CONFIG=true to automatically customize options based on the logic annotation
and other structure information of the benchmark.

6.2 Displaying Configuration

DISPLAY CONFIG=true allows you to retrieve the configuration settings used by Z3 after it completes.
This is useful for knowing whatAUTO CONFIG decided to set.

6.3 Updating Configuration

Parameters are configured prior to running Z3 or prior to creating a logical context (where assertions are
pushed). A few parameters can also be changed once Z3 is running, or once a Z3 logical context has
been created over the API.Z3 update param value is the C-interface function for updating parameter
values. The .NET method is calledUpdateParamValue, and from thesmt2 format you can update
parameter values using

(set-option set-param "<parameter-name>" "<parameter-value>")
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7 Propositional Solving

Propositional logic is a special case of predicate logic. Inpropositional logic, formulas are built from
Boolean variables, calledatoms, and composed using logical connectives such as conjunction, disjunc-
tion and negation. The satisfiability problem for propositional logic is famously known as an NP-
complete problem [7], and therefore in principle computationally intractable. Yet, recent advances in
efficient propositional logic algorithms have moved the boundaries for what is intractable when it comes
to practical applications [24].

Most successful SAT solvers are based on an approach calledsystematic search. The search space is
a tree with each vertex representing a Boolean variable and the out edges representing the two choices
(i.e., true andfalse) for this variable. For a formula containingn Boolean variables, there are 2n leaves
in this tree. Each path from the root to a leaf corresponds to atruth assignment. Amodel is a truth
assignment that makes the formulatrue. We also say the model satisfies the formula. Most search based
SAT solvers are based on the DPLL approach [8]. The DPLL algorithm tries to build a model using three
main operations:decide, propagate andbacktrack. The algorithm benefits from a restricted represen-
tation of formulas in conjunctive normal form (CNF). CNF formulas are restricted to be conjunctions
of clauses, each clause is, in turn, a disjunction ofliterals. A literal is an atom or the negation of an
atom. For example, the formula¬p∧ (p∨q), is in CNF. The operationdecide heuristically chooses an
unassigned atom and assigns it totrue or false. This operation is also calledbranchingor case-splitting.
The operationpropagate deduces the consequences of a partial truth assignment using deduction rules.
The most widely used deduction rule is theunit-clause rule, which states that if a clause has all but one
literal assigned tofalseand the remaining literall is unassigned, then the only way for this clause to
evaluate to true is to assignl to true. LetC be the clausep∨¬q∨¬r, andM the partial truth assignment
{p 7→ false, r 7→ true}, then the only way forC to evaluate totrue is by assigningq to false. Given a
partial truth assignmentM and a clauseC in the CNF formula such that all literals ofC are assigned to
falsein M, then there is no way to extendM to a complete modelM′ that satisfies the given formula. We
say this is aconflict, andC is aconflicting clause. A conflict indicates that some of the earlier decisions
cannot lead to a truth assignment that satisfies the given formula, and the DPLL procedure mustback-
track and try a different branch value. If aconflict is detected and there are no decisions to backtrack,
then the formula is unsatisfiable, that is, it does not have a model. Many significant improvements of
this basic procedure have been proposed over the years. The main improvements are:lemma learn-
ing, non-chronological backtracking, efficient indexing techniquesfor applying the unit-clause rule and
preprocessingtechniques [24].
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7.1 A Propositional Example
(declare-preds ((p1) (p2) (p3) (p4) (p5)))

(assert (=> p1 p2))

(assert (=> p1 p3))

(assert (=> p1 p4))

(assert (not p2))

(check-sat)

; sat

(model)

; ("model" "p1 -> false

; p2 -> false")

(assert p1)

(check-sat)

; unsat

The example on the right encodes satisfiability
checking of the formula

(p1 → p2)∧ (p1 → p3)∧ (p1 → p4)∧¬p2

The values of predicatesp3 and p4 are not
included in the model. They aredont-cares
and irrelevant to the satisfiability. Z3 uses
relevancypropagation to discover this depen-
dency. You can disable relevancy propagation
by using the configurationRELEVANCY=0 from
the command-line. In this case Z3 returns a
model which includes an assignment to the other predicates:

("model" "p1 -> false

p2 -> false

p3 -> false

p4 -> false")

The example on the right also establishes thatp1 must befalse in all satisfying models, because
the formula got unsatisfiable when assertingp1.
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8 Relations, Functions and Constants

The basic building blocks of SMT formulas are constants, functions and relations. Constants are just
functions that take no arguments. Relations are just functions that return a value of Boolean type. Func-
tions can take arguments of Boolean type as well, so you can nest functions and relations arbitrarily. So
everything is really just a function.

We here recall a few facts about functions.

8.1 All functions are total

(push)

(assert (= 1 (div 0 0)))

(check-sat)

; sat

(pop)

(push)

(assert (= 0 (div 0 0)))

(check-sat)

; sat

(pop)

Unlike programming languages, where functions have side-
effects, can throw exceptions, or never return, functions in clas-
sical first-order logic are alltotal. That is, they are defined on all
input values. This includes functions, such as division. Division
by 0 is still defined, yet it is not specified what it means. Any inter-
pretation for division by 0 is admissible. So for example,x divided
by x can be 1 for allx, and 0 divided byx can be 0 for allx. But of
course not both at the same time.

Z3 answerssat on both checks.

8.2 Uninterpreted functions and constants

(declare-sort A)

(declare-funs ((x A) (y A)))

(declare-fun f (A) A)

(assert (= (f (f x)) x))

(assert (= (f x) y))

(assert (not (= x y)))

(check-sat)

; sat

(model)

; ("model" "x -> val!0

; y -> val!1

; f -> {

; val!0 -> val!1

; val!1 -> val!0

; else -> val!0

; }")

Function and constant symbols in pure first-order logic areun-
interpreted, or free, which means that no a priori interpretation
is attached. This is in contrast to functions belonging to the sig-
nature of theories, such as arithmetic where the function+ has
a fixed standard interpretation (it adds two numbers). Uninter-
preted functions and constants are maximally flexible; theyal-
low any interpretation that is consistent with the constraints over
the function or constant.

To illustrate uninterpreted functions and constants let usin-
troduce an (uninterpreted) sortA, and the constantsx, y ranging
overA. Finally let f be an uninterpreted function that takes one
argument of sortA and results in a value of sortA. The example
illustrates how one can force an interpretation wheref applied
twice tox results inx again, butf applied one tox is different
form x.

The resulting model introduces abstract values for the ele-
ments inA, because the sortA is uninterpreted. The function
graph forf in the model toggles between the two values forx andy, which are different. All other
potential values inA map to the interpretation ofx.
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8.3 Recursive functions

Z3 does not provide any special support for recursive functions. You can axiomatize the graph of a
recursive function by using first-order axioms, but one should be aware of that Z3 assigns standard first-
order semantics with the equations and does not assign a least fixed-point solution as is standard with
programming languages.

Let us consider the Fibonnachi function. We can axiomatize it using equations.

(declare-fun fib (Int) Int)

(assert (= 1 (fib 0)))

(assert (= 1 (fib 1)))

(assert (forall (x Int) (=> (x >= 2) (= (fib x) (+ (fib (- x 1) (- x 2)))))))

What is(fib (~ 1))? It is not undefined, it is just not specified by these equations.

(declare-fun IsNat (Int) Bool)

(assert (IsNat 0))

(assert (forall (x Int)

(iff (IsNat (+ x 1))

(or (= x 0) (IsNat x)))))

(assert (IsNat (~ 1)))

(check-sat)

; unknown

(model)

;("model" "IsNat -> {

; 0 -> true

; -1 -> true

; 1 -> true

; 2 -> true

; ...

; 100 -> true

; 101 -> true

; else -> false

;}")

The fact that axiomatizing a recursive
function as a set of equations does not
necessarily capture the semantics of func-
tions can sometimes be confusing. Con-
sider for example, the predicateIsNat. It
returnstrue on the value 0, and if it is
true onx then it is true onx + 1. If we
ask Z3 whether -1 satisfiesIsNat, then
Z3 answersunknown (because the input
has quantifiers, and even worse it integrates
arithmetic, and Z3 is not a decision pro-
cedure in this case). It provides a model
where the numbers 0 to 100 satisfyIsNat,
but also -1 satisfiesIsNat. While the
model does not correctly provide a graph
for IsNat on values greater than 100, there
is no contradiction with havingIsNat hold
on -1. The point is thatanyfixed-point that
satisfies the equations in the axioms is a le-
gal first-order interpretation forIsNat.
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9 Arithmetic

Z3 contains decision procedures for linear arithmetic overthe integers and real numbers. It furthermore
contains some facilities for partial support of non-lineararithmetic using a module for Gröbner basis
completion. Additional material on the main arithmetic decision procedure used in Z3 is available in [15].

9.1 Real linear arithmetic

(declare-funs ((x Real) (y Real) (z Real)))

(push)

(assert (> (+ x y) (* 2.0 z)))

(assert (< (/ z 2.3) x))

(check-sat)

; sat

(model)

; ("model" "x -> 0

; y -> -18/5

; z -> -23/10")

(pop)

(assert (> x 2.0))

(assert (>= y x))

(assert (< y 1.3))

(check-sat)

; unsat

The terminology and notation of SMT-LIB
will be convenient for describing the support
for linear arithmetic.

Linear arithmetic terms of type Real are
formed using the functions+, -, ~ (unary mi-
nus),* where all but one argument is a nu-
meric constant, and/ where the second ar-
gument is a numeric constant. You can com-
pare terms using=, <, <=, >=, >.

The second example on the right uses
constraints of a special form: there are at
most two variables per inequality, and they
appear on different sides of the inequality.
This fragment of arithmetic is calleddiffer-
ence arithmeticor most often calleddiffer-
ence logic. You can instrument Z3 to use
specialized solvers for difference arithmetic
using the optionQF RDL and QF IDL (for
quantifier free integer/real difference logic). The introductory example from Section 5 used difference
arithmetic.

Z3 also accepts formulas over the reals that are non-linear.In this case, Z3 is not a decision pro-
cedure even for quantifier-free formulas. Nevertheless, itcan handle several special cases of non-linear
constraints over the reals by using simplification using Gr¨obner bases.

9.2 Integer linear arithmetic
(declare-funs ((x Int) (y Int) (z Int)))

(push)

(assert (> (+ x y) (* 2 z)))

(assert (< (div z 3) x))

(check-sat)

; sat

(model)

; ("model" "x -> 1

; y -> 0

; z -> 0")

(pop)

(assert (and (> x 2) (>= y x) (< y 1))

(check-sat)

; unsat

In the terminology of SMT-LIB, terms over inte-
ger linear arithmetic are formed using the func-
tions +, -, ~ (unary minus),* where one argu-
ment is a numeric constant, anddiv, mod, rem
where the second argument is a numeric constant
different from 0. You can compare terms using
=, <, <=, >=, >.

The binary APIs expose corresponding func-
tions. In the terminology of the C-API these
are: Z3 mk add (+), Z3 mk mul (*), Z3 mk sub

(-), Z3 mk unary minus (~ ) Z3 mk div (div
and /), Z3 mk mod (mod), Z3 mk rem (rem),
Z3 mk lt (<), Z3 mk le (<=), Z3 mk gt (>),
Z3 mk ge (>=).
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9.3 Mixed linear arithmetic

You can create formulas over mixed integer and linear arithmetic by means of the conversion functions,
that appear in the smt2 standard:

(declare-fun to_real (Int) Real)

(declare-fun to_int (Real) Int)

(declare-fun is_int (Real) Bool)

For example,

(= 4.0 (to_real 4))

(= 4 (to_int 4.5))

(iff (is_int x) (= x (to_real (to_int x))))

9.4 Non-linear arithmetic

Consider the following equalities

(declare-funs ((x Int) (y Int) (z Int)))

(assert (= (* x x) (+ x 2)))

(assert (= (* x y) x))

(assert (= (* (- y 1) z) 1))

(check-sat)

; unsat

Z3 determines that the equalities are unsatisfiable. To accomplish this, Z3 relies on a Gröbner basis
completion of the equalities. The completion deduces from the first equation thatx is different from 0,
and thereforey must be 1 in the second equation. This contradicts the last equation. You can control the
use of non-linear arithmetic in Z3 using the configuration options starting withNL ARITH *.

9.5 Quantifier Elimination for Linear Arithmetic

Quantified linear arithmetic formulas admit quantifier elimination. Z3 includes quantifier elimination
procedures for linear arithmetic over the reals and integers (but not yet mixed linear arithmetic). For
example,

(set-option set-param "ELIM_QUANTIFIERS" "true")

(simplify (forall (x Int) (exists (y Int) (> y (+ x 2)))))

; true

(simplify (forall (x Int) (> 0 (+ x 2))))

; false

(simplify

(exists (l Int)

(forall (x Int)

(implies (>= x l)

(exists (u Int) (v Int)

(and (>= u 0) (>= v 0) (= x (+ (* 3 u) (* 5 v)))))))))

; true

The last problem asks to establish that there is a lower boundl, such that everyx abovel can be
composed as a linear positive combination of 3 and 5. More background on the quantifier-elimination
procedure used in Z3 is available in [3].
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10 Data-types

Algebraic data-types, known from programming languages such as ML, offer a convenient way for spec-
ifying common data-structures. Records and tuples are special cases of algebraic data-types, and so are
scalars (enumeration types). But algebraic data-types aremore general. They can be used to specify
finite lists, trees and other recursive structures.

10.1 Records

A record is specified as a data-type with a single constructorand as many arguments as record elements.
The number of arguments to a record are always the same. The type system does not allow to extend
records and there is no record sub-typing.

The following example illustrates that two records are equal only if all the arguments are equal. It
introduces the typeint-pair, with constructormk-pair and two arguments that can be accessed using
the selector functionsfirst andsecond.

(declare-datatypes ((int-pair (mk-pair (first Int) (second Int)))))

(declare-funs ((p1 int-pair) (p2 int-pair)))

(push)

(assert (= p1 p2))

(assert (not (= (first p1) (first p2))))

(check-sat)

;unsat

(pop)

Just for the record, the same example, when entered in a self-contained C program looks as follows

# inc lude ” z3 . h ”

i n t main ( ) {
Z 3 con f ig c fg = Z3 mk conf ig ( ) ;
Z 3 c o n t e x t c t x = Z3 mk contex t ( c fg ) ;

Z3 symbol mk pai r = Z 3 m k s t r i ng sym bo l ( c tx , ”mk−p a i r ” ) ;
Z3 symbol f i e l d n a m e s [ 2 ] = { Z 3 m k s t r i ng sym bo l ( c tx , ” f i r s t ” ) ,

Z 3 m k s t r i ng sym bo l ( c tx , ” second ” ) } ;
Z 3 s o r t f i e l d s o r t s [ 2 ] = { Z 3 m k i n t s o r t ( c t x ) , Z 3 m k i n t s o r t ( c t x ) } ;
Z 3 f u n c d e c l m k tup le ;
Z 3 f u n c d e c l f i e l d s e l e c t s [ 2 ] = { 0 , 0 } ;

Z 3 s o r t i n t p a i r = Z 3 m k t u p l e s o r t ( c tx , mk pair ,
2 ,
f i e ld nam es ,
f i e l d s o r t s ,

&mk tup le ,
f i e l d s e l e c t s ) ;

Z 3 a s t p1 = Z3 mk cons t ( c tx , Z 3 m k s t r i ng sym bo l ( c tx , ” p1 ” ) , i n t p a i r ) ;
Z 3 a s t p2 = Z3 mk cons t ( c tx , Z 3 m k s t r i ng sym bo l ( c tx , ” p2 ” ) , i n t p a i r ) ;
Z 3 f u n c d e c l f i r s t = f i e l d s e l e c t s [ 0 ] ;

Z 3 a s s e r t c n s t r ( c tx , Z3 mk eq ( c tx , p1 , p2 ) ) ;
Z 3 a s s e r t c n s t r ( c tx , Z3 mk not ( c tx ,

Z3 mk eq ( c tx ,
Z3 mk app ( c tx , f i r s t , 1 , &p1 ) ,
Z3 mk app ( c tx , f i r s t , 1 , &p2 ) ) ) ) ;

Z3 boo l r = Z3 check ( c t x ) ;
i f ( r == Z3 L FALSE ) {

p r i n t f ( ” i t i s u n s a t i s f i a b l e as expec ted\n” ) ;
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}
Z 3 d e l c o n t e x t ( c t x ) ;
Z 3 d e l c o n f i g ( c fg ) ;

}

10.2 Scalars (enumeration types)

A scalar sort is a finite domain sort. The elements of the finitedomain are enumerated as distinct con-
stants. For example, the sortS is a scalar type with three valuesA, B andC. It is possible for three
variables of sortS to be distinct, but not for four variables.

(declare-datatypes ((S (A) (B) (C))))

(declare-funs ((x S) (y S) (z S) (u S)))

(assert (distinct x y z))

(check-sat)

;sat

(assert (distinct x y z u))

(check-sat)

;unsat

The binary API contains a shorthand for declaring scalar sorts. It is calledZ3 mk enumeration sort.

10.3 Recursive data-types

A recursive data-type declaration includes itself directly (or indirectly) as a component. A standard
example of a recursive data-type is the one of lists. An integer list can be specified in Z3’s smt2 front-
end as:

(declare-datatypes ((list (nil) (cons (hd Int) (tl list)))))

Recursive data-types are also uniquely determined by theirarguments.

(declare-funs ((l1 list) (l2 list)))

(push)

(assert (not (= l1 nil)))

(assert (not (= l2 nil)))

(assert (= (hd l1) (hd l2)))

(assert (= (tl l1) (tl l2)))

(assert (not (= l1 l2)))

(check-sat)

; unsat

(pop)

Notice that we also assert thatl1 andl2 are notnil. This is because the interpretation ofhd andtl is
under-specified onnil. So then head (hd) and tail (tl) would not be able to distinguishnil from (cons

(hd nil) (tl nil)).
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10.4 Mutually recursive data-types

You can also specify mutually recursive data-types for Z3. We list one example below.

(declare-datatypes ((opt (None) (Some (list olist)))

(olist (Nil) (Cons (ohd Int) (otl opt)))))

You cannot nest recursive data-type definitions inside other types, such as arrays. So the following
declaration is not accepted by Z3:

(declare-datatypes

((Unsupported (mk-rec-array (hd (Array Int Unsupported))))))

10.5 You will not get Z3 to prove Inductive facts

The ground decision procedures for recursive data-types don’t lift to establishing inductive facts. Z3 does
not contain methods for producing proofs by induction. In particular, consider the following example
where the predicatep is true on all natural numbers, which can be proved by induction overNat. Z3
enters a matching loop as it attempts instantiating the universally quantified implication.

(declare-datatypes ((Nat zero (succ (pred Nat)))))

(declare-preds ((p Nat)))

(assert (p zero))

(assert (forall (?x Nat) (implies (p (pred ?x)) (p ?x))))

(assert (not (forall (?x Nat) (p ?x))))

(check-sat)
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11 Bit-vectors

Modern CPUs and main-stream programming languages use arithmetic over fixed-size bit-vectors. The
theory of bit-vectors allows modeling the precise semantics of unsigned and of signed two-complements
arithmetic. There are a large number of supported functionsand relations over bit-vectors. They are
summarized on Z3’s on-line documentationhttp://research.microsoft.com/projects/z3of the
binary APIs and they are summarized on the SMT-LIB web-sitehttp://www.smtlib.org. We will
not try to give a comprehensive overview here, but touch on some of the main features.

In contrast to programming languages, such as C, C++, C#, Java, there is no distinction between
signed and unsigned bit-vectors as numbers. Instead, the theory of bit-vectors provides special signed
versions of arithmetical operations where it makes a difference whether the bit-vector is treated as signed
or unsigned.

11.1 Basic Bit-vector Arithmetic

(declare-funs ((x BitVec[32]) (y BitVec[32]) (z Int)))

(define x (bvadd x y)) ; addition

(define x (bvsub x y)) ; subtraction

(define x (bvneg x)) ; unary minus

(define x (bvmul x y)) ; multiplication

(define x (bvurem x y)) ; unsigned remainder

(define x (bvsmod x y)) ; signed modulo

(define x (bvshl x y)) ; shift left

(define x (bvlshr x y)) ; unsigned (logical) shift right

(define x (bvashr x y)) ; signed (arithmetical) shift right

Let us illustrate a simple property of bit-wise arithmetic.There is a fast way to check that fixed size
numbers are powers of two. It turns out that a bit-vectorx is a power of two or zero if and only ifx +

(x - 1) is zero. We check this for four bits below.

(define-fun is-power-of-two ((x BitVec[4])) Bool

(= bv0[4] (bvand x (bvsub x bv1[4]))))

(declare-funs ((a BitVec[4])))

(push)

(assert

(not (iff (is-power-of-two a)

(or (= a bv0[4]) (= a bv1[4])

(= a bv3[4]) (= a bv4[4]) (= a bv8[4])))))

(check-sat)

; sat

(model)

; ("model" "a -> bv2[4]")

(pop)

Ups! There was a typo, we should have written 2 instead of 3.

(assert

(not (iff (is-power-of-two a)

(or (= a bv0[4]) (= a bv1[4])
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(= a bv2[4]) (= a bv4[4]) (= a bv8[4])))))

(check-sat)

; unsat

Better!

11.2 Bit-wise Operations

(define x (bvand x y)) ; bit-wise and

(define x (bvor x y)) ; bit-wise or

(define x (bvnot x)) ; bit-wise not

(define x (bvnand x y)) ; bit-wise nand

(define x (bvnor x y)) ; bit-wise nor

(define x (bvxnor x y)) ; bit-wise xnor

We can prove a bit-wise version of de-Morgan’s law:

(declare-funs ((x BitVec[64]) (y BitVec[64])))

(assert (not (= (bvand (bvnot x) (bvnot y)) (bvnot (bvor x y)))))

(check-sat)

; unsat

11.3 Predicates over Bit-vectors

11.3.1 Comparison

(define a (bvule x y)) ; unsigned less or equal

(define a (bvult x y)) ; unsigned less than

(define a (bvuge x y)) ; unsigned greater or equal

(define a (bvugt x y)) ; unsigned greater than

(define a (bvsle x y)) ; signed less or equal

(define a (bvslt x y)) ; signed less than

(define a (bvsge x y)) ; signed greater or equal

(define a (bvsgt x y)) ; signed greater than

Signed comparison, such asbvsle, takes the sign bit of bit-vectors into account for comparison,
while unsigned comparison treats the bit-vector as unsigned (treats the bit-vector as a natural number).

(declare-funs ((a BitVec[4]) (b BitVec[4])))

(assert (not (iff (bvule a b) (bvsle a b))))

(check-sat)

; sat

(model)

; ("model" "a -> bv9[4]

; b -> bv0[4]")

(eval (bv2int[Int] a))

; 9

(eval (bv2int[Int] b))

; 0

(define-fun bv2signed ((x BitVec[4])) Int
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(let ((xI (bv2int[Int] x)))

(ite (bvsge x bv0[4]) xI (- xI 16))))

(eval (bv2signed a))

; (- 0 7)

(eval (bv2signed b))

; 0

11.3.2 Overflow Checks

Z3 exposes special predicates to check for the absence of unsigned multiplication overflows and check
for the absence of signed multiplication overflows and underflows. The predicates take two bit-vectors
of the same length and return true if no overflow or underflow occur.

(define a (bvumul_noovfl x y))

(define a (bvsmul_noovfl x y))

(define a (bvsmul_noudfl x y))

11.3.3 Bit-wise operations

(define a (bvredor x)) ; or-reduction

(define a (bvredand x)) ; and-reduction

11.4 Conversions between Bit-vectors and Integers

Z3 exposes conversion functions between bit-vectors and integers.

(define b (int2bv[32] z)) ; Convert an integer to a 32-bit bit-vector

(define c (bv2int[Int] x)) ; Convert an (unsigned) bit-vector to an integer

It is possible, but expensive, to integrate the theory of integers with bit-vectors. It is therefore turned
off by default in Z3. You can enable it by setting the configuration parameterBV ENABLE INT2BV PROPAGATION

to true.
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12 Arrays

As part of formulating a programme of a mathematical theory of computation McCarthy [25] proposed
abasictheory of arrays as characterized by the select-store axioms

∀A, i,v . store(A, i,v)[i]≃ v

and
∀A, i, j,v . i ≃ j ∨store(A, i,v)[ j]≃ A[ j].

We wroteA[i] instead of the SMT-LIB syntax(select A i ). Z3 contains a decision procedure for
the basic theory of arrays. By default, Z3 assumes that arrays are extensional over select. In other words,
Z3 also enforces that if two arrays agree on all reads, then the arrays are equal:

∀A,B . (∀i . A[i]≃ B[i]) → A≃ B .

It also contains various extensions for operations on arrays that remain decidable and amenable to ef-
ficient saturation procedures (here efficient means, with anNP-complete satisfiability complexity). We
describe these extensions in the following using a collection of examples. Additional background on
these extensions is available in [10].

12.1 Select and Store

Let us first check a basic property of arrays. Supposea1 is an array of integers, then the constraint

a1[x] ≃ x∧store(a1,x,y) ≃ a1

is satisfiable for an array that contains an indexx that maps tox, and whenx= y (because the first equality
forced the range ofx to bex). We can check this constraint.

(define-sorts ((A (Array Int Int))))

(declare-funs ((x Int) (y Int) (z Int)))

(declare-funs ((a1 A) (a2 A) (a3 A)))

(push)

(assert (= (select a1 x) x))

(assert (= (store a1 x y) a1))

(check-sat)

; sat

(get-info model)

; (("model" "x -> 0

; a1 -> (store (const 1) 0 0)

; y -> 0"))

On the other hand, the constraints become unsatisfiable whenassertingx 6≃ y.

(assert (not (= x y)))

(check-sat)

; unsat

(pop)
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12.2 Constant Arrays

The array that maps all indices to some fixed value can be specified in Z3 using theconst[ArrayType]
construct. It takes one value from the range type of the arrayand creates an array. TheArrayType
parameter helps Z3’s type checker to infer the correct type for the constant array. The constant arrays
satisfy the axiom

∀v, i . (const[A]v)[i]≃ v .

So if we try to select an arbitrary index from the constant array, we get the fixed value back.

(define all1_array (const[A] 1))

(simplify (select all1_array x))

; 1

12.3 Array models

Models provide interpretations of the variables (constants) and functions that appear in the satisfiable
formula. An interpretation for arrays consists of a finite number of key-value pairs together with a
default value such that everything that does is not mentioned in the finite set of key-value pairs maps to
the default value.

Schematically, interpretations for arrays are written in the form

(store (store .. (const[A] <val-0>) <key-1> <val-1>) .. <key-n> <val-n>)))

The term(const[A] <val-0>) is an array that maps all indices to<val-0>. The finite set of
key-val pairs<key-1> <val-1>, .., <key-n> <val-n> represent the keys where the interpretation
different values for the specified keys.

12.4 Mapping Functions on Arrays

In the following, we will simulate basic Boolean algebra (set theory) using the array theory extensions
in Z3. Z3 provides a parametrizedmapfunction on arrays. It allows applying arbitrary functionsto the
range of arrays. The map functions satisfy the axioms

∀A, i . map[ f ](A)[i]≃ f (A[i])
∀A,B, i . map[ f ](A,B)[i]≃ f (A[i],B[i])
∀A,B,C, i . map[ f ](A,B,C)[i]≃ f (A[i],B[i],C[i])
. . .

for the cases wheref is unary, binary, ternary, or generallyn-ary. The advantage of using the map
function is of course that the termmap[ f ](A) can be used without accessing the resulting array at the
index i.

In the SMT-LIB syntax, the function parameter tomapshould be an uninterpreted function symbol.
So if we want to mapand, or andnot on Boolean arrays, we will need to define auxiliary functionswith
the same interpretation as these logical connectives.

(define-sorts ((IntSet (Array Int Bool))))

(declare-funs ((and_fn Bool Bool Bool)

(or_fn Bool Bool Bool)

(not_fn Bool Bool)))

(declare-funs ((a IntSet) (b IntSet) (c IntSet)))
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(assert (forall (x Bool) (y Bool)

(iff (and_fn x y) (and x y))))

(assert (forall (x Bool) (y Bool)

(iff (or_fn x y) (or x y))))

(assert (forall (x Bool)

(iff (not_fn x) (not x))))

Let us check that
a∩b = b∪a

(push)

(assert

(not

(= (map[and_fn] a b)

(map[not_fn] (map[or_fn] (map[not_fn] b) (map[not_fn] a)

)))))

(check-sat)

; unsat

(pop)

For convenience, Z3 exposes shorthands for set operations,so the same example can be written in a
much more readable way:

(push)

(assert

(not

(= (intersect a b)

(complement (union (complement b) (complement a))))))

(check-sat)

; unsat

(pop)

We can also check facts about set membership. Theselect function simulates set membership.

x∈ (a∩b) → x∈ a

(push)

(assert (select (map[and_fn] a b) x))

(assert (not (select a x)))

(check-sat)

; unsat

(pop)

It is of coursenot the case that
x∈ (a∪b) → x∈ a

(push)

(assert (select (map[or_fn] a b) x))

(assert (not (select a x)))

(check-sat)

; unknown
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(get-info model)

; (("model" "a -> (const false)

; x -> 0

; b -> (store (const false) 0 true)

; or_fn -> {

; false false -> false

; false true -> true

; else -> false

; }"))

while it is the case that
x∈ (a∪b) → x∈ a∨x∈ b

(assert (and (not (select b x))))

(check-sat)

(pop)

12.5 Default array values

The functiondefault[ArrayType] takes as argument an arraya and returns a value from the range.
Z3 ensures that in the default value used in models for the array a are equal to (default[A] a).

The following example illustrates constraints that forcea1 to be different from the array that maps
all keys to 1, yet, the default value is constrained to be 1. Inother words,a1 must map some key to a
value different from 1. Z3 selects the key arbitrary to be 0, and the value to be 2 in the model.

(push)

(assert (= (default[A] a1) 1))

(assert (not (= a1 (const[A] 1))))

(check-sat)

(model) ; short for (get-info model)

; ("model" "a1 -> (store (const 1) 0 2)")

More than one array can have the same default value.

(assert (= (default[A] a2) 1))

(assert (not (= a1 a2)))

(check-sat)

(model)

; ("model" "a1 -> (store (store (const 1) 0 2) 3 4)

; a2 -> (store (const 1) 3 5)")

(pop)

12.6 Bags as Arrays

We can use the parametrized map function together with the default accessor to encode finite sets and
finite bags. Finite bags can be modeled similarly to sets. A bag is here an array that maps elements to
their multiplicity. Main bag operations includeunion, obtained by adding multiplicity,intersection, by
taking the minimum multiplicity, and a dualjoin operation that takes the maximum multiplicity. The bag
operations
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(declare-sort A)

(define-sorts ((ABag (Array A Int))))

(declare-funs ((bag_min Int Int Int)

(bag_or Int Int Int)

(bag_max Int Int Int)))

(declare-funs ((a ABag) (b ABag) (c ABag)))

(assert (forall (x Int) (y Int)

(= (bag_min x y) (ite (< x y) x y))))

(assert (forall (x Int) (y Int)

(= (bag_max x y) (ite (< x y) y x))))

(assert (forall (x Int) (y Int)

(= (bag_or x y) (+ x y))))

We can then usedefault to enforce that finite bags map everything but a finite set of integers to 0.

(assert (= (default[ABag] a) 0))

(assert (= (default[ABag] b) 0))

(assert (= (default[ABag] c) 0))

12.7 Summary of Array operations

Let us summarize the array operations available in Z3 (usingsmt2 syntax). We useA as a name for
(Array I V),A1 for (Array I V1), A2 for (Array I V2) andSetI as a name for(Array I Bool).

Usage Signature Description
(select i) A I V selects contents at indexi

(store a i v) A I V A
produces array where contents of indexi is
updated tov

(const[A] v) V A
produces the constant array. All indices map
to v

(default[A] a) A V
selects an default value for the array. It com-
plementsconst

(map[f] a b ..) A1 A2 .. A maps functionf on the range ofa b ..

(union a b) SetI SetI SetI creates the union of two arrays as sets
(intersect a b) SetI SetI SetI creates the intersection of two sets
(difference a b) SetI SetI SetI creates the intersection of two sets
(complement a) SetI SetI creates the complement of a set
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13 Quantifiers

Apart from linear quantifier-elimination introduced in Section 9.5 and in connection with recursive func-
tion axioms 8.3, all formulas have so far beenquantifier-free. Z3 is adecision procedurefor the combi-
nation of the previous quantifier-free theories. That is, itcan answer whether a quantifier-free formula,
modulo the theories referenced by the formula, is satisfiable or whether it is unsatisfiable. Z3 also accepts
and can work with formulas that use quantifiers. It is no longer a decision procedure for such formulas
in general (and for good reasons, as there can be no decision procedure for first-order logic).

Nevertheless, Z3 is often able to handle formulas involvingquantifiers. It uses two main approaches
to handle quantifiers. The most prolific approach is usingpattern-basedquantifier instantiation (Sec-
tion 13.2). This approach allows instantiating quantified formulas with ground terms that appear in
the current search context based onpattern annotationson quantifiers. The second approach is based
on saturation theorem provingusing a superposition calculus which is a modern method for applying
resolution style rules with equalities. Section 13.4 introduces this component. The pattern-based instan-
tiation method is quite effective, even though it is inherently incomplete. The saturation based approach
is complete for pure first-order formulas, but does not scaleas nicely and is harder to predict.

Besides the two main quantifier engines, Z3 also contains a model-based quantifier instantiation
component (Section 13.5) that uses a model construction to find good terms to instantiate quantifiers
with; and Z3 also handles the array property fragment [5], described in Section 13.6.

13.1 Modeling with Quantifiers

Suppose we want to model an object oriented type system with single inheritance. We would need a
predicate for sub-typing. Sub-typing should be a partial order, and respect single inheritance. For some
built-in types, such as forList, sub-typing should be monotone. Figure 4 axiomatizes the sub-typing
relationship using first order quantifiers.

(∀x: sub(x,x))

(∀x,y,z: sub(x,y)∧sub(y,z)→ sub(x,z))

(∀x,y: sub(x,y)∧sub(y,x)→ x= y)

(∀x,y,z: sub(x,y)∧sub(x,z)→ sub(y,z)∨sub(z,y))

(∀x,y: sub(x,y)→ sub(List(x),List(y)))

Figure 4: Axioms forsub

The axioms are rewritten as smt2 assertions in Figure 5. In the following, we describe how these
axioms can be further tailored to work in the context of the SMT solver Z3.

13.2 Patterns

The Stanford Pascal verifier and the subsequent Simplify theorem prover [14] pioneered the use of
pattern-based quantifier instantiation. The basic idea behind pattern-based quantifier instantiation is in a
sense straight-forward: Annotate a quantified formula using apattern that contains all the bound vari-
ables. So a pattern is a term (that does not contain binding operations, such as quantifiers) that contains
variables bound by a quantifier. Then instantiate the quantifier whenever a term that matches the pattern
is created during search. This is a conceptually easy starting point, but there are several subtleties that
are important.
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(declare-sort Type)

(declare-fun subtype (Type Type) Bool)

(delcare-fun List (Type) Type)

(assert (forall (x Type) (subtype x x)))

(assert (forall (x Type) (y Type) (z type)

(=> (and (subtype x y) (subtype y z))

(subtype x z))))

(assert (forall (x Type) (y Type)

(=> (and (subtype x y) (subtype y x))

(= x y))))

(assert (forall (x Type) (y Type) (z type)

(=> (and (subtype x y) (subtype x z))

(or (subtype y z) (subtype z y)))))

(assert (forall (x Type) (y Type)

(=> (subtype x y)

(subtype (List x) (List y)))))

Figure 5: Axioms forsub

For example, if we annotate the last axiom from Figure 5 with the following pattern (and Z3’s auto-
matic pattern inference algorithm might very well do so):

(assert (forall (x Type) (y Type)

(=> (subtype x y) (subtype (List x) (List y)))

:pat { (subtype x y) }))

the axiom gets instantiated whenever there is some ground term of the form(subtype s t). The in-
stantiation causes a fresh ground term(subtype (List s) (List t)), which enables a new instan-
tiation. This undesirable situation is called amatching loop. It could be tempting to use the alternative
pattern annotation

(assert (forall (x Type) (y Type)

(=> (subtype x y) (subtype (List x) (List y)))

:pat { (subtype (List x) (List y)) }))

but this annotation does not admit instantiate all relevantinstances of the axioms. Take the following
example of assertions that are unsatisfiable in the context of the axioms:

(declare-funs ((a Type) (b Type) (c Type) (d Type)))

(assert (and (subtype a (List b)) (subtype b c) (subtype (List c) d)))

(assert (not (subtype a d)))

Unfortunately, the missing link for the transitive closureaxiom(subtype (List b) (List c)) does
not get instantiated using this pattern annotation. You will be better of splitting the pattern into two
patterns. One that bindsx and another that bindsy. This is called amulti-pattern.

(assert (forall (x Type) (y Type)

(=> (subtype x y) (subtype (List x) (List y)))

:pat { (List x) (List y) }))
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Before elaborating on the subtleties, we should address an important first question. What defines the
terms that are created during search? In the context of most SMT solvers, and of the Simplify theorem
prover, terms exist as part of the input formula, they are of course also created by instantiating quantifiers,
but terms are also implicitly created when equalities are asserted. The last point means that terms are
considered up to congruence and pattern matching takes place modulo ground equalities. We call the
matching problemE-matching. For example, if we have the following equalities:

(declare-funs ((f Int Int) (g Int Int) (a Int) (b Int) (c Int)))

(assert (= (g (g b)) b))

(assert (= (f b) c))

(forall (x Int) (= (f (g (g x))) x) :pat { (f (g (g x))) })

then the termsc, (f b), (f (g (g b))), (f (g (g (g (g b))))), etc. are equal modulo the equal-
ities. The pattern (f (g (g x))) can be matched andx bound tob (and the equality(= b c) is deduced).

While E-matching is an NP-complete problem, the main sources of overhead in larger verification
problems comes from matching thousands of patterns in the context of an evolving set of terms and
equalities. Z3 integrates an efficient E-matching engine [11] using term indexing techniques.

13.2.1 An operational context of pattern-based instantiation

The context where E-matching is used is inherently operational. We will therefore here review the basic
setting of the DPLL(T) search and how quantifiers are instantiated. We will call DPLL(T) with quantifiers
DPLL(QT) (obviously pronounced cute) as it exemplifies a plain combination of quantifier instantiation
with propositional search.

In DPLL(QT), all maximal sub-formulas that use a quantifier are replaced by a fresh propositional
variable. So we rewrite the formulaϕ [∀x.ψ ] where the sub-formula∀x.ψ occurs instead of asϕ [p∀x.ψ ].

In the context of Z3, we can furthermore assume an optimization: that the sub-formulas that are
rewritten in this way are all positive sub-formulas with universal quantifiers, because we can replace
existential quantifiers by constants without changing the satisfiability of the formula (in other words, we
canSkolemizethe formula prior to creating the propositional abstraction).

Suppose that DPLL(QT) setsp∀x.ψ to true, then any modelM for ϕ [p∀x.ψ ] extends to a model of
ϕ [∀x.ψ ] if it satisfiesψ [t/x] for every ground termt. In other words, we can add the axioms

p∀x.ψ → ψ [t/x]

for any ground termt to enforce this property. Since we assume thatp occurs with positive polarity, we
don’t need to bother if DPLL(QT) setsp∀x.ψ to false.

13.2.2 Pattern and multi-pattern annotations

So, which ground terms should be used for these axioms? This is where E-matching is used. To iden-
tify the terms to substitute forx, E-matching relies on a pattern annotated with the quantified formula.
Reasonable patterns associated with the McCarthy array axioms are provided in curly braces after the
binding:

∀A, i,v.{write(A, i,v)} . read(write(A, i,v), i) = v (1)

∀A, i,v.{read(write(A, i,v), j)} . i = j ∨ read(write(A, i,v), j) = read(A, j) (2)

These two patterns arereasonable, but they turn out to not be complete (not even for non-extensional
arrays). The followingmulti-pattern, it consists of two terms that must be matched (in order to bind all
the quantified variables), completes the picture for the McCarthy array theory (without extensionality).
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∀A, i,v.{write(A, i,v), read(A, j)} . i = j ∨ read(write(A, i,v), j) = read(A, j) (3)

This axiom easily leads to an explosion in the number of instances because it can combine a cross-
product of array accesses toA with a set of independent updates to it. Equation (2) is less harmful, even
though it could createn·m terms, when there aren nested writes, accessed bym independent reads. We
illustrate the “harmful” example below.

(declare-fun A () (Array Int Int))

(declare-funs ((i_1 Int) ... (i_n Int)))

(assert

(let (x (store A i_1 1))

..

(let (x (store x i_n n))

(= 0 (+ (select x 1) .. (select x m))))))

13.2.3 Injective functions

Another prime example where a multi-pattern causes harm is in the context of axiomatizing injectivity.
The functionf is injective if:

(declare-sorts (A B))

(declare-fun f (A) B)

(assert (forall (x A) (y A) (=> (= (f x) (f y)) (= x y))))

The straight-forward pattern annotation of this axiom is:

(assert (forall (x A) (y A)

(=> (= (f x) (f y)) (= x y))

:pat { (f x) (f y) }))

Thus, the axiom is instantiated for every pair of occurrences of f. A simple trick allows formulating
injectivity of f in such a way that only a linear number of instantiations is required. The trick is to realize
thatf is injective if and only if it has a partial inverse.

(declare-fun f-inv (B) A)

(assert (forall (x A) (= x (f-inv (f x))) :pat { (f x) }))

13.2.4 No-patterns

The annotation:nopat can be used to instrument Z3 not to use a certain sub-term as a pattern. The
pattern inference engine may otherwise choose arbitrary sub-terms as patterns to direct quantifier instan-
tiation.

For example,

(declare-fun g (B) A)

(declare-fun f (A) B)

(assert (forall (x A) (= x (g (f x))) :nopat { (f x) }))

causes Z3 to use the pattern(g (f x)) instead of(f x), which is annotated as a:nopat.
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13.2.5 Programming with Triggers

The following section uses examples from the paper [26]. Thepaper is based on several practical ex-
periences with using pattern-based quantifier-instantiation in the context of the Verifying C Compiler
project. The examples are quite illustrative.

Consider the axiom
(A\B)\C = A\ (B∪C)

if we for a moment disregard the encoding of sets into arrays (as described in Section 12.4), we may
choose to axiomatize the equality as a rewrite from left to right, by specifying the left hand side as a
pattern.

(declare-sort Set)

(declare-funs ((sub Set Set Set) (cup Set Set Set)))

(assert (forall (A Set) (B Set) (C Set)

(= (sub (sub A B) C) (sub A (cup B C)))

:pat { (sub (sub A B) C) }

))

We can now check the theorem on nested terms. Three nested occurrences ofsub requires four
quantifier instantiations.

(declare-funs ((a1 Set) (a2 Set) (a3 Set) (a4 Set) (a5 Set) (a6 Set)))

(push)

(assert (not (= (sub (sub (sub a1 a2) a3) a4)

(sub a1 (cup (cup a2 a3) a4)))))

(check-sat)

; unsat

(get-info statistics)

; ..

; num. qa. inst: 4

; ..

(pop)

Five nested occurrences ofsub require 12 quantifier instantiations (if you run this in extension of the
previous check Z3 indicates 16 instantiations, but this figure is the cumulative number of instances).

(push)

(assert (not (= (sub (sub (sub (sub a1 a2) a3) a4) a5)

(sub a1 (cup (cup (cup a2 a3) a4) a5)))))

(check-sat)

; unsat

(get-info statistics)

; num. qa. inst: 12

(pop)

Six, seven and eight nestings result in 38, 98 and 344 quantifier instantiations, respectively. The
number of quantifier instantiations grows exponentially with the number of nestedsubs. One can avoid
the exponential number of instantiations by using the following trick, which uses a special version of
sub to control quantifier instantiation.
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(declare-fun subM (Set Set) Set)

(assert (forall (A Set) (B Set)

(= (sub A B) (subM A B))

:pat { (sub A B) }))

(assert (forall (A Set) (B Set) (C Set)

(= (sub (subM A B) C) (subM A (cup B C)))

:pat { (sub (subM A B) C) }

))

It carefully shifts a marker such that only a quadratic number of instantiations is required. The number
of instantiations grow from 7, 11, 16, 22 to 29 for the same setof nestings.

13.3 The Axiom Profiler

As should be evident, programming with triggers is both an art and a craft. TheZ3 Axiom Profileris a
tool that can be used to profile quantifier instantiations, and especially track how quantifier instantiations
trigger other instantiations. The Z3 Axiom Profiler is available from

http://vcc.codeplex.com/Wiki/View.aspx?title=Z3%20Axiom%20Profiler

13.4 Saturation

While pattern-based quantifier instantiation is quite effective and has advantages with respect to how
quantifier instantiation can be controlled, it also comes with some basic limitations. One limitation is
that patterns require variables to be in the scope of a function symbol. Equality is excluded. There are
no ways to annotate the quantifier with patterns for Z3:

(declare-sorts (Person))

(declare-funs ((Adam Person) (Eve Person) (p Person)))

(assert (forall (x Person) (or (= x Adam) (= x Eve))))

(assert (not (or (= p Adam) (= p Eve))))

(check-sat)

; unknown

; (error

; "WARNING: failed to find a pattern for quantifier (quantifier id: k!2)")

Saturation-based theorem proving, using superposition, overcomes several of the limitations of pattern-
based quantifier instantiation. On the other hand, the overhead of search can be more unpredictable
and is not controllable in the same way. You can enable saturation by setting the configuration option
SATURATE to true. With this option, Z3 produces the expected resultunsat. The background of the
saturation algorithms used in Z3 are elaborated on in cite [13].

13.5 Model-based Quantifier Instantiation

Z3 can use some information from the current partial model for the ground goal to instantiate quantifiers.
You can enable model-based quantifier instantiation in Z3 using the configuration optionQI MODEL CHECKER=1

(which instantiates quantifiers by values from the current model if these values contradict the quantifiers),
or QI MODEL CHECKER=2, which instantiates quantifiers by instances that either evaluate tofalse or are
not specified in the current model.
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13.6 The Array Property Fragment

The optionARRAY PROPERTY=true enables thearray propertyfragment. This works in the context of
quantified formulas that use the array functionsstore andselect. The array property fragment is
described in [5].
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14 Simplification

The main use of Z3 is to check whether formulas are satisfiableand optionally obtain a model, or un-
satisfiable and optionally obtain a proof. The core of satisfiability checking uses and benefits from
pre-processing simplification, but does not require it, other than for eliminating functions that can be
replaced by others. For example,x - y is replaced byx + -1*y, such that Z3’s core does not need to
handle subtraction as a special case. Thus, simplification is used as a convenience, but not as a neces-
sity. This contrasts BDD (binary decision diagram) packages, that besides check propositional formulas
for satisfiability also normalize propositional formulas into a unique normal form. Two propositional
formulas are equivalent if and only if their binary decisiondiagrams are equal.

Since several applications may benefit from simplification,Z3 exposes its expression simplifier. Us-
ing the simplifier in context of Z3 can have an advantage if thesame formula is used in several different
scopes. Then it is an advantage to operate with the pre-simplified formula in contrast to potentially
re-simplify the same formula multiple times.

14.1 Invoking the Simplifier

Simplification can be invoked from thesmt2 command-line, or it can be invoked over the binary APIs.
The C function for calling the simplifier is calledZ3 simplify and the .NET method is calledSimplify.
They both return a simplified expression.

The expression is simplified in the context of the formulas that may have been asserted to the current
context.

14.2 Configuring Simplification

You can control the strength of the simplifier using a few configuration options.

14.2.1 ELIM QUANTIFIERS

Z3’s simplifier can also be used to exercise the quantifier elimination routines. This was illustrated in
Section 9.5.

14.2.2 CONTEXT SIMPLIFIER

This setting can be used to simplify sub-formulas totrueor false. For example it can be used to simplify
p∧ (p∨q) to p by realizing that the second nested occurrence ofp is subsumed by the top-levelp. It
uses syntactic matching to simplify sub-formulas, it does not invoke any decision procedures.

14.2.3 STRONG CONTEXT SIMPLIFIER

This setting can also be used to simplify sub-formulas totrue or false. It uses decision procedures to
check subsumption.

(declare-funs ((x Int) (y Int)))

(simplify (or (and (< -1 (+ y x)) (< x y)) (and (< -1 (+ x y)) (>= x y))))

; (or (not (or (<= (+ y x) (- 0 1)) (<= (+ y (* (- 0 1) x)) 0)))

; (not (or (<= (+ y x) (- 0 1)) (not (<= (+ y (* (- 0 1) x)) 0)))))

(set-option set-param "STRONG_CONTEXT_SIMPLIFIER" "true")

(simplify (or (and (< -1 (+ y x)) (< x y)) (and (< -1 (+ x y)) (>= x y))))
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; (not (<= (+ y x) (- 0 1)))
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15 Implied Equalities

The formula
ϕ : x≤ y+1∧y≤ z−1∧z≤ x

is satisfiable, but it constrains the interpretations forx,y, andzsuch thatx= y+1= z. Some applications
would like to use such information. Z3 exposes APIs for learning implied equalities. From smt2, you
can learn the implied equalities using a query of the form:

(declare-funs ((x Int) (y Int) (z Int)))

(assert (and (<= x (+ y 1)) (<= y (- z 1)) (<= z x)))

(get-implied-equalities x z (+ y 1) y (- z 1))

; (18 18 18 19 19)

Theget-implied-equalities function takes a list of terms as arguments. It produces a list of integers.
Each integer identifies a partition, so that two terms in the same equivalence class receive the same
partition identifier. In the example the termsx, z and(+ y 1) are equal, so arey and(- z 1).

From the C-API you can query implied equalities using

Z3_context context;

unsigned num_terms; // number of terms

Z3_ast terms[num_terms]; // array of terms

usigned class_ids[num_terms]; // output array of partition identifiers

Z3_bool is_sat;

is_sat = Z3_get_implied_equalities(context, num_terms, terms, class_ids);
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16 Unsatisfiable Cores

(set-option enable-cores)

(declare-funs ((f U U) (a U) (b U)))

(declare-funs ((c U) (d U) (e U)))

(declare-funs ((x U) (y U)))

(declare-preds ((p U U) (p1) (p2)))

(declare-preds ((p3) (p4) (p5)))

(assert (or p1 (= a b)))

(assert (or (not p1) (= a b)))

(assert (= x b))

(assert (= y a))

(assert (or false (= c d)))

(assert (and (= b c) (= d e)))

(assert (or p1 p2))

(assert (or p2 p3))

(assert (not (= (f a) (f e))))

(get-unsat-core)

Figure 6: Unsatisfiable core withsmt2

Z3 exposes a way to extract an unsatisfiable set
of assertions, commonly called anunsatisfiable
core. The easiest way to extract an unsatisfiable
core is by using thesmt2 interface. Figure 6 il-
lustrates how to invoke Z3 to extract an unsatisfi-
able core. Extracting unsatisfiable cores imposes
extra run-time overhead, so Z3 requires that you
instruct it to enable core extraction using the com-
mand(set-option enable-cores).

The C API functionZ3 check assumptions

takes as input a set of literals. The literals are as-
sumed. It returns a proof object and a sub-list of
the input literals that were used in the unsatisfiable
core (if the assertions and assumptions together
are unsatisfiable).
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17 Parallel Z3

The Z3 distribution comes with two specially designated binary directoriesbin mt andx64 mt, for the
32-bit and a 64-bit version a multi-threaded (and parallel)Z3. By default, all versions of parallel Z3
behave like the sequential Z3.

To run a parallel Z3, runz3.exe in the directorybin mt (or x64 mt for 64 bit machines) and supply
the number of cores that you want to run, e.g.,

z3 <file.smt> PAR_NUM_THREADS=4

The different cores communicate with each-other by exchanging learned lemmas. Lemma sharing
may be configured via two options:

• CC SHARING: Sets the sharing mode (0=off, 1=dynamic, 2=static)

• CC SHARING LIMIT NEAR: Sets the maximum lemma size for inter-core sharing.

E.g., to run four cores with static sharing of lemmas up to size 8, use

z3 <file.smt> PAR_NUM_THREADS=4 PAR_SHARING=2 PAR_SHARING_LIMIT_NEAR=8

17.1 Portfolio Setup

By default, Z3 will start up to eight different SAT-strategies. Users can configure their own portfolio on
the command line; automatic configuration is turned off if this feature is used. For example, to run on
three cores with identical configuration, but different initial restart intervals, use

z3 <file.smt> PAR_NUM_THREADS=3 RESTART_INITIAL=100{200,300}

where 100 is the default option and 200,300 configures the first two cores. I.e., using the above
configuration, the first two cores on the machine will use 200 and 300 as their initial restart intervals,
while the third core uses 100.
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18 Proofs

Z3 can generate proof objects. Fine-grained proofs (enabled by settingPROOF MODE=2) include detailed
rewrite steps from the pre-processor, coarse-grained proofs (enabled by settingPROOF MODE=1) summa-
rize several rewriting steps into one.

Proofs objects are represented as terms and proof rules are pre-defined functions. The proof leaves
are either asserted formulas, recognized by the functionasserted applied to a Boolean formula, or
hypotheses. The main proof rules are modus ponensmp, which applies to implications and equivalences,
and unit resolutionunit resolution, which resolves literals away from a clause.

The following is a simple proof object generated by Z3.

(declare-preds ((p) (q)))

(assert (implies p q))

(assert p)

(assert (not q))

(check-sat)

; unsat

(get-proof "stdout")

; (let (?x27 (asserted p))

; (let ($x28 (not q))

; (let (?x30 (asserted $x28))

; (let ($x23 (not p))

; (let ($x24 (or $x23 q))

; (let (?x29 (mp (asserted (implies p q))

; (rewrite (iff (implies p q) $x24)) $x24))

; (unit_resolution ?x29 ?x30 ?x27 false)))))))

A high-level overview of the proof objects in Z3 is presentedin [12]. The Isabelle2 and HOL43

theorem provers integrate Z3’s proof objects to create tactics, such that Z3 can be run as an untrusted
oracle.

2http://isabelle.in.tum.de/
3http://hol.svn.sourceforge.net/viewvc/hol/HOL/src/HolSmt/
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19 External Theory Solvers

In Section 13.1, we described an example showing how quantifiers can be used to encode a theory (sub-
typing) not supported by Z3. The main disadvantage of this approach is that, in general, Z3 is not a
decision procedure for formulas containing quantifiers. So, Z3 may not terminate or returnunknownfor
satisfiable formulas. In this Section, we describe how to implement an external theory solver and connect
it to Z3.

We describe the API using a simple example: a theoryT that contains a sortS, a constantu, a binary
function f , and a binary predicatep. The theory axioms are:

∀x: S. f (x,u) = x
∀x: S. f (u,x) = x
∀x: S. p(x,x)

The constantu is theunit for f , andp is reflexive.
The first steps for creating a new theory are:

1. Define a new structure for storing theory specific data.

2. Register the new theory in the logical context, and bind itto the theory specific data-structure.

3. Define the theory sorts, constants, functions and predicates.

The implement the steps above, we use the following API functions:

Z3_theory Z3_mk_theory(

Z3_context c,

Z3_string th_name,

Z3_theory_data data

);

Z3_sort Z3_theory_mk_sort(

Z3_theory t,

Z3_symbol s

);

Z3_ast Z3_theory_mk_constant(

Z3_theory t,

Z3_symbol n,

Z3_sort s

);

Z3_func_decl Z3_theory_mk_func_decl(

Z3_theory t,

Z3_symbol n,

unsigned domain_size,

Z3_sort const domain[],

Z3_sort range

);
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typedef void Z3_theory_callback_fptr(Z3_theory t);

void Z3_set_delete_callback(

Z3_theory t,

Z3_theory_callback_fptr f

);

The typeZ3 theory data is just an alias forvoid *. The functionZ3 mk theory creates a new
theory. Internally, the theory is identified by the given name (th name), and it contains a reference to
the theory specific data-structuredata. The functionsZ3 theory mk sort, Z3 theory mk constant,
Z3 theory mk func decl are used to register theory sorts, constants, functions andpredicates. Z3 does
not distinguish between functions and predicates. A predicate is just a function that returns a Boolean.
The functionZ3 set delete callback(t, f) registers a callbackf that is invoked before theoryt is
deleted by Z3 when the logical context containingt is deleted. You can use this to release memory and
other resources that are allocated with the theory.

To implement our simple theory, we first define the following Cstructure:

typedef struct _SimpleTheoryData {

Z3_sort S;

Z3_func_decl f;

Z3_func_decl p;

Z3_ast u;

} SimpleTheoryData;

The following C function registers the simple theory in the given logical contextctx.

Z3_theory mk_simple_theory(Z3_context ctx) {

Z3_sort f_domain[2];

Z3_symbol s_name = Z3_mk_string_symbol(ctx, "S");

Z3_symbol f_name = Z3_mk_string_symbol(ctx, "f");

Z3_symbol p_name = Z3_mk_string_symbol(ctx, "p");

Z3_symbol u_name = Z3_mk_string_symbol(ctx, "u");

Z3_sort B = Z3_mk_bool_sort(ctx);

SimpleTheoryData * td = (SimpleTheoryData*)malloc(sizeof(SimpleTheoryData));

Z3_theory Th = Z3_mk_theory(ctx, "simple_th", td);

td->S = Z3_theory_mk_sort(Th, s_name);

f_domain[0] = td->S; f_domain[1] = td->S;

td->f = Z3_theory_mk_func_decl(Th, f_name, 2, f_domain, td->S);

td->p = Z3_theory_mk_func_decl(Th, p_name, 1, &td->S, B);

td->u = Z3_theory_mk_constant(Th, u_name, td->S);

//

// At this point, we register the theory callback functions.

// We describe the first callback in some detail below.

//

Z3_set_reduce_app_callback(Th, Th_reduce_app);

Z3_set_new_app_callback(Th, Th_new_app);

Z3_set_new_elem_callback(Th, Th_new_elem);

Z3_set_init_search_callback(Th, Th_init_search);
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Z3_set_push_callback(Th, Th_push);

Z3_set_pop_callback(Th, Th_pop);

Z3_set_reset_callback(Th, Th_reset);

Z3_set_restart_callback(Th, Th_restart);

Z3_set_new_eq_callback(Th, Th_new_eq);

Z3_set_new_diseq_callback(Th, Th_new_diseq);

Z3_set_new_relevant_callback(Th, Th_new_relevant);

Z3_set_new_assignment_callback(Th, Th_new_assignment);

Z3_set_final_check_callback(Th, Th_final_check);

return Th;

}

Our functionmk simple theory is not finished yet. We still have to register callbacks for our new
theory. Z3 communicates with an external theory implementation using callbacks: C function pointers.
There are several callbacks that can be registered for each given external theory. When a theory is
deleted by Z3, we should free the theory specific data-structure. We can accomplish that by defining the
C function, and registering it as adelete callback.

void Th_delete(Z3_theory t) {

SimpleTheoryData * td = (SimpleTheoryData *)Z3_theory_get_ext_data(t);

printf("Delete\n");

free(td);

}

In the callback above, the functionZ3 theory get ext data is used to retrieve the theory specific
data-structure. We also add the following statement in the functionmk simple theory.

Z3_set_delete_callback(Th, Th_delete);

The next set of callbacks is used to implement theory specificsimplifications in the Z3 simplifier.
The Z3 simplifier is applied to any formula asserted into the logical context, any instance of a universal
quantified formula, and axioms asserted by external theories. It can also be directly invoked using the
functionZ3 simplify.

typedef Z3_bool Z3_reduce_app_callback_fptr(

Z3_theory, Z3_func_decl, unsigned, Z3_ast const [], Z3_ast *);

typedef Z3_bool Z3_reduce_eq_callback_fptr(

Z3_theory t, Z3_ast a, Z3_ast b, Z3_ast * r);

typedef Z3_bool Z3_reduce_distinct_callback_fptr(

Z3_theory, unsigned, Z3_ast const [], Z3_ast *);

void Z3_set_reduce_app_callback(

Z3_theory t, Z3_reduce_app_callback_fptr f);

void Z3_set_reduce_eq_callback(

Z3_theory t, Z3_reduce_eq_callback_fptr f);
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void Z3_set_reduce_distinct_callback(

Z3_theory t, Z3_reduce_distinct_callback_fptr f);

All simplification (reduction) callbacks return a Boolean value, it isZ3 TRUE if callback managed
to simplify the input, and the result is stored in the last argument. If the callback returnsZ3 FALSE,
then the result is ignored, and Z3 uses its default procedurefor handling the application. Areduce
applicationcallback is set using the functionZ3 set reduce app callback(t, f), the callbackf is
invoked whenever the Z3 simplifier tries to simplify a term ofthe formg(t1, . . . , tn), whereg is a theory
function/predicate. The equality and distinct callback are invoked whenever the simplifier finds a term
of the formt1 = t2 or distinct(t1, . . . , tn) respectively, where the sort oft1 is a theory sort. In our example,
we only need to define thereduce applicationcallback. We define the following C function:

/*

This callback whenever the Z3 simplifier is trying to create

an expression d(args[0], ..., args[n-1]), and d is a theory symbol.

*/

Z3_bool Th_reduce_app(Z3_theory t,

Z3_func_decl d,

unsigned n,

Z3_ast const args[],

Z3_ast * result) {

SimpleTheoryData * td = (SimpleTheoryData*)Z3_theory_get_ext_data(t);

if (d == td->f) {

if (args[0] == td->u) {

*result = args[1];

return Z3_TRUE;

}

else if (args[1] == td->u) {

*result = args[0];

return Z3_TRUE;

}

}

else if (d == td->p) {

if (args[0] == args[1]) {

*result = Z3_mk_true(Z3_theory_get_context(t));

return Z3_TRUE;

}

}

return Z3_FALSE; // failed to simplify

}

In the callback above, the functionZ3 theory get context is used to retrieve the logical context that
ownsthe theoryt. The implementation of simplification/reduction functions is optional. That is, we can
implement a complete external theory solver without using these callbacks. Of course, in practice, it is
useful to reduce the size of the input formula using as many simple/cheap simplifications as possible.

The full theory implementation contains several other callbacks that are set. The online documenta-
tion for Z3 contains the full source code for this example.
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20 Some Applications

We have covered a number of ways to directly interact with Z3.The bigger picture, how can Z3 be used,
is perhaps not obvious from the detached examples. This section, on the other hand, summarizes a set of
applications of Z3 that might help inspire additional useful applications.

20.1 Dynamic Symbolic Execution

SMT solvers play a central role indynamicsymbolic execution, also calledsmart white-box fuzzing.
There are a number of tools used in industry that are based on dynamic symbolic execution, including
CUTE, Exe, DART, SAGE, Pex, and Yogi [20]. These tools collect explored program paths as formulas
and use solvers to identify new test inputs that can steer execution into new branches. SMT solvers are a
good fit for symbolic execution because the semantics of mostprogram statements can be easily modeled
using theories supported by the solvers. We will later introduce the various theories that are used, but
here let us first focus on connecting feasibility constraints with a solver. To illustrate the basic idea of
dynamic symbolic execution, consider the greatest common divisor program 20.1. It takes the inputsx
andy and produces the greatest common divisor ofx andy.

i n t GCD( i n t x , i n t y ) {
whi le ( t rue ) {

i n t m = x % y ;
i f (m == 0) re tu rn y ;
x = y ;
y = m;

}
}

Program 20.1: GCD Program

Program 20.2 represents the static single assignment unfolding corresponding to the case where the
loop is exited in the second iteration. Assertions are used to enforce that the condition of the if-statement
is not satisfied in the first iteration, and it is in the second.The sequence of instructions is equivalently
represented as a formula where the assignment statements have been turned into equations.

i n t GCD( i n t x0 , i n t y0 ) {
i n t m0 = x0 % y0 ;
a s s e r t (m0 != 0 ) ;
i n t x1 = y0 ;
i n t y1 = m0 ;
i n t m1 = x1 % y1 ;
a s s e r t (m1 == 0 ) ;

}

(m0 = x0 % y0) ∧
¬(m0 = 0) ∧
(x1 = y0) ∧
(y1 = m0) ∧
(m1 = x1 % y1) ∧
(m1 = 0)

Program 20.2: GCD Path Formula

The resulting path formula is satisfiable. One satisfying assignment that can be found using an SMT
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solver is of the form:
x0 = 2, y0 = 4, m0 = 2, x1 = 4, y1 = 2, m1 = 0 .

It can be used as input to the original program. In the case of this example, the callGCD(2,4) causes
the loop to be entered twice, as expected. Smart white-box fuzzing is actively used at Microsoft. It
complements traditional black-box fuzzing, where the program being fuzzed is opaque, and fuzzing is
performed by pertubing input vectors using random walks. Ithas been instrumental in uncovering several
subtle security critical bugs that black-box methods have been unable to find.

20.2 Program Model Checking

Dynamic symbolic execution finds some input that can guide execution into bugs. This method alone
does not produce any guarantee that programs are free of all of the errors being checked for. The goal of
program model checkingtools is to automatically check for freedom from selected categories of errors.
The basic idea of program model-checking is to explore all possible executions using a finite and suf-
ficiently small abstraction of the program state space. The tools BLAST [22], SDV [1] and SMV from
Cadence4, perform such program model checking. Both SDV and SMV are used as part of commercial
tool offerings. We will use the program fragment in Program 20.3 as an example of finite state abstrac-
tion. It accesses requests usingGetNextRequest. The call is protected by a lock. A question is whether
it is possible to exit the loop without having a lock. The program has an infinite (or very large) number
of states, since the value ofcount can grow arbitrarily.

do {
l ock ( ) ;
o l d c o u n t = coun t ;
r e q u e s t = GetNextRequest ( ) ;
i f ( r e q u e s t != NULL) {

unlock ( ) ;
P r oc e s s R e que s t ( r e q u e s t ) ;
coun t = coun t + 1 ;

}
}
whi le ( o l d c o u n t != coun t ) ;
un lock ( ) ;

Program 20.3: Processing requests using locks

Yet, from the point of view of locking, the actual values ofcount andold count are not really
interesting. On the other hand, therelationshipbetween these contains useful information. Program 20.4
shows a finite state abstraction of the same locking program.The Boolean variableb encodes the re-
lation count == old count. We use the symbol∗ to represent a Boolean expression that can non-
deterministically evaluate totrue or false. We can now explore the finite number of branches of the
abstract program to verify that the lock is always held when exiting the loop.

4http://www.kenmcmil.com/
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do {
l ock ( ) ;
b = t rue ;
r e q u e s t = GetNextRequest ( ) ;
i f ( r e q u e s t != NULL) {

unlock ( ) ;
P r oc e s s R e que s t ( r e q u e s t ) ;
i f ( b ) b = f a l s e ; e l s e b = ∗ ;

}
}
whi le ( ! b ) ;
un lock ( ) ;

Program 20.4: Processing requests using locks, abstracted

SMT solvers are used for constructing finite state abstractions like the one provided. There are to
date several approaches for creating these abstractions. In one of these approaches each statement in
the program is individually abstracted. For example, let usconsider the statementcount = count +

1. The abstraction of this statement is essentially a relation between the current and new values of the
Boolean variableb. SMT solvers are used to compute this relation by proving theorems such as

count == old count→ count+1 != old count

which is dual to checking unsatisfiability of the negation:

count == old count ∧ count+1 == old count

The theorem says that if the current value ofb is true, then after executing the statementcount = count

+ 1 it will be false. Note that ifb is false, then neither of the following conjectures is valid.

count != old count→ count+1 == old count

count != old count→ count+1 != old count

In both cases, an SMT solver will produce acounter-example, that is, a model for the negation of the
conjecture. Therefore, when the current value ofb is false, nothing can be said about its value after the
execution of the statement. The result of these three proof attempts is then used to replace the statement
count = count + 1; by if (b) b = false; else b = *;. A finite state model checker can
now be used on the Boolean program. It will establish thatb is alwaystrue when control reaches this
statement, verifying that calls tolock() are balanced with calls tounlock() in the original program.

20.3 Static Program Analysis

Static program analysis tools work in a similar way as dynamic symbolic execution tools. They also
check feasibility of program paths. On the other hand they never require executing programs and they
can analyze software libraries and utilities independently of how they are used. One advantage of using
modern SMT solvers in static program analysis is that SMT solvers nowadays accurately capture the se-
mantics of most basic operations used by commonly used programming languages. We use the program
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in Figure 20.5 to illustrate the need for static program analysis to use bit-precise reasoning. The program
searches for an index in a sorted arrayarr that contains a key.

i n t b i n a r y s e a r c h (
i n t [ ] a r r , i n t low , i n t high , i n t key ) {

a s s e r t ( low > high | | 0 <= low < high ) ;
whi le ( low <= high ) {

/ / F ind midd le v a l ue
i n t mid = ( low + high ) / 2 ;
a s s e r t (0 <= mid < high ) ;
i n t va l = a r r [ mid ] ;
/ / R e f i n e range
i f ( key == va l ) re tu rn mid ;
i f ( va l > key ) low = mid +1;
e l s e high = mid−1;

}
re tu rn −1;

}

Program 20.5: Binary search

Theassert statement is apre-condition, for the procedure. It restricts the input to fall within the
bounds of the arrayarr. The program performs several operations involving arithmetic, so a theory and
corresponding solver that understands arithmetic appearsto be a good match. It is important, however,
to take into account that languages, such as Java, C# and C/C++ all use fixed-width bit-vectors as the
representation for values of typeint. This means that the accurate theory forint is two-complements
modular arithmetic. Assuming a bit-width of 32 bits, the maximal positive 32-bit integer is 231−1 and
the smallest negative 32-bit integer is−231. If both low andhigh are 230, low + high evaluates to 231,
which is treated as the negative number−231. The presumed assertion 0≤ mid< high therefore does
not hold. Fortunately, several modern SMT solvers support the theory ofbit-vectors, which accurately
captures the semantics of modular arithmetic. The bug does not escape an analysis based on the theory
of bit-vectors. Such an analysis would check that the array readarr[mid] is within bounds during the
first iteration by checking the formula:

low> high∨0≤ low< high< arr.length
∧ low≤ high
→ 0≤ (low+high)/2< arr.length

As we saw, the formula is not valid. The valueslow = high = 230,arr.length = 230+ 1 provide a
counter-example. The use of SMT solvers for bit-precise static analysis tools is an active area of current
development and research. An integration with the solver Z3[9] and the static analysis tool PREfix led
to the automatic discovery of several overflow-related bugsin Microsoft’s rather large code-base.

20.4 Program Verification

The ideal of verified software has been a long-running quest since Floyd and Hoare introduced program
verification by assigning logical assertions to programs.Extended static checkinguses the methods
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developed for program verification, but in the more limited context of checking absence of run-time
errors. The SMT solver Simplify [14] was developed in the context of the extended static checking
systems ESC/Modula 3 and ESC/Java [19]. This work has been the inspiration for several subsequent
extended static program checkers, including Why [17] and Boogie [2]. These systems are actively used
as bridges from several different front-ends to SMT solver backends. Boogie, for instance, is used as a
backend for systems that verify code from languages, such asan extended version of C# (called Spec#),
as well as low level systems code written in C. Current practice indicates that one person can drive these
tools to verify selected extended static properties of large code bases with several hundreds of thousands
of lines. A more ambitious project is the Verifying C-Compiler system [16], which targets functional
correctness properties of Microsoft’s Viridian Hyper-Visor. The Hyper-Visor is a relatively small (100K
lines) operating system layer, yet correctness propertiesare challenging to formulate and establish. The
entire verification effort is estimated to be around 60 man-years.

20.5 Modeling

SMT solvers present an interesting opportunity for high-level software modeling tools. In some contexts
these tools use domains inspired from mathematics, such as algebraic data-types, arrays, sets and maps.
These domains have also been the subject of long-running research in the context of SMT solvers. Let
us first introduce the array domain. Software modeling areasinclude:

Model-based testinguses high-level models of software systems, including network protocols, to
derive test oracles. SMT solvers have been used in this context for exploring the models using a symbolic
execution and search. Model-based testing is used on a largescale at Microsoft in the context of the
disclosure and documentation of Microsoft network protocols [21]. The model-based tools use SMT
solvers for generating combinations of test inputs as well as symbolic exploration of models.

Model programsare behavioral specifications that can be described succinctly and at a high-level of
abstraction. These descriptions are state machines that use abstract domains. SMT solvers are used to
performbounded model-checkingof such descriptions. The main idea of bounded model-checking is
to explore a bounded symbolic execution of a program or model. Thus, given a bound, such as 17, the
transitions of the state machines are unrolled into a logical formula that describes all possible executions
using 17 steps.

Model-based designsuse high-level languages for describing software systems.Implementations
are derived by refinements. Modeling languages present an advantage as they allow exploring a design
space without committing all design decisions up front. SMTsolvers play various roles in model-based
designs. They are used for type-checking designs and they are useful in the search for different consistent
choices in a design space.

20.6 Qex

Qex5 implements automatic data generation methods for parametrized SQL queries. Data generation
involves both parameter data, as well as, concrete table data generation. The data generation is driven by
test conditions that represent various coverage criteria.Qex works directly on top of SQL queries and
retains the semantics at the level of SQL. An advantage of working at the level of SQL, in contrast to
the main workings of Pex and SAGE that rely on instructions resulting from a compiler, is that several
high-level SQL constructs can be mapped almost directly into Z3.

5http://research.microsoft.com/projects/qex
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20.7 VS3

Sumit Gulwani uses Z3 in several research projects related to program analysis and program synthesis6.
In particular, the VS3 project uses Z3 to automatically discover inductive invariants for proving given
safety properties of systems. The project also explores techniques for using SMT solvers to synthesize
systems in the first place given enough specifications. Otherprojects involving Z3 aim to determine
the precise asymptotic run-time bounds of programs. For example, he has analyzed the .NET base
class library routines and extracted asymptotic bounds (ofthe formO(n), O(nlog(n)) etc.), for the vast
majority of routines.

20.8 Program Termination

A nice blog on of one of the core algorithms used for finding ranking functions in programs uses Z3 and
F# is accessible fromhttp://www.foment.net/byron/fsharp.shtml.
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