Z3 - a Tutorial

Leonardo de Moura Nikolaj Bjgrner
Microsoft Research Microsoft Research
leonardo@microsoft.com nbjorner@microsoft.com

Abstract

This tutorial introduces the use of the state-of-the-atis8ability Modulo Theories Solver Z3.
It integrates a host of theory solvers in an expressive diitlesft combination. We here introduce
the supported theories and their solvers using a collecti@xamples. Z3 is freely available from
Microsoft Research.

Z3 - a Tutorial de Moura and Bjgrner

Z3 - a Tutorial de Moura and Bjgrner

Contents
l1__Introduction| 6
| ralis logic] .
13 What is SMT? 10
4 What is 232 11
NG ZB .« o o o e 11
... 11
43 WhatisZ3N0l? . . o . o o 12
I5__Satisfiability Modulo Theories - An Appetizef 13
5.1 A Scheduling APPliCAtON o . v o e 13
5.2__A Solver for Difference Arithmefic 14
ing | LIBVL « oo o 14
5.4 _Scheduling in SMT-LIBV2 oottt e 15

IS . e e 19

6__Configuring Z3 20
6.1 _AuUto CONAIQUIAtION v o oo e e e 20
6.2 Displaying Configuration 20
6.3 _Updating Configuration oot 20
[7__Propositional Solving 21
[7.1_APropositional EXample o v 22
8__Relations, Functions and Constants 23
8.1 Allfunctions are tothlo 23
[8.2__Uninterpreted functions and consthnts 23
8.3 Recursive functiohs 24

9 Arithmetic| 25
9.1 Reallineararithmetic oo vt 25
9.2 Integer linear arithmelic 25
9.3 _Mixed linear arthmetico 26

-li ‘ W 26
9.5__Quantifier Elimination for Linear Arithmekic 26
5 ”
S i e e e e e 27

110.2_Scalars (enUMeration types) v oo 28
[10.3 Recursive data-tyPes 28
110.4 Mutually recursive data-typeso 29
[10.5_You will not get Z3 to prove Inductive faltso ... 29

Z3 - a Tutorial

de Moura and Bjgrner

[11 Bit-vectors 30
i - IC . o 30

[11.2 Bit-WiSe OPEIationS o v ot o e 31

i it- IS ot e e e 31

[11.3.1 Comparis®n oot 31
[11.32 OverflowChecks 32
[11.3.3 Bit-wiseoperatiohs 32

[11.4 Conversions between Bit-vectors and Intégers 32
[12_Arrays 33
[12.1 Selectand SIOre o v v v 33
[12.2 ConStantAITaYS . . . o o o o e e 34
12.3 Arraymodels 34
[12.4 Mapping FUNCtions ONAIMAYS o o v oot 34
[12.5 Defaultarray valuBes o oo 36
[12.6 Bags asAMaYS o 36
[12.7 Summary of Array 0perations 37
[13 Quantifiers 38
[13.1 Modeling with QUANLIfIENS . . . « . o o v o e e 38
(B2 Patterhs o o 38
[13.2.1 An operational context of pattern-based instdatiat. 40
[13.2.2_Pattern and multi-pattern annotaionso ... 40
[13.2.3 Injective FUNCHONS . . .« o v v v e e e 41
[13.2.4 NO-PAtterNs oot 41
[13.2.5 Programming with Triggérso, 42

[13.3 The AXIOM PIOfiler oo oo e 43
[13.4 SAUIAtON . . . o o 43
[13.5_Model-based Quantifier Instantiationo 43
[13.6_The Array Property Fragmento oo v oo 44

2 Simnifcatod 45
[14.1 Invoking the SIMPURIEr o o oo o e e 45
|14.2 Configuring Simplifigatidpn 45
[14.2.1 ELIM QUANTIFIERS . . « o v o ovoooe oo e e e e 45
[14.2.2 CONTEXT SIMPLIFIER o o e ooeoee e e e 45
[14.2.3 STRONG CONTEXT_SIMPLIFIER v v v oov e ot 45

[15 Implied Equalitied 47
16 Unsatisfiable Cores 48
[17 Parallel 73 49
[17.1 Portfolio SEtUp o o o 49
[18 Proof$ 50
119 External Theory Solvers 51

Z3 - a Tutorial de Moura and Bjgrner

|20 _Some Applications 55

Z3 - a Tutorial de Moura and Bjgrner

1 Introduction

Logic is the “Calculus of Computer Science”.
Zohar Manna

Modern software analysis and model-based tools are inogdgscomplex and multi-faceted soft-
ware systems. However, at their core is invariably a compbnsing logical formulas for describing
states and transformations between system states. Intetiusymbolic logic ighe calculusof compu-
tation. The state-of-the a8atisfiability Modulo Theorie6€SMT) solver, Z3, from Microsoft Research,
can be used to check the satisfiability of logical formulasrane or more theories. SMT solvers of-
fer a compelling match for software tools, since several roam software constructs map directly into
supported theories.

This tutorial introduces the use of the state-of-the-atis8ability Modulo Theories Solver Z3 from
Microsoft Research. The main objective of the tutorial isrttvoduce the reader on how to use Z3
effectively for logical modeling and solving. The tutori@ovides some general background on logical
modeling, but we have to defer a full introduction to firstier logic and decision procedures to excellent
text-books|[[18, 4, 23].

Z3is alow level tool. It is best used as a component in thesxamf other tools that require solving
logical formulas. Consequently, Z3 exposes a number of Aéllifies to make it convenient faoolsto
map into Z3, but there are no stand-alone editors or usdricdacilities for interacting with Z3. The
language syntax used in the front ends favor simplicity inti@st to linguistic convenience.

Z3 - a Tutorial de Moura and Bjgrner

2 Whatis logic?

Logic is the art and science of effective reasoning. In logic, westigate how to draw general and
reliable conclusions from a collection of faciormal logic provides a precise characterization of well-
formed expressions and valid deductions. It makes poswibdalculate consequences at the symbolic
level. Computer programs can be used to automate such sgnehtdulations.

Logic studies the relationship between language, meamdg@oof) method. A logic consists of
a language in which well-formed sentences are expressestantic that distinguishes the valid sen-
tences from the refutable ones; and a proof system for amtstg arguments justifying valid sentences.
Examples of logic include: propositional logic, first-ordegic, higher-order logic and modal logics. In
this tutorial, we will focus on propositional and first-ordegic.

A language consists of logical symbols whose the interpogts are fixed, and non-logical ones
whose the interpretation vary. These symbols are combwgetiter to form well-formed formulas. In
propositional logic (PL), the connectives(or), A (and),— (not),= (implies) have a fixed interpretation,
whereas the constan{s g, r may be interpreted at will. We also sgy q andr are propositional
variables The set of well-formed PL formulas is described by the folllg grammar:

formula := constant
| true
| false
| formula Vv formula
| formula A formula
| formula = formula
| - formula
| (formula)

The following expressions are well-formed PL formulas:
e (pva)=(qVp)
e (pva)=r
e pA((a)A((=P) V)

As a way of reducing the number of necessary parenthesesssuea the following precedence rules:
- has higher precedence than A higher thanv, andV higher than=-. Moreover, since/ and A are
associative, we writp Vv (qVr) aspVvqVr. We sayv andA aremultiary operators. Thus, using these
rules, the examples above can be written as:

e PVQg=qVp
e PV(QO=Tr
e PA-QA(—pVQ)

We also say a formulp A qis aconjunction andpV qis adisjunction
An interpretation Mis a mapping from propositional variables to truth valyésie, false}. Let
F and G be arbitrary PL formulas. Then, the meaning of the connesti (or), A (and),— (not), =

7

Z3 - a Tutorial de Moura and Bjgrner

(implies) can be given usinuth-tables

F G FVG|IFAG|F =G| —F
false| false| false | false true true
false| true | true false true true
true | false| true false false | false
true | true | true true true | false

A formula issatisfiableif it has an interpretation that makes it true. In this case say the interpre-
tation is amodelfor the formula. A formula isinsatisfiabléf it does not have any model. A formula is
valid if it is true in any interpretation. A PL formula is valid if dronly if its negation is unsatisfiable.
For example,

e pVg=-qV pis valid,
e pV Q= qis satisfiable, and
e pA—QA (—pV Q) is unsatisfiable.

We say two formulag andG areequivalentif and only if they evaluate to the same valurué or
false) in every interpretation. Examples:

e ——F is equivalent td~

e —F VF is equivalent tdrue

e —F AF is equivalent tdalse

e F = Gis equivalent to-F v G

e —(F AG) is equivalent to-F v -G

e —(F v G) is equivalent to-F A -G

e -F = Gisequivalentto-G=F

e FV(GAH)isequivalent tqF VG) A (FVH)
e FA(GVH)isequivalent tdF AG)V (FAH)

We say formulag- andG areequisatisfiabldaf and only if F is satisfiable if and only iG is. Most
symbolic reasoning engines apply transformations that prdserve satisfiability.

A formula where negation is applied only to propositionaliables is said to be inegation normal
form (NNF). A literal is either a propositional variable or its negation. A formtihat is a multiary
conjunction of multiary disjunctions of literals is gonjunctive normal forrfCNF). A formula that is
a multiary disjunction of multiary conjunctions of litegals in disjunctive normal forr{DNF). Most
satisfiability checkers for propositional logic expect thput formula to be in CNF. Any propositional
logic formula is equivalent to one in NNF, CNF and DNF. Forraxde, the formula

(PV =) A(QV—(rv-p))
is not in NNF. It can be transformed into an equivalent onefphang the following equivalences:

e ——F is equivalent td~

Z3 - a Tutorial de Moura and Bjgrner

e —(F AG) is equivalent to-F vV -G
e —(FVG)is equivalent to-F A =G
e F = Gisequivalentto-F Vv G
After applying these equivalences, we obtain the equivd@mula:
(pv-a)A(@V(=rAp)

After converting a formula into NNF, it can be converted iQ@tNF or DNF by applying thelistributivity
rules:

e FV(GAH)isequivalent tqF VG) A (FVH)
e FA(GVH)isequivalent tdF AG)V (F AH)
Thus, the formula
(pv-a)A(QV (=T Ap))
is equivalent to the CNF formula
(pV—a)A(qVv=r)A(aV p)

It is straightforward to check whether a formula in DNF isisf&ble or not. Unfortunately, it is
too expensive, in general, to convert a formula into an edeint one in DNF. The distributivity rule
may produce an exponential blowup. For similar reasong fib®@ expensive in general to convert a
formula into an equivalent CNF one. However, there is a linieae translation to CNF that produces an
equisatisfiable (not equivalent) formula. We use the noefi[G| to denote a formul& that contains a
sub-formulaG. The basic idea consists in introducing new propositioaiables that are “names” for
nested sub-formulas. The distributivity rules are repddog the following rules:

o Fll1Vly] — FIXA(=xVILVI) A (=L VX) A (Sl VX)
o Fllanly] — FXIA(=xVI) A (=xVI2) A (=l V=l vX)
In the rules abovex is a fresh variable, and andl, are literals. For example, given the formula
(PA(qvr)) vt

Letx; be a “name” for(qVvr). The clause$—x; vV qVr), (—qV 1), (—r VX;) are stating that, is true if
and only if(qVr) is. Thus, we have

((pAX) VE) A (=xaVaVr) A (—qVXe) A (—rVxg)
Now, letx, be a “name” for(p A x;). Then, we obtain the equisatisfiable CNF formula
(X2 VE) A (=xavVaVvr) A (7qVXx1) A (Brvxy) A (=X VP)A (=X VX)) A (mpV =XV X2)
If the formula input formula is in NNF, then simpler versiooisthese rules can be used
e FlliVIy] — FIXA(=xVIpViy)
o Fllanly] — FXIA(=xVI) A (=xVIp)

Since the input formula was in NNF in our previous exampleubiyng the simpler rules, we obtain the
equisatisfiable CNF formula

(X2VE) A (=xavVaVvr) A (=x2Vp)A (=X VX)

In practice, CNF translators use a mixture of distribugivéind the rules above. The idea is to use
distributivity whenever the formula size does not incre@asemuch.

Z3 - a Tutorial de Moura and Bjgrner

3 Whatis SMT?

The defining problem o8atisfiability Modulo Theorie6SMT) is checking whether a given logical for-
mulaF is satisfiablein the context of some background theory which constrahesriterpretation of the
symbols used ifr. We say a formuld is satisfiable, if there is aimterpretationthat makes- true. For
example, the formula

a+b>3 and a<0 and b>0

is satisfiable in the context of the theory of arithmetic,daese the interpretation
a— —1 b—5

makes the formula true. We say a formulaiisatisfiable

It is worth emphasizing thatalidity is dual to the terminologyatisfiability Valid sentences are
true under all structures. For example, the sentékige p(x)) — p(a) is valid. Dually, sentences (the
negation of valid sentences) arasatisfiabldf they are false under all structures.satisfiablesentence
is true in at least one structure. For example, the sentp{@e/ p(b) is satisfiable, but it is not valid.

10

Z3 - a Tutorial de Moura and Bjgrner

4 Whatis Z3?

Z3 is a state-of-the-art SMT solver from Microsoft Reseaitlmtegrates a host of theory solvers in an
expressive and efficient combination. This tutorial introels these theory solvers using a collection of
examples. A short system description covering Z3 is avigilibm [9].

4.1 Obtaining Z3

Z3 is freely available for academic research purposes from

http://research.microsoft.com/projects/z3.

Z3 is also re-distributed with a host of systems that use Z@se€ include the Boogie/Spec# toals [2],
HAVOC [6], Peld. Z3 can be invoked from Isabelle, but does not necessarjyire a download and
instead relies on a stable internet connection.

4.2 Installing Z3

The default installation location for Z3 is the directory
C:/Program Files/Microsoft Research/Z3-<version-number>
Most modern machines use 64 bit hardware and operatingnsystkee installation location is then:
C:/Program Files/Microsoft Research (x86)/Z3-<version-number>

In other words, Z3 gets installed as a 32-bit applicationweher, Z3 ships with both 32 and 64 bit
binaries and assemblies. The distribution directory ihefform shown in Figurgl 1.

It comprises of several directories. The most important di-
rectory isbin it contains the command-line version of Z3, called
z3.exe. It also contains C and managed DLLs, callgld1l and ~®°v ™ Sheewins Hewisle
Microsoft.Zz3.d11, respectively. The binaries in this directory run = "=

on the Intel/AMD i386 and x64 platforms. A directory contaig bin
binaries compiled exclusively for x64 platforms is callegk. The :'D”c'mt
directoriesbin_mt andx64_mt contain the parallel versions of Z3. examples
These versions can spawn multiple copies of Z3 to cooperdie s include
ing a single problem. Thé&nclude directory contains header files, °t‘|””'
theexamples directory contains basic examples, theaml directory -
contains the OCaml interfaces, and titei1s directory contains F# 64 _mt
power-pack utilities (See Sectibn b.7). & LICENSE

|| README

Figure 1: Z3 Distribution direc-
tory

Ihttp://research.microsoft.com/pex

11

http://research.microsoft.com/projects/z3
http://research.microsoft.com/pex

Z3 - a Tutorial

4.3 Whatis Z3 not?

e A software system with user-friendly Ul.

e Atheorem prover for proofs by induction.

¢ A higher-order interactive theorem prover.

e A theorem prover for constructive logic.

12

de Moura and Bjgrner

Z3 - a Tutorial de Moura and Bjgrner

di; | Machine1 Machine2 Encoding

Jobi| 2 1 (trr > 0)A(tyo > 111 +2) Aty +1<8) A
Job 2 3 1 (tb1 > 0)A (o2 >t21+3)A(to2+1<8) A
Job3| 2 3 (ta1 > 0)A(taz > tag +2) A(taz+3< 8) A
(tr1>t1+3) V(1 >t11+2) A
max= 8 (1 >t31+2) V(31 >t11+2) A
(1 >t31+2) V(31 >t21+3)) A
Solution ((t172 >t2+1) V(oo >t12+1)) A
t11=5to=711=2, (t12>t32+3)V(tzga >t12+1)) A
tho=6,131=0,1t32,=3 (o2 >t32+3)V(tz2 >tr2+1))

Figure 2: Encoding of job shop scheduling.

5 Satisfiability Modulo Theories - An Appetizer

We begin by introducing a motivating application and a sinpktance of the application that we will
use as a running example to illustrate Satisfiability Moduheories as well as using Z3's different
interfaces.

5.1 A Scheduling Application

Consider the classicabb shop schedulinglecision problem. In this problem, there argobs, each
composed ofm tasks of varying duration that have to be performed conseduton m machines. The
start of a new task can be delayed as long as needed in ordaittfoma machine to become available, but
tasks cannot be interrupted once started. There are edbetio types of constraints in this problem:

e Precedence constraints between two tasks in the same job.

e Resource constraints specifying that no two differentdaskjuiring the same machine may exe-
cute at the same time.

Given a total timemaxand the duration of each task, the problem consists of deridhether there
is a schedule such that the end-time of every task is lessahagual tomaxtime units. We use;
to denote the duration of thpth task of jobi. A schedule is specified by the start-tintg;) for the
j-th task of every joh. The job shop scheduling problem can be encoded in SMT ubmgheory of
linear arithmetic. A precedence constraint between twseoutive taskg ; andt; ;1 is encoded using
the inequalityt; ;.1 >t j +d; ;. This inequality states that the start-time of tgsk 1 must be greater
than or equal to the start-time of taglplus its duration. A resource constraint between two tasks f
different jobsi andi’ requiring the same machirjés encoded using the formuft; >ty j+dy)V (tir ; >
ti j +di j), which states that the two tasks do not overlap. The stag-if the first task of every jolamust
be greater than or equal to zero, thus we Have> 0. Finally, the end-time of the last task must be less
than or equal tanax hencetj ,m+ di m < max Figure 2 illustrates an instance of job scheduling problem
its encoding into an SMT formula, and a satisfying solutidrhe result is called aSMT formula it
combines logical connectives (conjunctions, disjunctimegation) with atomic formulas that are linear
arithmetic inequalities.

13

Z3 - a Tutorial de Moura and Bjgrner

t11
z —t11 <0 _2? ~0
Z — b1 <0 ‘ N
3 | O \‘
z —133 <0 th1— 2
t3’2 — Z <5 4 !
/
t31 — tzp < =2 '3: 0/
tby — tzgn < -3 t3’2,124t3’1)/
iy — b1 < — R ,5/

Figure 3: Difference arithmetic example

5.2 A Solver for Difference Arithmetic

The job shop scheduling decision problem can be solved byirong a SAT solver with a theory solver
for difference arithmetic Difference arithmetic is a fragment of linear arithmetiberve predicates are
restricted to be of the forrh— s < ¢, wheret ands are variables and a numeric constant such as 1 or
3. Every atom in Figurgl2 can be put into this form. For examible atomtz ;1 > t> 1 + 3 is equivalent

to the atomtp; —t31 < —3. For atoms of the forns < ¢ ands > c, a special fresh variableis used.
We sayz is thezero variable and these atoms are represented in difference arithmesie a < ¢ and
Zz—s < —c respectively. For example, the atdgy + 3 < 8 is represented in difference arithmetic as
t320 —z < 5. A set of difference arithmetic atoms can be checked vdigiaitly for satisfiability by
searching for negative cycles in weighted directed graphshe graph representation, each variable
corresponds to a node, and an inequality of the foras < ¢ corresponds to an edge frosno t with
weightc. Figurel3 shows a subset of atoms (in difference arithmetimf from our example in Figuie 2,
and the corresponding graph. The negative cycle, with weidh is shown by dashed lines. This cycle
corresponds to the following schedule that cannot be cdexbie 8 time units:

task 1/job 1— task 1/job 2— task 1/job 3— task 2/job 3

Recall that the scheduling problem from Figlile 2 is feasiblg it requires assigning a different combi-
nation of atoms to true.

5.3 Scheduling in SMT-LIB v1

(benchmark

:status unknown

:logic QF_IDL

rextrafuns ((t11 Int) (t12 Int) (21 Int) (t22 Int) (t31 Int) (32 Int))
:assumption (and (>= t11l 0) (>= t12 (+ ti11l 2)) (<= (+ t12 1) 8))
rassumption (and (>= t21 0) (>= t22 (+ t21 3)) (<= (+ t22 1) 8))
:assumption (and (>= t31 0) (>= t32 (+ t31 2)) (<= (+ t32 3) 8))
rassumption (or (>= t11 (+ t21 3)) (>= t21 (+ t11 2)))
rassumption (or (>= t11 (+ t31 2)) (>= t31 (+ t11 2)))
rassumption (or (>= t21 (+ t31 2)) (>= t31 (+ t21 3)))
rassumption (or (>= t12 (+ t22 1)) (O= t22 (+ t12 1)))
rassumption (or (>= t12 (+ t32 3)) (>= t32 (+ t12 1)))
rassumption (or (>= t22 (+ t32 3)) (>= t32 (+ t22 1)))

:formula true

14

Z3 - a Tutorial de Moura and Bjgrner

5.4 Scheduling in SMT-LIB v2

SMT-LIB v2, henceforth called smt2, is an update on the SMB-&tandard. It is based around a set of
commands. Each command changes state or queries propériiescurrent state. You can enter smt2
files using the extensiosmt2, or you can enter smt2 commands from the prompt if you stamsii3g
the options:

z3.exe /m /smtc /si

These options tell Z3 tgm maintain state to produce models (this carries a very miawerteead, and it
is disabled by default),smtc parse in the smt2 format, an@i open an interactive input pipe.
The smt2 version of the scheduling example now takes the:form

(set-logic QF_IDL) ; optional in Z3

(declare-fun t11 () Int)

(declare-fun t12 () Int)

(declare-fun t21 () Int)

(declare-fun t22 () Int)

(declare-fun t31 () Int)

(declare-fun t32 () Int)

(assert (and (>= t11 0) (>= t12 (+ t11 2)) (<= (+ t12 1) 8)))
(assert (and (>= t21 0) (>= t22 (+ t21 3)) (<= (+ t22 1) 8)))
(assert (and (>= t31 0) (>= t32 (+ t31 2)) (<= (+ t32 3) 8)))
(assert (or (>= t11 (+ t21 3)) (>= t21 (+ t11 2))))

(assert (or (>= t11 (+ t31 2)) (>= t31 (+ t11 2))))

(assert (or (>= t21 (+ t31 2)) (>= t31 (+ t21 3))))

(assert (or (>= t12 (+ t22 1)) (>= t22 (+ t12 1))))

(assert (or (>= t12 (+ t32 3)) (>= t32 (+ t12 1))))

(assert (or (>= t22 (+ t32 3)) (>= t32 (+ t22 1))))
(check-sat)

; sat

(model) ; display the model

; ("model" "t11 -> 5

; t12 > 7
; t21 -> 2
; t22 -> 5
; 831 > 0
; t32 -> 2")

5.5 Scheduling using the C API

Let us write a self-contained program in C that uses the progratic APIs to Z3 to solve the scheduling
problem. For this purpose we create a file calededuling. cpp, and assume that the file resides under
the Z3 distribution in theexamples/c directory. The file can be compiled by invoking the Microsoft
C++ compilercl from the command-line:

cl ..\..\include\ ..\..\bin\z3.1lib scheduling.cpp

15

Z3 - a Tutorial de Moura and Bjgrner

#include "z3.h”
#include <iostreant>

static Z3_ast mkint(Z3_context ctx, int a) {
return Z3_mk_int(ctx, a, Z3mk_int_sort(ctx));
}

static Z3_ast mkvar(Z3.context ctx, Z3string name){
Z3_symbol s = Z3mk_string_symbol(ctx, name);
return Z3_mk_const(ctx, s, Z3mk_int_sort(ctx));

}

static Z3_ast mklo(Z3_.context ctx, Z3ast x) {
return Z3_mk_ge(ctx, x, mkint(ctx, 0));
}

static Z3_ast mkmid(Z3_.context ctx, Z3ast x, Z3ast y, int a) {
Z3_ast args[2] ={ x, mk.int(ctx, a) };
return Z3_mk_ge(ctx, y, Z3mk_add(ctx, 2, args));

}

static Z3_ast mkhi(Z3_context ctx, Z3ast y, int b) {

Z3_ast args[2] ={ y, mk.int(ctx, b) };

return Z3_mk_le(ctx, Z3.mk.add(ctx, 2, args), mknt(ctx, 8));
}

static Z3_ast mkprecedence (
Z3_context ctx,
Z3_ast x,
Z3_ast vy,
int a,
int b
)

Z3_ast args[3] ={ mk.lo(ctx, x), mkmid(ctx, x, y, a), mkhi(ctx, y, b) };
return Z3_mk._and(ctx, 3, args);

}

static Z3_ast mkresource (
Z3_context ctx,

Z3_ast x,
Z3_ast vy,
int a,
int b
)
{
Z3_ast argsl[2] ={ y, mk.int(ctx, a) };
Z3_ast ineql = Z3mk.ge(ctx, x, Z3mk.add(ctx, 2, argsl));
Z3_ast args2[2] ={ x, mk.int(ctx, b) };
Z3_ast ineq2 = Z3mk.ge(ctx, y, Z3mk.add(ctx, 2, args2));
Z3_ast args3[2] ={ ineql, ineq2};
return Z3_mk_or(ctx, 2, args3);
}

int main() {
Z3_config cfg = Z3.mk_config();
Z3_setparamvalue (cfg, "MODEL", "true”);
Z3_context ctx = Z3mk_context (cfg);

Z3_ast t11 = mkvar(ctx, "t11");
Z3_ast t12 = mkvar(ctx, "t12");
Z3_ast t21 = mkvar(ctx, "t21");
Z3_ast t22 = mkvar(ctx, "t22");
Z3_ast t31 = mkvar(ctx, "t31");
Z3_ast t32 = mkvar(ctx, "t32");

Z3_assertcnstr(ctx, mkprecedence(ctx, tl11, t12, 2, 1));
Z3_assertcnstr(ctx, mkprecedence(ctx, t21, t22, 3, 1));

16

Z3 - a Tutorial de Moura and Bjgrner

Z3_assertcnstr(ctx, mkprecedence(ctx, t31, t32, 2, 3));
Z3_assertcnstr(ctx, mkresource(ctx, t11, t21, 3, 2));
Z3_assertcnstr(ctx, mkresource(ctx, t11, t31, 2, 2));
Z3_assertcnstr(ctx, mkresource(ctx, t21, t31, 2, 3));
Z3_assertcnstr(ctx, mkresource(ctx, t12, t22, 2, 3));

3 .

3

Z3_assertcnstr(ctx, mkresource (ctx, t12, t32 , 1))
Z3_assertcnstr(ctx, mkresource (ctx, t22, t32 1))
Z3_model m = 0;
Z3_bool r = Z3.checkand.get_.model (ctx, &n);
it (m) {
printf ("%s\n”, Z3_model-to_string(ctx, m));
Z3_del_model (ctx, m);

}

Z3_del_context(ctx);
Z3_del_config (cfg);

5.6 Scheduling in C#

We will here take advantage of some features that are spextfie .NET API. This APl encapsulates Z3
contexts and terms into objects so that it can use the objeatted conventions from C# and other .NET
languages. It also, very conveniently, includes operaterloading for common operations, including
addition &), and comparison<g& and>=), and logical disjunction |().

using Microsoft.Z3;

class Program {
Context ctx;

Term mkint(int a) { return ctx.MkIntNumeral(a); }

Term mkvar(string name){ return ctx.MkConst(name, ctx.MkIntSort());}
Term mklo(Term x) { return x >= mk.int(0); }

Term mkmid(Term x, Term y, int a) { return y >= (x + mk.int(a)); }
Term mkhi(Term y, int b) { return (y + mk.int(b)) <= mk.int(8); }
Term mkprecedence (Term x, Term yjnt a, int b) {

return ctx.MkAnd(new Term[]{ mk_lo(x), mk.mid(x,y,a), mkhi(y,b) });
}

Term mkresource(Term x, Term y,int a, int b) {
return (x >= (y + mk.int(a))) | (y >= (x + mk.int(b)));
}

void encode () {
using(Config cfg = new Config()) {
cfg.SetParamValue ("MODEL" ," true”);
using(Context ctx =new Context(cfg)) {
this.ctx = ctx;

Term tll = mkvar("tll”);
Term t12 = mkvar("tl2");
Term t21 = mkvar("t21");
Term t22 = mkvar(”"t22");
Term t31 = mkvar(”"t31");
Term t32 = mkvar(”"t32");

ctx . AssertCnstr (mkprecedence (t11, t12, 2, 1));
ctx . AssertCnstr (mkprecedence (t21, t22, 3, 1));
ctx . AssertCnstr (mkprecedence (t31, t32, 2, 3));
ctx . AssertCnstr (mkresource (t11, t21, 3, 2));

17

Z3 - a Tutorial de Moura and Bjgrner

ctx.AssertCnstr (mkresource (t11, t31,
ctx . AssertCnstr (mkresource (t21, t31,
ctx.AssertCnstr (mkresource (t12, t22,
ctx . AssertCnstr (mkresource (t12, t32,
ctx.AssertCnstr (mkresource (t22, t32,
Model m = null;
LBool r = ctx.CheckAndGetModel (out m);
if (m!= null) {
m. Display (System . Console.Out);
m. Dispose ();
}
}
}

2));
3));
3));
1));
1))

WWNNDN

}

static void Main() {
Program p =new Program ();
p.encode ();

}
+

5.7 Scheduling using F# quotations

The Z3 distribution comes with power utilities for the F# gramming language. A prolific feature of
F# is the availability ofjuotations Quotations have their origins in LISP: you can quote a pedamde
and treat it as data. You can also quote code in F#, and a¢weabdtract syntax tree for it. This feature
is used for encoding formulas as F# expressions. It makequibe legible syntax. The scheduling
constraints using the quotation support from the Z3 distitim can be formulated as follows:

open Microsoft.Z3
open Microsoft.Z3.Quotations

do Solver.prove <@ Logic.declare
(fun t11 t12 t21 t22 t31 t32 ->
not
((t11 >= 0I) && (t12 >= t11 + 2I) && (t12 + 1I <= 8I) &&
(t21 >= 0I) && (t22 >= t21 + 3I) && (t32 + 1I <= 8I) &&
(t31 >= 0I) && (t32 >= t31 + 2I) && (32 + 3I <= 8I) &&

(t11 >= t21 + 3I || t21 >= t11 + 2I) &&
(t11 >= t31 + 2T || t31 >= t11 + 2I) &&
(t21 >= t31 + 21 || t31 >= t21 + 3I) &&
(£t12 >= t22 + 11 || t22 >= t12 + 1I) &&
(t12 >= t32 + 3I || t32 >= t12 + 1I) &&
(t22 >= t32 + 3I || t32 >= t22 + 1I)

o>

Let us explain some of the features used in the example:

e Solver.prove cOnsumes an expression of tyfepr<bool>, a quoted expression of typeol.
It checks for validity of the formula that results from coring the expression. Since, we are
interested irsatisfiability of the scheduling constraints we check for validity of theggation.

18

Z3 - a Tutorial de Moura and Bjgrner

e Logic.declare is a function that takes an arbitrary curried lambda exjwassnd creates fresh
constants for the variables that are bound by the lambda&ssion. In this case, it creates constants
fort11 t12 t21 t22 t31 t32. The F# type inference will infer that these variables hgpet
BigInteger. Z3 represents these as plain integers.

e The notatiorbig integerliterals in F# is to suffix numbers with ah for example1I and8I. For
“normal” integers, such asand8, Z3's quotation compiler uses fixed-size bit-vectors.

5.8 Scheduling in other formats

Itis furthermore possible to formulate scheduling constsausing the binary APIt@Cam| theSimplify
format that is a legal input format to Z3, and the native lewell format for Z3. The OCaml API follows
the C API closely, using the same naming conventions. Wetdeabmmend using these two text APIs
for interactive use of Z3. The Simplify format allows toolsat have already taken a dependency on
Simplify to use Z3, and the native low-level text format alfbodumping interactions from the binary
APIs to a text file for reproducing potential problems.

19

Z3 - a Tutorial de Moura and Bjgrner

6 Configuring Z3

Z3 exposes more than 200 different parameters that allofigroing Z3's search engine to use different
heuristics and algorithms. You can list the configuratiotiams from the command-line by calling:

z3.exe /ini?

6.1 Auto Configuration

AUTO_CONFIG is an option for Z3 that is specific to SMT-LIB benchmarks. SMB benchmarks are
annotated with #gic, which indicates the set of theories and symbols that aggast to the formula. By
default, Z3 use4UT0_CONFIG=true t0o automatically customize options based on the logic aitioot
and other structure information of the benchmark.

6.2 Displaying Configuration
DISPLAY_CONFIG=true allows you to retrieve the configuration settings used by & & completes.
This is useful for knowing whatUTO_CONFIG decided to set.

6.3 Updating Configuration

Parameters are configured prior to running Z3 or prior totorga logical context (where assertions are
pushed). A few parameters can also be changed once Z3 isigjrorionce a Z3 logical context has
been created over the ARI3_update param value is the C-interface function for updating parameter
values. The .NET method is callétbdateParamValue, and from thesmt2 format you can update
parameter values using

(set-option set-param "<parameter-name>" "<parameter-value>")

20

Z3 - a Tutorial de Moura and Bjgrner

7 Propositional Solving

Propositional logic is a special case of predicate logicpropositional logic, formulas are built from
Boolean variablescalledatoms and composed using logical connectives such as conjumatisjunc-
tion and negation. The satisfiability problem for propasitil logic is famously known as an NP-
complete problem]7], and therefore in principle compuwiaily intractable. Yet, recent advances in
efficient propositional logic algorithms have moved thenmaries for what is intractable when it comes
to practical applications [24].

Most successful SAT solvers are based on an approach sgi¢eimatic searchl he search space is
a tree with each vertex representing a Boolean variable l@nadut edges representing the two choices
(i.e., true andfalse for this variable. For a formula containingBoolean variables, there aré Raves
in this tree. Each path from the root to a leaf corresponds ttoth assignment. Anodelis a truth
assignment that makes the formtdae. We also say the model satisfies the formula. Most searcldbase
SAT solvers are based on the DPLL approach [8]. The DPLL dalgurtries to build a model using three
main operationsdecide, propagate andbacktrack. The algorithm benefits from a restricted represen-
tation of formulas in conjunctive normal form (CNF). CNF riaulas are restricted to be conjunctions
of clauses each clause is, in turn, a disjunction l@érals. A literal is an atom or the negation of an
atom. For example, the formutap A (pV q), is in CNF. The operatiodecide heuristically chooses an
unassigned atom and assigns itriee or false This operation is also calldatanchingor case-splitting
The operatiorpropagate deduces the consequences of a partial truth assignmengtdesituction rules.
The most widely used deduction rule is tineit-clause rule which states that if a clause has all but one
literal assigned tdalse and the remaining literdl is unassigned, then the only way for this clause to
evaluate to true is to assigno true. LetC be the claus@Vv —qV —r, andM the partial truth assignment
{p~ falser — true}, then the only way foC to evaluate tdrue is by assigningg to false Given a
partial truth assignmeri¥l and a claus€ in the CNF formula such that all literals @fare assigned to
falsein M, then there is no way to extemd to a complete modeM’ that satisfies the given formula. We
say this is aconflict andC is aconflicting clause A conflict indicates that some of the earlier decisions
cannot lead to a truth assignment that satisfies the givenule; and the DPLL procedure musack-
track and try a different branch value. If@nflictis detected and there are no decisions to backtrack,
then the formula is unsatisfiable, that is, it does not haveodain Many significant improvements of
this basic procedure have been proposed over the years. aimeimprovements arelemma learn-
ing, non-chronological backtrackingefficientindexing techniquetr applying the unit-clause rule and
preprocessingechniques|[24].

21

Z3 - a Tutorial de Moura and Bjgrner

7.1 A Propositional Example (declare-preds ((p1) (p2) (p3) (pd) (p5)))

The example on the right encodes satisfiabilifassert (=> p1 p2))
checking of the formula (assert (=> pl p3))
(assert (=> pl p4))

(P1— P2) A(P1— P3) A(P1— Pa)A—=p2 (assert (not p2))

. (check-sat)
The values of predicates3 and p4 are not . ga¢

included in the model. They argont-cares (po4e1)

and irrelevant to the satisfiability. Z3 uses (wpode1" "p1 -> false
relevancypropagation to discover this depen: o _> fa1se")

dency. You can disable relevancy propagatioyssert p1)

by using the configuratioRELEVANCY=0 from (.heck-sat)

the command-line. In this case Z3 returns a ypgat

model which includes an assignment to the other predicates:

("model" "pl -> false
p2 —-> false

p3 -> false

p4d -> false")

The example on the right also establishes fliamust befalse in all satisfying models, because
the formula got unsatisfiable when assertirig

22

Z3 - a Tutorial de Moura and Bjgrner

8 Relations, Functions and Constants

The basic building blocks of SMT formulas are constantscfions and relations. Constants are just
functions that take no arguments. Relations are just fonstthat return a value of Boolean type. Func-
tions can take arguments of Boolean type as well, so you csirfunections and relations arbitrarily. So
everything is really just a function.

We here recall a few facts about functions.

8.1 All functions are total

Unlike programming languages, where functions have side-

effects, can throw exceptions, or never return, functionslas- (push)

sical first-order logic are atbtal. That is, they are defined on all (assert (= 1 (div 0 0)))
input values. This includes functions, such as divisionvidhon (check-sat)

by 0 is still defined, yet it is not specified what it means. Amgr- ; sat

pretation for division by 0 is admissible. So for exampldjvided (pop)

by x can be 1 for alk, and 0 divided by can be 0 for alk. But of

course not both at the same time. (push)
Z3 answersat on both checks. (assert (= 0 (div 0 0)))
(check-sat)
8.2 Uninterpreted functions and constants ; jat)
pop

Function and constant symbols in pure first-order logicuare
interpreted or freg, which means that no a priori interpretatiofdeclare-sort A)
is attached. This is in contrast to functions belonging todig- (declare-funs ((x A) (y A)))
nature of theories, such as arithmetic where the functitias (declare-fun £ (A) A)
a fixed standard interpretation (it adds two numbers). nint(assert (= (£ (f x)) x))
preted functions and constants are maximally flexible; thiey (assert (= (£ x) y))
low any interpretation that is consistent with the constsabver (assert (not (= x y)))
the function or constant. (check-sat)
To illustrate uninterpreted functions and constants lehus ; sat
troduce an (uninterpreted) sartand the constants, y ranging (model)
overA. Finally let £ be an uninterpreted function that takes one ("model" "x -> val!0
argument of sort and results in a value of satt The example ; y -> val!l
illustrates how one can force an interpretation wheapplied ; £ —> {
twice tox results inx again, butt applied one tx is different ; val!0 -> valll
form x. ; valll -> vall!o
The resulting model introduces abstract values for the ele- else -> val!0
ments inA, because the so#t is uninterpreted. The function; }")
graph forf in the model toggles between the two values foandy, which are different. All other
potential values ik map to the interpretation of.

23

Z3 - a Tutorial de Moura and Bjgrner

8.3 Recursive functions

Z3 does not provide any special support for recursive foneti You can axiomatize the graph of a
recursive function by using first-order axioms, but one $thtwe aware of that Z3 assigns standard first-
order semantics with the equations and does not assign tafilead-point solution as is standard with
programming languages.

Let us consider the Fibonnachi function. We can axiomatizmsing equations.

(declare-fun fib (Int) Int)

(assert (= 1 (fib 0)))

(assert (= 1 (fib 1)))

(assert (forall (x Int) (=> (x >= 2) (= (fib x) (+ (fib (- x 1) (- x 2)))))))

What is(fib (~ 1))? Itis not undefined, it is just not specified by these equation
The fact that axiomatizing a recursive

function as a set of equations does ndtleclare-fun IsNat (Int) Bool)

necessarily capture the semantics of fun€assert (IsNat 0))

tions can sometimes be confusing. Cortassert (forall (x Int)

sider for example, the predicaleNat. It (iff (IsNat (+ x 1))

returnstrue on the value 0, and if it is (or (= x 0) (IsNat x)))))

true onx then it is true onx + 1. If we (assert (IsNat (~ 1)))

ask Z3 whether -1 satisfiegsNat, then (check-sat)

Z3 answersunknown (because the input; unknown

has quantifiers, and even worse it integratésodel)

arithmetic, and Z3 is not a decision pros ("model" "IsNat —> {

cedure in this case). It provides a modsl O —> true

where the numbers 0 to 100 satigfyNat, ; -1 —-> true

but also -1 satisfiedsNat. While the ; 1 -> true

model does not correctly provide a graph 2 -> true

for IsNat on values greater than 100, there - .-

is no contradiction with havingsNat hold ; 100 -> true

on -1. The point is thaanyfixed-point that ; 101 -> true

satisfies the equations in the axioms is a le- else -> false

gal first-order interpretation farsNat. A

24

Z3 - a Tutorial de Moura and Bjgrner

9 Arithmetic

Z3 contains decision procedures for linear arithmetic dlrerintegers and real numbers. It furthermore
contains some facilities for partial support of non-lingaithmetic using a module for Grobner basis
completion. Additional material on the main arithmeticidemn procedure used in Z3 is availablelin[15].

9.1 Real linear arithmetic

The terminology and notation of SMT-LIB
will be convenient for describing the supporfdeclare-funs ((x Real) (y Real) (z Real)))
for linear arithmetic. (push)
Linear arithmetic terms of type Real ardassert (> (+ x y) (¥ 2.0 2)))
formed using the functions, -, ~ (unary mi- (assert (< (/ z 2.3) x))
nus), * where all but one argument is a nu{check-sat)
meric constant, and where the second ar-; sat
gument is a numeric constant. You can confmodel)
pare terms using, <, <=, >=, >, ; ("model" "x —> 0
The second example on the right usesy —> -18/5
constraints of a special form: there are atz —> -23/10")
most two variables per inequality, and theyPop)
appear on different sides of the inequalitytassert (> x 2.0))
This fragment of arithmetic is callediffer- (assert (>=y x))
ence arithmeticor most often callediffer- (assert (< y 1.3))
ence logic You can instrument Z3 to use(check-sat)
specialized solvers for difference arithmeti¢ unsat
using the optionQF_RDL and QF_IDL (for
quantifier free integer/real difference logic). The inwotbry example from Sectidd 5 used difference
arithmetic.
Z3 also accepts formulas over the reals that are non-lineathis case, Z3 is not a decision pro-
cedure even for quantifier-free formulas. Neverthelessarithandle several special cases of non-linear
constraints over the reals by using simplification usingliaer bases.

9.2 Integer linear arithmetic (declare-funs ((x Int) (y Int) (z Int)))

In the terminology of SMT-LIB, terms over inte-(push)
ger linear arithmetic are formed using the fundassert (> (+ x y) (* 2 2)))
tions +, -, ~ (unary minus),x where one argu- (assert (< (div z 3) x))
ment is a numeric constant, addv, mod, rem (check-sat)
where the second argument is a numeric constangat
different from 0. You can compare terms usinfmodel)
=, <, <=, >=, > ; ("model" "x -> 1
The binary APIs expose corresponding fung- ¥y —> 0
tions. In the terminology of the C-API these z —> 0")
are: Z3_mk_add (+), Z3_mk_mul (%), Z3_mk_sub (Pop)
(-), Z3mk_unary minus (*) Z3_mk_div (div (assert (and (> x 2) O>=y x) (<y 1))
and /), Z3.mkmod (mod), Z3.mk_rem (rem), (check-sat)
Z3mk_1t (<), Z3.mk_le (<=), Z3_mk_gt (>), ; unsat
Z3 mk_ge (>=).

b

25

Z3 - a Tutorial de Moura and Bjgrner

9.3 Mixed linear arithmetic

You can create formulas over mixed integer and linear agtittby means of the conversion functions,
that appear in the smt2 standard:

(declare-fun to_real (Int) Real)
(declare-fun to_int (Real) Int)
(declare-fun is_int (Real) Bool)

For example,

(= 4.0 (to_real 4))
(= 4 (to_int 4.5))
(iff (is_int x) (= x (to_real (to_int x))))

9.4 Non-linear arithmetic

Consider the following equalities

(declare-funs ((x Int) (y Int) (z Int)))
(assert (= (x x x) (+ x 2)))
(assert (= (* x y) x))
(assert (= (x (- y 1) z) 1))
(check-sat)
; unsat

Z3 determines that the equalities are unsatisfiable. Tonaglsh this, Z3 relies on a Grobner basis
completion of the equalities. The completion deduces frioenfirst equation that is different from 0,
and thereforey must be 1 in the second equation. This contradicts the lasitieq. You can control the
use of non-linear arithmetic in Z3 using the configuratiotiays starting withVL_ARITH .

9.5 Quantifier Elimination for Linear Arithmetic

Quantified linear arithmetic formulas admit quantifier efiation. Z3 includes quantifier elimination
procedures for linear arithmetic over the reals and ingegleut not yet mixed linear arithmetic). For
example,

(set-option set-param "ELIM_QUANTIFIERS" "true")
(simplify (forall (x Int) (exists (y Int) (> y (+ x 2)))))
; true
(simplify (forall (x Int) (> 0 (+ x 2))))
; false
(simplify
(exists (1 Int)
(forall (x Int)
(implies (>= x 1)
(exists (u Int) (v Int)
(and >=u 0) G=v 0) (=x (+ (*x 3 u) (x5v))))))))
; true

The last problem asks to establish that there is a lower bayrslich that everg abovel can be
composed as a linear positive combination of 3 and 5. Mor&draand on the quantifier-elimination
procedure used in Z3 is available in [3].

26

Z3 - a Tutorial de Moura and Bjgrner

10 Data-types

Algebraic data-types, known from programming languageh si8 ML, offer a convenient way for spec-
ifying common data-structures. Records and tuples ardapeses of algebraic data-types, and so are

scalars (enumeration types). But algebraic data-typesnare general. They can be used to specify
finite lists, trees and other recursive structures.

10.1 Records

A record is specified as a data-type with a single constrwidras many arguments as record elements.
The number of arguments to a record are always the same. phesystem does not allow to extend
records and there is no record sub-typing.

The following example illustrates that two records are équdy if all the arguments are equal. It

introduces the typént-pair, with constructomk-pair and two arguments that can be accessed using
the selector functionsirst andsecond.

(declare-datatypes ((int-pair (mk-pair (first Int) (second Int)))))
(declare-funs ((pl int-pair) (p2 int-pair)))

(push)

(assert (= pl p2))

(assert (not (= (first pl) (first p2))))

(check-sat)

;unsat

(pop)

Just for the record, the same example, when entered in agdikined C program looks as follows
#include "z3.h”

int main() {
Z3_config cfg = Z3.mk_config();
Z3_context ctx = Z3mk_context (cfg);

Z3_symbol mkpair = Z3.mk_string.symbol(ctx, "mk-pair”);

Z3_symbol field-names[2] ={ Z3_mk_string.symbol(ctx, "first”),
Z3_mk_string_symbol (ctx, "second”) };

Z3_sort field_sorts[2] ={ Z3_mk.int_sort(ctx), Z3mk.int_sort(ctx) };

Z3_func_decl mktuple;

Z3_func.decl field_selects[2] ={ 0, 0 };

Z3_sort int.pair = Z3.mk_tuple_sort(ctx, mkpair,

field_names ,

field_sorts ,

&mk _tuple ,

field_selects);
Z3_ast pl Z3mk_const(ctx, Z3mk_string_.symbol(ctx, "pl”), intpair);
Z3_ast p2 Z3mk_const(ctx, Z3mk_string_.symbol(ctx, "p2”), intpair);
Z3_func_decl first = field_selects[0];

Z3_assertcnstr(ctx, Z3mk.eeq(ctx, pl, p2));
Z3_assertcnstr(ctx, Z3mk.not(ctx,
Z3_mk_eq(ctx ,
Z3_mk.app(ctx, first, 1, &pl),
Z3_mk_app(ctx, first, 1, &d2))));

Z3_bool r = Z3.check(ctx);

if (r == Z3.L_FALSE) {
printf("it .is_.unsatisfiable.as_expectedn”);

27

Z3 - a Tutorial de Moura and Bjgrner

Z3_del_context(ctx);
Z3_del_config (cfg);

10.2 Scalars (enumeration types)

A scalar sort is a finite domain sort. The elements of the fihitanain are enumerated as distinct con-
stants. For example, the satis a scalar type with three valués B andC. It is possible for three
variables of sorg to be distinct, but not for four variables.

(declare-datatypes ((S (A) (B) (C))))
(declare-funs ((x S) (y S) (z 8) (u 8)))
(assert (distinct x y z))

(check-sat)

;sat

(assert (distinct x y z u))

(check-sat)

;unsat

The binary API contains a shorthand for declaring scaldsstiris calledZz3 mk_enumeration sort.

10.3 Recursive data-types

A recursive data-type declaration includes itself dine¢tr indirectly) as a component. A standard
example of a recursive data-type is the one of lists. An irtdigt can be specified in Z3’s smt2 front-
end as:

(declare-datatypes ((list (nil) (coms (hd Int) (tl 1list)))))
Recursive data-types are also uniquely determined by dingirments.

(declare-funs ((11 list) (12 list)))
(push)

(assert (not (= 11 nil)))

(assert (mot (= 12 nil)))

(assert (= (hd 11) (hd 12)))

(assert (= (t1 11) (t1 12)))

(assert (not (= 11 12)))

(check-sat)

; unsat

(pop)

Notice that we also assert that and12 are notnil. This is because the interpretationtaf andtl is
under-specified onil. So then headch@d) and tail ¢£1) would not be able to distinguishil from (cons
(hd nil) (t1 nil))

28

Z3 - a Tutorial de Moura and Bjgrner

10.4 Mutually recursive data-types

You can also specify mutually recursive data-types for Z8.I\t one example below.

(declare-datatypes ((opt (None) (Some (list olist)))
(olist (Nil) (Coms (ohd Int) (otl opt)))))

You cannot nest recursive data-type definitions insiderdifpes, such as arrays. So the following
declaration is not accepted by Z3:

(declare-datatypes
((Unsupported (mk-rec-array (hd (Array Int Unsupported))))))

10.5 You will not get Z3 to prove Inductive facts

The ground decision procedures for recursive data-type' lifoto establishing inductive facts. Z3 does
not contain methods for producing proofs by induction. Imtipalar, consider the following example
where the predicatg is true on all natural numbers, which can be proved by indactiverNat. Z3
enters a matching loop as it attempts instantiating theausally quantified implication.

(declare-datatypes ((Nat zero (succ (pred Nat)))))
(declare-preds ((p Nat)))

(assert (p zero))

(assert (forall (7x Nat) (implies (p (pred ?7x)) (p ?x))))
(assert (mot (forall (7x Nat) (p 7x))))

(check-sat)

29

Z3 - a Tutorial de Moura and Bjgrner

11 Bit-vectors

Modern CPUs and main-stream programming languages ubenatit over fixed-size bit-vectors. The
theory of bit-vectors allows modeling the precise semarifaunsigned and of signed two-complements
arithmetic. There are a large number of supported functans relations over bit-vectors. They are
summarized on Z3's on-line documentatiottp: //research.microsoft.com/projects/z3 of the
binary APIs and they are summarized on the SMT-LIB websttep: //www.smtlib.org. We will

not try to give a comprehensive overview here, but touch omesof the main features.

In contrast to programming languages, such as C, C++, C#, flamre is no distinction between
signed and unsigned bit-vectors as numbers. Instead, dloeytlof bit-vectors provides special signed
versions of arithmetical operations where it makes a difiee whether the bit-vector is treated as signed
or unsigned.

11.1 Basic Bit-vector Arithmetic

(declare-funs ((x BitVec[32]) (y BitVec[32]) (z Int)))
(define x (bvadd x y)) ; addition

(define x (bvsub x y)) ; subtraction

(define x (bvneg x)) ; unary minus

(define x (bvmul x y)) ; multiplication

(define x (bvurem x y)) ; unsigned remainder

(define x (bvsmod x y)) ; signed modulo

(define x (bvshl x y)) ; shift left

(define x (bvlshr x y)) ; unsigned (logical) shift right
(define x (bvashr x y)) ; signed (arithmetical) shift right

Let us illustrate a simple property of bit-wise arithmefithere is a fast way to check that fixed size
numbers are powers of two. It turns out that a bit-veet@s a power of two or zero if and only # +
(x - 1) is zero. We check this for four bits below.

(define-fun is-power-of-two ((x BitVec[4])) Bool
(= bv0[4] (bvand x (bvsub x bvi[4]))))

(declare-funs ((a BitVec[4])))

(push)

(assert

(not (iff (is-power-of-two a)
(or (= a bv0[4]) (= a bvi[4])
(= a bv3[4]) (= a bv4[4]) (= a bv8[4]1)))))

(check-sat)
; sat

(model)
; ("model" "a -> bv2[4]")

(pop)
Ups! There was a typo, we should have written 2 instead of 3.

(assert
(not (iff (is-power-of-two a)
(or (= a bv0[4]) (= a bvi[4])

30

http://research.microsoft.com/projects/z3
http://www.smtlib.org

Z3 - a Tutorial

(= a bv2[4]) (=

(check-sat)
; unsat

Better!

11.2 Bit-wise Operations

(define x (bvand x y))
(define (bvor x y))
(define x (bvnot x))

(define x (bvnor x y))

X
X
X
(define x (bvnand x y))
X
(define x (bvxnor x y))

b
)
b
)
b

)

; bit-wise

bit-wise

; bit-wise
; bit-wise
; bit-wise
; bit-wise

de Moura and Bjgrner

a bv4[4]) (= a bv8[4]1)))))

and
or
not
nand
nor
Xxnor

We can prove a bit-wise version of de-Morgan’s law:

(declare-funs ((x BitVec[64]) (y BitVec[64])))
(assert (not (= (bvand (bvnot x) (bvnot y)) (bvnot (bvor x y)))))

(check-sat)
; unsat

11.3 Predicates over Bit-vectors

11.3.1 Comparison

(define a (bvule x y))
(define a (bvult x y))
(define a (bvuge x y))
(define a (bvugt x y))
(define a (bvsle x y))
(define a (bvslt x y))
(define a (bvsge x y))
(define a (bvsgt x y))

unsigned
unsigned
unsigned
unsigned

less or equal
less than
greater or equal
greater than

signed less or equal
signed less than
signed greater or equal
signed greater than

Signed comparison, such assle, takes the sign bit of bit-vectors into account for companrjs
while unsigned comparison treats the bit-vector as unsli@tneats the bit-vector as a natural number).

(declare-funs ((a BitVec[4]) (b BitVec[4])))
(assert (not (iff (bvule a b) (bvsle a b))))

(check-sat)
; sat

(model)
; ("model" "a -> bv9[4]
; b —> bv0o[41")

(eval (bv2int[Int] a))
;9

(eval (bv2int[Int] b))
; 0

(define-fun bv2signed ((x BitVec[4])) Int

31

Z3 - a Tutorial de Moura and Bjgrner

(let ((xI (bv2int[Int] x)))
(ite (bvsge x bv0[4]) xI (- xI 16))))
(eval (bv2signed a))

; (=07
(eval (bv2signed b))
; O

11.3.2 Overflow Checks

Z3 exposes special predicates to check for the absence ighadsmultiplication overflows and check
for the absence of signed multiplication overflows and utholes. The predicates take two bit-vectors
of the same length and return true if no overflow or underfloauac

(define a (bvumul_noovfl x y))
(define a (bvsmul_noovfl x y))
(define a (bvsmul_noudfl x y))
11.3.3 Bit-wise operations
(define a (bvredor x)) ; or-reduction
(define a (bvredand x)) ; and-reduction
11.4 Conversions between Bit-vectors and Integers

Z3 exposes conversion functions between bit-vectors aedéns.

(define b (int2bv[32] z)) ; Convert an integer to a 32-bit bit-vector
(define c (bv2int[Int] x)) ; Convert an (unsigned) bit-vector to an integer

It is possible, but expensive, to integrate the theory @gats with bit-vectors. It is therefore turned

off by default in Z3. You can enable it by setting the configioraparameteBV_ENABLE INT2BV _PROPAGATION
to true.

32

Z3 - a Tutorial de Moura and Bjgrner

12 Arrays

As part of formulating a programme of a mathematical thedrgoonputation McCarthy [25] proposed
abasictheory of arrays as characterized by the select-store axiom

VAi,v. storg A i,V)[i] ~ Vv

and
VAL j,v. i~]VstorgAi,Vv)[j] ~A[j].

We wroteA[i] instead of the SMT-LIB syntaxselect 4 <).Z3 contains a decision procedure for
the basic theory of arrays. By default, Z3 assumes that siaeyextensional over select. In other words,
Z3 also enforces that if two arrays agree on all reads, thearttays are equal:

VAB. (Vi.Ali]~B[i]) > A~B.

It also contains various extensions for operations on arthgt remain decidable and amenable to ef-
ficient saturation procedures (here efficient means, witNRrcomplete satisfiability complexity). We
describe these extensions in the following using a cotectf examples. Additional background on
these extensions is available in [10].

12.1 Select and Store

Let us first check a basic property of arrays. Suppase an array of integers, then the constraint
a1[X] ~ xAstorgag, x,y) ~ a;

is satisfiable for an array that contains an ingéat maps tx, and whenx =y (because the first equality
forced the range of to bex). We can check this constraint.

(define-sorts ((A (Array Int Int))))
(declare-funs ((x Int) (y Int) (z Int)))
(declare-funs ((al A) (a2 A) (a3 A)))
(push)
(assert (= (select al x) x))
(assert (= (store al x y) al))
(check-sat)

; sat
(get-info model)

; (("model" "x -> 0

; al => (store (const 1) 0 0)

5y > 0M)

On the other hand, the constraints become unsatisfiable agsamtingk 22 v.

(assert (not (= x y)))
(check-sat)
; unsat

(pop)

33

Z3 - a Tutorial de Moura and Bjgrner

12.2 Constant Arrays

The array that maps all indices to some fixed value can befgge Z3 using theonst [ArrayTypel
construct. It takes one value from the range type of the aamray creates an array. TherayType
parameter helps Z3'’s type checker to infer the correct tgpdhie constant array. The constant arrays
satisfy the axiom

Vv, i . (consfAV)[i] ~v.

So if we try to select an arbitrary index from the constanagrwe get the fixed value back.

(define alll_array (const[A] 1))
(simplify (select alll_array x))
;01

12.3 Array models

Models provide interpretations of the variables (consaahd functions that appear in the satisfiable
formula. An interpretation for arrays consists of a finitaniher of key-value pairs together with a
default value such that everything that does is not mentiagmé¢he finite set of key-value pairs maps to
the default value.

Schematically, interpretations for arrays are writterhia form

(store (store .. (const[A] <val-0>) <key-1> <val-1>) .. <key-n> <val-n>)))

The term (const [A] <val-0>) is an array that maps all indices t@al-0>. The finite set of
key-val pairs<key-1> <val-1>, .., <key-n> <val-n> represent the keys where the interpretation
different values for the specified keys.

12.4 Mapping Functions on Arrays

In the following, we will simulate basic Boolean algebrat(g®ory) using the array theory extensions
in Z3. Z3 provides a parametrizedapfunction on arrays. It allows applying arbitrary functiciosthe
range of arrays. The map functions satisfy the axioms

VA,i . mag f](A)[i] = f(Afi])
VA, B,i . mag f](A,B)]i] ~ f(AJil],B]i
VA,B,C,i . maff](A,B,C)[i] ~ f(Ali

for the cases wheré is unary, binary, ternary, or generaliyary. The advantage of using the map
function is of course that the termag f]|(A) can be used without accessing the resulting array at the
indexi.

In the SMT-LIB syntax, the function parameterrtapshould be an uninterpreted function symbol.
So if we want to mapnd, or andnot on Boolean arrays, we will need to define auxiliary functiwsith
the same interpretation as these logical connectives.

(define-sorts ((IntSet (Array Int Bool))))
(declare-funs ((and_fn Bool Bool Bool)

(or_fn Bool Bool Bool)

(not_fn Bool Bool)))
(declare-funs ((a IntSet) (b IntSet) (c IntSet)))

34

Z3 - a Tutorial de Moura and Bjgrner

(assert (forall (x Bool) (y Bool)

(iff (and_fn x y) (and x y))))
(assert (forall (x Bool) (y Bool)

(iff (or_fn x y) (or x y))))
(assert (forall (x Bool)

(iff (not_fn x) (mot x))))

Let us check that

anb = bua

(push)
(assert
(not
(= (mapland_fn] a b)
(map[not_fn] (maplor_fn] (map[not_fn] b) (map[not_fn] a)
)))))
(check-sat)
; unsat

(pop)

For convenience, Z3 exposes shorthands for set operatiortbe same example can be written in a
much more readable way:

(push)
(assert
(not
(= (intersect a b)
(complement (union (complement b) (complement a))))))
(check-sat)
; unsat

(pop)

We can also check facts about set membership.sEhect function simulates set membership.
xe (anb) — xea

(push)
(assert (select (mapl[and_fn] a b) x))
(assert (not (select a x)))
(check-sat)

; unsat

(pop)

It is of coursenot the case that
xe (aub) — xea

(push)
(assert (select (maplor_fn] a b) x))
(assert (not (select a x)))
(check-sat)

; unknown

35

Z3 - a Tutorial de Moura and Bjgrner

(get-info model)
; (("model" "a -> (const false)
; x >0
; b > (store (const false) O true)
; or_fn —> {
; false false -> false
; false true -> true
; else -> false

;")

while it is the case that
x€ (aub) — xeavxeb

(assert (and (not (select b x))))
(check-sat)

(pop)

12.5 Default array values

The functiondefault [ArrayType] takes as argument an arrayand returns a value from the range.
Z3 ensures that in the default value used in models for tlag/arare equal todefault[A] a).

The following example illustrates constraints that fosdeto be different from the array that maps
all keys to 1, yet, the default value is constrained to be lother wordsal must map some key to a
value different from 1. Z3 selects the key arbitrary to ber@ #he value to be 2 in the model.

(push)
(assert (= (default[A] al) 1))
(assert (not (= al (comst[A]l 1))))
(check-sat)
(model) ; short for (get-info model)
; ("model" "al -> (store (const 1) 0 2)")

More than one array can have the same default value.

(assert (= (default[A] a2) 1))

(assert (not (= al a2)))

(check-sat)

(model)

("model" "al -> (store (store (const 1) 0 2) 3 4)
; a2 -> (store (const 1) 3 5)")

(pop)

12.6 Bags as Arrays

We can use the parametrized map function together with tfaulieaccessor to encode finite sets and
finite bags. Finite bags can be modeled similarly to sets. d\ibdere an array that maps elements to
their multiplicity. Main bag operations includeion obtained by adding multiplicityintersection by
taking the minimum multiplicity, and a du@in operation that takes the maximum multiplicity. The bag
operations

36

Z3 - a Tutorial de Moura and Bjgrner

(declare-sort A)
(define-sorts ((ABag (Array A Int))))
(declare-funs ((bag_min Int Int Int)
(bag_or Int Int Int)
(bag_max Int Int Int)))
(declare-funs ((a ABag) (b ABag) (c ABag)))
(assert (forall (x Int) (y Int)
(= (bag_min x y) (ite (< x y) x y¥))))
(assert (forall (x Int) (y Int)
(= (bag_max x y) (ite (< xy) y x))))
(assert (forall (x Int) (y Int)
(= (bag_or x y) (+ xy))))

We can then usé@efault to enforce that finite bags map everything but a finite settefgars to 0.

(assert (= (default[ABag] a) 0))
(assert (= (default[ABag]l b) 0))
(assert (= (default[ABagl c) 0))

12.7 Summary of Array operations

Let us summarize the array operations available in Z3 (usmt2 syntax). We usé& as a name for
(Array I V),A1for (Array I V1),A2for (Array I V2) andSetIasaname fo(Array I Bool).

Usage Signature Description
(select i) ATV selects contents at index
, produces array where contents of indexs
(store a i v) ATIVA
updated tor

(const[A] v) VA produces the constant array. Allindices map

oy
selects an default value for the array. It com-

plementsconst
(map[f] a b ..) | Al A2 .. A maps functionf on the range o b ..

(union a b) SetI SetI SetI | creates the union of two arrays as sets
(intersect a b) SetI SetI SetI | creates the intersection of two sets
(difference a b) | SetI SetISetI | creates the intersection of two sets
(complement a) SetI Setl creates the complement of a set

(default[A] a) AV

37

Z3 - a Tutorial de Moura and Bjgrner

13 Quantifiers

Apart from linear quantifier-elimination introduced in $iea[9.8 and in connection with recursive func-
tion axiomd 8.8, all formulas have so far besrantifier-free Z3 is adecision proceduréor the combi-
nation of the previous quantifier-free theories. That isaih answer whether a quantifier-free formula,
modulo the theories referenced by the formula, is satigfiablvhether it is unsatisfiable. Z3 also accepts
and can work with formulas that use quantifiers. It is no loraydecision procedure for such formulas
in general (and for good reasons, as there can be no decisioedure for first-order logic).

Nevertheless, Z3 is often able to handle formulas involjogntifiers. It uses two main approaches
to handle quantifiers. The most prolific approach is ugagern-basedquantifier instantiation (Sec-
tion[13.2). This approach allows instantiating quantifiechfulas with ground terms that appear in
the current search context basedpaitern annotation®n quantifiers. The second approach is based
on saturation theorem provingsing a superposition calculus which is a modern method gplyang
resolution style rules with equalities. Section 13.4 idtroes this component. The pattern-based instan-
tiation method is quite effective, even though it is inhélsemcomplete. The saturation based approach
is complete for pure first-order formulas, but does not saaleicely and is harder to predict.

Besides the two main quantifier engines, Z3 also contains @elmased quantifier instantiation
component (Section_13.5) that uses a model constructiomdogidod terms to instantiate quantifiers
with; and Z3 also handles the array property fragment [§cdbed in Sectioh 13.6.

13.1 Modeling with Quantifiers

Suppose we want to model an object oriented type system wighesinheritance. We would need a
predicate for sub-typing. Sub-typing should be a partidegrand respect single inheritance. For some
built-in types, such as fdtist, sub-typing should be monotone. Figlie 4 axiomatizes thetyging
relationship using first order quantifiers.

(Vx: sub(x,x))

(WXx,y,z: sub(x,y) A suly,z) — sul(x, z))

(WX, y: sub(x,y) Asul(y,x) — x=y)

(Wx,y,z: sul(x,y) A sub(x,z) — sul(y,z) Vsub(zy))
(Vx,y: sub(x,y) — sub(List(x), List(y)))

Figure 4: Axioms forsub

The axioms are rewritten as smt2 assertions in Figlre 5. dridlowing, we describe how these
axioms can be further tailored to work in the context of theTSddlver Z3.

13.2 Patterns

The Stanford Pascal verifier and the subsequent Simplifgréme prover [[14] pioneered the use of
pattern-based quantifier instantiation. The basic idembgtattern-based quantifier instantiation is in a
sense straight-forward: Annotate a quantified formulagisipatternthat contains all the bound vari-
ables. So a pattern is a term (that does not contain bindiegatipns, such as quantifiers) that contains
variables bound by a quantifier. Then instantiate the dfi@antwhenever a term that matches the pattern
is created during search. This is a conceptually easy ragapint, but there are several subtleties that
are important.

38

Z3 - a Tutorial de Moura and Bjgrner

(declare-sort Type)
(declare-fun subtype (Type Type) Bool)
(delcare-fun List (Type) Type)
(assert (forall (x Type) (subtype x x)))
(assert (forall (x Type) (y Type) (z type)
(=> (and (subtype x y) (subtype y z))
(subtype x 2z))))
(assert (forall (x Type) (y Type)
(=> (and (subtype x y) (subtype y x))
(=xy)))
(assert (forall (x Type) (y Type) (z type)
(=> (and (subtype x y) (subtype x z))
(or (subtype y z) (subtype z y)))))
(assert (forall (x Type) (y Type)
(=> (subtype x y)
(subtype (List x) (List y)))))

Figure 5: Axioms forsub

For example, if we annotate the last axiom from Fidgure 5 withfollowing pattern (and Z3's auto-
matic pattern inference algorithm might very well do so):

(assert (forall (x Type) (y Type)
(=> (subtype x y) (subtype (List x) (List y)))
:pat { (subtype x y) }))

the axiom gets instantiated whenever there is some grounddethe form (subtype s t). The in-
stantiation causes a fresh ground tefsubtype (List s) (List t)), which enables a new instan-
tiation. This undesirable situation is calledreatching loop It could be tempting to use the alternative
pattern annotation

(assert (forall (x Type) (y Type)
(=> (subtype x y) (subtype (List x) (List y)))
:pat { (subtype (List x) (List y)) }))

but this annotation does not admit instantiate all relevastances of the axioms. Take the following
example of assertions that are unsatisfiable in the conféRe@xioms:

(declare-funs ((a Type) (b Type) (c Type) (d Type)))
(assert (and (subtype a (List b)) (subtype b c) (subtype (List c) d)))
(assert (not (subtype a d)))

Unfortunately, the missing link for the transitive closawdom (subtype (List b) (List c)) does
not get instantiated using this pattern annotation. You kel better of splitting the pattern into two
patterns. One that bindsand another that binds This is called anulti-pattern

(assert (forall (x Type) (y Type)
(=> (subtype x y) (subtype (List x) (List y)))
:pat { (List x) (List y) }))

39

Z3 - a Tutorial de Moura and Bjgrner

Before elaborating on the subtleties, we should addressiportant first question. What defines the
terms that are created during search? In the context of nM$ts®lvers, and of the Simplify theorem
prover, terms exist as part of the input formula, they areoafse also created by instantiating quantifiers,
but terms are also implicitly created when equalities aser@ed. The last point means that terms are
considered up to congruence and pattern matching takes piadulo ground equalities. We call the
matching problent-matching For example, if we have the following equalities:

(declare-funs ((f Int Int) (g Int Int) (a Int) (b Int) (c Int)))
(assert (= (g (g b)) b))

(assert (= (f b) ¢))

(forall (x Int) (= (f (g (g x))) x) :pat { (f (g (g x))) 1)

then the termsg, (£ b), (f (g (g b)), (£ (g (g (g (g b))))),etc. are equal modulo the equal-
ities. The pattern (f (g (g x))) can be matched anobund tob (and the equalit= b c¢) is deduced).
While E-matching is an NP-complete problem, the main sauafeoverhead in larger verification
problems comes from matching thousands of patterns in thtexbof an evolving set of terms and
equalities. Z3 integrates an efficient E-matching endid# {&sing term indexing techniques.

13.2.1 An operational context of pattern-based instantiabn

The context where E-matching is used is inherently opearatioNe will therefore here review the basic
setting of the DPLL(T) search and how quantifiers are instted. We will call DPLL(T) with quantifiers
DPLL(QT) (obviously pronounced cute) as it exemplifies dmp@mbination of quantifier instantiation
with propositional search.

In DPLL(QT), all maximal sub-formulas that use a quantifiez eeplaced by a fresh propositional
variable. So we rewrite the formuli[vx.(s] where the sub-formulsx.y occurs instead of af[pyy -

In the context of Z3, we can furthermore assume an optintimatthat the sub-formulas that are
rewritten in this way are all positive sub-formulas with warisal quantifiers, because we can replace
existential quantifiers by constants without changing #iessability of the formula (in other words, we
canSkolemizehe formula prior to creating the propositional abstragtio

Suppose that DPLL(QT) sefsy to true, then any modeM for ¢ [pyy]| extends to a model of
¢ [vx.y] if it satisfiesy]t /x| for every ground ternh. In other words, we can add the axioms

Poxy — Ylt/x

for any ground ternt to enforce this property. Since we assume thatcurs with positive polarity, we
don’t need to bother if DPLL(QT) sets y to false

13.2.2 Pattern and multi-pattern annotations

So, which ground terms should be used for these axioms? Jkbere E-matching is used. To iden-
tify the terms to substitute far, E-matching relies on a pattern annotated with the quaatfiemula.
Reasonable patterns associated with the McCarthy arraynaxare provided in curly braces after the
binding:

VA, i,v.{write(A,i,v)} . read(write(A,i,v),i) = v 1)
VA, i,v.{read(write(A;i,v),)} .i=] V read(write(A,i,v), j) =read(A, j) 2

These two patterns areasonablebut they turn out to not be complete (not even for non-exteras
arrays). The followingnulti-pattern it consists of two terms that must be matched (in order td hih
the quantified variables), completes the picture for the Bty array theory (without extensionality).

40

Z3 - a Tutorial de Moura and Bjgrner

VA I, v.{write(Ai,v),read(A,)} .i = V read(write(A,i,v), j) = read(A, j) 3

This axiom easily leads to an explosion in the number of ms#a because it can combine a cross-
product of array accessesAawith a set of independent updates to it. Equatidn (2) is lessiful, even
though it could creata- mterms, when there arenested writes, accessed invindependent reads. We
illustrate the “harmful” example below.

(declare-fun A () (Array Int Int))
(declare-funs ((i_1 Int) ... (i_n Int)))
(assert

(let (x (store A i_1 1))

(let (x (store x i_n n))
(=0 (+ (select x 1) .. (select xm))))))

13.2.3 Injective functions

Another prime example where a multi-pattern causes harmtisa context of axiomatizing injectivity.
The functionf is injective if:

(declare-sorts (A B))
(declare-fun f (A) B)
(assert (forall (x A) (y A) (=> (= (f x) (£ y)) (=x y))))

The straight-forward pattern annotation of this axiom is:

(assert (forall (x A) (y A)
= (= Ex) =xy))
pat { (£ x) (£ y) D)

Thus, the axiom is instantiated for every pair of occurrenckf. A simple trick allows formulating
injectivity of £ in such a way that only a linear number of instantiationsgsited. The trick is to realize
thatf is injective if and only if it has a partial inverse.

(declare-fun f-inv (B) A)
(assert (forall (x A) (= x (f-inv (£ x))) :pat { (£ x) }))

13.2.4 No-patterns

The annotation:nopat can be used to instrument Z3 not to use a certain sub-term atearp The
pattern inference engine may otherwise choose arbitrdntesuns as patterns to direct quantifier instan-
tiation.

For example,

(declare-fun g (B) A)
(declare-fun f (A) B)
(assert (forall (x A) (= x (g (f x))) :nopat { (f x) }))

causes Z3 to use the pattefg (f x)) instead of(f x), which is annotated as:aopat.

41

Z3 - a Tutorial de Moura and Bjgrner

13.2.5 Programming with Triggers

The following section uses examples from the paper [26]. fdyger is based on several practical ex-
periences with using pattern-based quantifier-instaatian the context of the Verifying C Compiler
project. The examples are quite illustrative.
Consider the axiom
(A\B)\C = A\ (BUC)

if we for a moment disregard the encoding of sets into arragsdescribed in Sectidn 12.4), we may
choose to axiomatize the equality as a rewrite from left ghitsi by specifying the left hand side as a
pattern.

(declare-sort Set)
(declare-funs ((sub Set Set Set) (cup Set Set Set)))
(assert (forall (A Set) (B Set) (C Set)
(= (sub (sub A B) C) (sub A (cup B C)))
:pat { (sub (sub A B) C) }
)

We can now check the theorem on nested terms. Three nestadees ofsub requires four
guantifier instantiations.

(declare-funs ((al Set) (a2 Set) (a3 Set) (a4 Set) (a5 Set) (a6 Set)))
(push)
(assert (not (= (sub (sub (sub al a2) a3) a4)
(sub al (cup (cup a2 a3) a4)))))
(check-sat)
; unsat
(get-info statistics)

; num. qa. inst: 4
(pop)

Five nested occurrences @ib require 12 quantifier instantiations (if you run this in exd®n of the
previous check Z3 indicates 16 instantiations, but thisréidsithe cumulative number of instances).

(push)

(assert (not (= (sub (sub (sub (sub al a2) a3) a4) a5)
(sub al (cup (cup (cup a2 a3) a4) ab)))))

(check-sat)

; unsat

(get-info statistics)

; num. gqa. inst: 12

(pop)

Six, seven and eight nestings result in 38, 98 and 344 quamitifstantiations, respectively. The
number of quantifier instantiations grows exponentiallyhvthe number of nesteglibs. One can avoid
the exponential number of instantiations by using the Yaihg trick, which uses a special version of
sub to control quantifier instantiation.

42

Z3 - a Tutorial de Moura and Bjgrner

(declare-fun subM (Set Set) Set)

(assert (forall (A Set) (B Set)
(= (sub A B) (subM A B))
:pat { (sub A B) }))

(assert (forall (A Set) (B Set) (C Set)
(= (sub (subM A B) C) (subM A (cup B C)))
:pat { (sub (subM A B) C) }
)

It carefully shifts a marker such that only a quadratic nunddenstantiations is required. The number
of instantiations grow from 7, 11, 16, 22 to 29 for the samen$eestings.

13.3 The Axiom Profiler

As should be evident, programming with triggers is both draad a craft. Th&3 Axiom Profileris a
tool that can be used to profile quantifier instantiations, @specially track how quantifier instantiations
trigger other instantiations. The Z3 Axiom Profiler is aghile from

http://vcc.codeplex.com/Wiki/View.aspx7title=Z3/,20Axiom},20Profiler

13.4 Saturation

While pattern-based quantifier instantiation is quite @ffe and has advantages with respect to how
guantifier instantiation can be controlled, it also comethwome basic limitations. One limitation is
that patterns require variables to be in the scope of a fumaymbol. Equality is excluded. There are
no ways to annotate the quantifier with patterns for Z3:

(declare-sorts (Person))

(declare-funs ((Adam Person) (Eve Person) (p Person)))

(assert (forall (x Person) (or (= x Adam) (= x Eve))))

(assert (not (or (= p Adam) (= p Eve))))

(check-sat)

; unknown

; (error

; "WARNING: failed to find a pattern for quantifier (quantifier id: k!2)")

Saturation-based theorem proving, using superpositiercomes several of the limitations of pattern-
based quantifier instantiation. On the other hand, the eaeftof search can be more unpredictable
and is not controllable in the same way. You can enable dainrhy setting the configuration option
SATURATE to true. With this option, Z3 produces the expected resmiat. The background of the
saturation algorithms used in Z3 are elaborated on in(c8¢ [1

13.5 Model-based Quantifier Instantiation

Z3 can use some information from the current partial modetie ground goal to instantiate quantifiers.
You can enable model-based quantifier instantiation in Z& ke configuration optioRI _MODEL_CHECKER=1
(which instantiates quantifiers by values from the currentiet if these values contradict the quantifiers),
or QI_MODEL_CHECKER=2, which instantiates quantifiers by instances that eitheluate tafalse or are

not specified in the current model.

43

http://vcc.codeplex.com/Wiki/View.aspx?title=Z3%20Axiom%20Profiler

Z3 - a Tutorial de Moura and Bjgrner

13.6 The Array Property Fragment

The optionARRAY PROPERTY=true enables tharray propertyfragment. This works in the context of
quantified formulas that use the array functiagin®re andselect. The array property fragment is
described in[[B].

44

Z3 - a Tutorial de Moura and Bjgrner

14 Simplification

The main use of Z3 is to check whether formulas are satisfiatdeoptionally obtain a model, or un-
satisfiable and optionally obtain a proof. The core of safidlity checking uses and benefits from
pre-processing simplification, but does not require iteottihan for eliminating functions that can be
replaced by others. For example,- y is replaced by + -1xy, such that Z3’s core does not need to
handle subtraction as a special case. Thus, simplificasiaiséd as a convenience, but not as a neces-
sity. This contrasts BDD (binary decision diagram) packageat besides check propositional formulas
for satisfiability also normalize propositional formulagd a unique normal form. Two propositional
formulas are equivalent if and only if their binary decisdiagrams are equal.

Since several applications may benefit from simplificatiéB exposes its expression simplifier. Us-
ing the simplifier in context of Z3 can have an advantage ifstime formula is used in several different
scopes. Then it is an advantage to operate with the pre-ifimpformula in contrast to potentially
re-simplify the same formula multiple times.

14.1 Invoking the Simplifier

Simplification can be invoked from themt2 command-line, or it can be invoked over the binary APIs.
The C function for calling the simplifier is call&B_simplifyandthe .NET methodis call&édmplify.
They both return a simplified expression.

The expression is simplified in the context of the formulad thay have been asserted to the current
context.

14.2 Configuring Simplification

You can control the strength of the simplifier using a few agunfation options.

14.2.1 ELIM QUANTIFIERS

Z3's simplifier can also be used to exercise the quantifienieltion routines. This was illustrated in
Sectior{ 9.b.

14.2.2 CONTEXT_SIMPLIFIER

This setting can be used to simplify sub-formulasrte or false For example it can be used to simplify
pA(pVQ) to p by realizing that the second nested occurrence isf subsumed by the top-level It
uses syntactic matching to simplify sub-formulas, it doaisimvoke any decision procedures.

14.2.3 STRONG_CONTEXT_SIMPLIFIER

This setting can also be used to simplify sub-formulagrte or false It uses decision procedures to
check subsumption.

(declare-funs ((x Int) (y Int)))

(simplify (or (and (< -1 (+ y x)) (K x y)) (and (< -1 (+ x y)) (>=x y))))
; (or (not (or (k= (+ yx) (-01)) (k= (+y (x (-0 1) x)) 0)))

; (mot (or (k= (+ y x) (-0 1)) (not (k= (+y (x (-01) x)) 0)))))

(set-option set-param "STRONG_CONTEXT_SIMPLIFIER" "true")
(simplify (or (and (K -1 (+ y x)) K xy)) (and (K -1 (+ x y)) (= x y))))

45

Z3 - a Tutorial de Moura and Bjgrner

; (mot (k= (+ y x) (-0 1))

46

Z3 - a Tutorial de Moura and Bjgrner

15 Implied Equalities

The formula
¢ x<y+1lany<z—1Az<X

is satisfiable, but it constrains the interpretationsdgr andz such thak = y+ 1 =z Some applications
would like to use such information. Z3 exposes APIs for leggnmplied equalities. From smt2, you
can learn the implied equalities using a query of the form:

(declare-funs ((x Int) (y Int) (z Int)))
(assert (and (k= x (+ y 1)) (k=y (- z 1)) (<= z x)))
(get-implied-equalities x z (+ y 1) y (- z 1))

; (18 18 18 19 19)

Theget-implied-equalities function takes a list of terms as arguments. It produces aflistegers.
Each integer identifies a partition, so that two terms in thee equivalence class receive the same
partition identifier. In the example the termsz and (+ y 1) are equal, so argand (- z 1).

From the C-API you can query implied equalities using

Z3_context context;

unsigned num_terms; // number of terms

Z3_ast terms[num_terms] ; // array of terms

usigned class_ids[num_terms]; // output array of partition identifiers

Z3_bool is_sat;
is_sat = Z3_get_implied_equalities(context, num_terms, terms, class_ids);

a7

Z3 - a Tutorial

16 Unsatisfiable Cores

Z3 exposes a way to extract an unsatisfiable set

de Moura and Bjgrner

of assertions, commonly called amsatisfiable (set-option enable-cores)

core. The easiest way to extract an unsatisfiabf@eclare-funs ((f U U) (a U) (b U)))
core is by using themt2 interface. Figur¢l6 il- (declare-funs ((c U) (d U) (e U)))
lustrates how to invoke Z3 to extract an unsatisfideclare-funs ((x U) (y U)))

able core. Extracting unsatisfiable cores imposégeclare-preds ((p U U) (p1l) (p2)))
extra run-time overhead, so Z3 requires that yddeclare-preds ((p3) (p4) (p5)))

instruct it to enable core extraction using the confassert
mand(set-option enable-cores). (assert

The C API functionzZ3_check_assumptions (assert
takes as input a set of literals. The literals are agssert
sumed. It returns a proof object and a sub-list ¢&ssert
the input literals that were used in the unsatisfiabf@ssert

core (if the assertions and assumptions togetHassert
are unsatisfiable). (assert
(assert

(or p1 (= a b))

(or (not p1) (= a b)))
(= x b))

(= y a))

(or false (=
(and (= b ¢)
(or pl p2))
(or p2 p3))
(not (= (£ a) (f e))))

c d)))
(=d e)))

(get-unsat-core)

Figure 6: Unsatisfiable core witmt2

48

Z3 - a Tutorial de Moura and Bjgrner

17 Parallel Z3

The Z3 distribution comes with two specially designatedabjrdirectoriesin mt andx64 mt, for the
32-bit and a 64-bit version a multi-threaded (and paralld) By default, all versions of parallel Z3
behave like the sequential Z3.

To run a parallel Z3, rua3. exe in the directorybin_mt (or x64_mt for 64 bit machines) and supply
the number of cores that you want to run, e.g.,

z3 <file.smt> PAR_NUM_THREADS=4

The different cores communicate with each-other by excimgnigarned lemmas. Lemma sharing
may be configured via two options:

e CC_SHARING: Sets the sharing mode (0=off, 1=dynamic, 2=static)

e CC_SHARING LIMIT NEAR: Sets the maximum lemma size for inter-core sharing.
E.g., to run four cores with static sharing of lemmas up te Sizuse
z3 <file.smt> PAR_NUM_THREADS=4 PAR_SHARING=2 PAR_SHARING_LIMIT_NEAR=8

17.1 Portfolio Setup

By default, Z3 will start up to eight different SAT-strategi Users can configure their own portfolio on
the command line; automatic configuration is turned off i§ tleature is used. For example, to run on
three cores with identical configuration, but differentiadirestart intervals, use

z3 <file.smt> PAR_NUM_THREADS=3 RESTART_INITIAL=100{200,300}

where 100 is the default option and 200,300 configures thetfics cores. l.e., using the above
configuration, the first two cores on the machine will use 208 300 as their initial restart intervals,
while the third core uses 100.

49

Z3 - a Tutorial de Moura and Bjgrner

18 Proofs

Z3 can generate proof objects. Fine-grained proofs (eddijesettingPROOF _MODE=2) include detailed
rewrite steps from the pre-processor, coarse-grainedgp(enabled by settingRO0F_MODE=1) summa-
rize several rewriting steps into one.

Proofs objects are represented as terms and proof ruleseagefned functions. The proof leaves
are either asserted formulas, recognized by the functederted applied to a Boolean formula, or
hypotheses. The main proof rules are modus pomgnghich applies to implications and equivalences,
and unit resolutiominit_resolution, which resolves literals away from a clause.

The following is a simple proof object generated by Z3.

(declare-preds ((p) (9)))
(assert (implies p q))
(assert p)
(assert (mot q))
(check-sat)
; unsat
(get-proof "stdout")
; (let (7x27 (asserted p))
; (let ($x28 (nmot q))
; (let (?7x30 (asserted $x28))
; (let ($x23 (not p))
; (let ($x24 (or $x23 q))
; (Let (7x29 (mp (asserted (implies p q))
; (rewrite (iff (implies p q) $x24)) $x24))
; (unit_resolution ?x29 ?x30 7x27 false)))))))

A high-level overview of the proof objects in Z3 is presentad12]. The Isabell@ and HOL#
theorem provers integrate Z3's proof objects to creatécgcsuch that Z3 can be run as an untrusted
oracle.

’http://isabelle.in.tum.de/
Shttp://hol.svn.sourceforge.net/viewvc/hol/HOL/src/HolSmt/

50

http://isabelle.in.tum.de/
http://hol.svn.sourceforge.net/viewvc/hol/HOL/src/HolSmt/

Z3 - a Tutorial de Moura and Bjgrner

19 External Theory Solvers

In Sectior 13.11, we described an example showing how quenstifian be used to encode a theory (sub-
typing) not supported by Z3. The main disadvantage of thig@geh is that, in general, Z3 is not a
decision procedure for formulas containing quantifiers. Zomay not terminate or retunmknownfor
satisfiable formulas. In this Section, we describe how tdément an external theory solver and connect
it to Z3.

We describe the API using a simple example: a thdotlgat contains a sof§, a constanti, a binary
function f, and a binary predicatp. The theory axioms are:

vx: S f(x,u) =x
vx: S f(u,x) =X
VXx: S p(x,X)

The constanti is theunit for f, andp is reflexive.
The first steps for creating a new theory are:

1. Define a new structure for storing theory specific data.
2. Register the new theory in the logical context, and birnd ithe theory specific data-structure.
3. Define the theory sorts, constants, functions and predica

The implement the steps above, we use the following API fanst

Z3_theory Z3_mk_theory(
Z3_context c,
Z3_string th_name,
Z3_theory_data data
)3

Z3_sort Z3_theory_mk_sort(
Z3_theory t,
Z3_symbol s
)3

Z3_ast Z3_theory_mk_constant (
Z3_theory t,
Z3_symbol n,
Z3_sort s

)

Z3_func_decl Z3_theory_mk_func_decl(
Z3_theory t,
Z3_symbol n,
unsigned domain_size,
Z3_sort const domainl[],
Z3_sort range

)

51

Z3 - a Tutorial de Moura and Bjgrner

typedef void Z3_theory_callback_fptr(Z3_theory t);

void Z3_set_delete_callback(
Z3_theory t,
Z3_theory_callback_fptr £
)3

The typeZ3_theory data is just an alias fowoid *. The functionZ3_mk_theory creates a new
theory. Internally, the theory is identified by the given ma(th_name), and it contains a reference to
the theory specific data-structuieta. The functionszZ3_theory mk_sort, Z3_theory mk_constant,
Z3_theory mk func_decl are used to register theory sorts, constants, functionpmaticates. Z3 does
not distinguish between functions and predicates. A pegdics just a function that returns a Boolean.
The functionZ3_set _delete callback(t, f) registers a callback that is invoked before theonyis
deleted by Z3 when the logical context containing deleted. You can use this to release memory and
other resources that are allocated with the theory.

To implement our simple theory, we first define the followingt@icture:

typedef struct _SimpleTheoryData {
Z3_sort S;
Z3_func_decl f;
Z3_func_decl p;
Z3_ast u;
} SimpleTheoryData;

The following C function registers the simple theory in theeg logical contexttx.

Z3_theory mk_simple_theory(Z3_context ctx) {
Z3_sort f_domain[2];

Z3_symbol s_name = Z3_mk_string_symbol(ctx, "S");

Z3_symbol f_name = Z3_mk_string_symbol(ctx, "f");

Z3_symbol p_name = Z3_mk_string_symbol(ctx, "p");

Z3_symbol u_name = Z3_mk_string_symbol(ctx, "u");

Z3_sort B = Z3_mk_bool_sort(ctx);

SimpleTheoryData * td = (SimpleTheoryData*)malloc(sizeof (SimpleTheoryData)) ;
Z3_theory Th = Z3_mk_theory(ctx, "simple_th", td);

td->8S = Z3_theory_mk_sort(Th, s_name);

f_domain[0] = td->S; f_domain[1] = td->S;

td->f = Z3_theory_mk_func_decl(Th, f_name, 2, f_domain, td->S);
td->p = Z3_theory_mk_func_decl(Th, p_name, 1, &td->S, B);

td->u = Z3_theory_mk_constant(Th, u_name, td->S);

//

// At this point, we register the theory callback functions.
// We describe the first callback in some detail below.

//

Z3_set_reduce_app_callback(Th, Th_reduce_app);
Z3_set_new_app_callback(Th, Th_new_app);
Z3_set_new_elem_callback(Th, Th_new_elem);
Z3_set_init_search_callback(Th, Th_init_search);

52

Z3 - a Tutorial de Moura and Bjgrner

Z3_set_push_callback(Th, Th_push);
Z3_set_pop_callback(Th, Th_pop);
Z3_set_reset_callback(Th, Th_reset);
Z3_set_restart_callback(Th, Th_restart);
Z3_set_new_eq_callback(Th, Th_new_eq);
Z3_set_new_diseq_callback(Th, Th_new_diseq) ;
Z3_set_new_relevant_callback(Th, Th_new_relevant);
Z3_set_new_assignment_callback(Th, Th_new_assignment) ;
Z3_set_final_check_callback(Th, Th_final_check);

return Th;

Our functionmk_simple theory is not finished yet. We still have to register callbacks for oew
theory. Z3 communicates with an external theory implent@ntausing callbacks: C function pointers.
There are several callbacks that can be registered for ggeh gxternal theory. When a theory is
deleted by Z3, we should free the theory specific data-sirectWe can accomplish that by defining the
C function, and registering it asdelete callback

void Th_delete(Z3_theory t) {
SimpleTheoryData * td = (SimpleTheoryData *)Z3_theory_get_ext_data(t);
printf ("Delete\n");
free(td) ;

In the callback above, the functidIB_theory get _ext data is used to retrieve the theory specific
data-structure. We also add the following statement inthetionmk_simple_theory.

Z3_set_delete_callback(Th, Th_delete);

The next set of callbacks is used to implement theory spediifiplifications in the Z3 simpilifier.
The Z3 simplifier is applied to any formula asserted into tiggdal context, any instance of a universal
guantified formula, and axioms asserted by external theottecan also be directly invoked using the
functionZ3_simplify.

typedef Z3_bool Z3_reduce_app_callback_fptr(
Z3_theory, Z3_func_decl, unsigned, Z3_ast const [], Z3_ast *);

typedef Z3_bool Z3_reduce_eq_callback_fptr(
Z3_theory t, Z3_ast a, Z3_ast b, Z3_ast * r);

typedef Z3_bool Z3_reduce_distinct_callback_fptr(
Z3_theory, unsigned, Z3_ast const [], Z3_ast *);

void Z3_set_reduce_app_callback(
Z3_theory t, Z3_reduce_app_callback_fptr f);

void Z3_set_reduce_eq_callback(
Z3_theory t, Z3_reduce_eq_callback_fptr f);

53

Z3 - a Tutorial de Moura and Bjgrner

void Z3_set_reduce_distinct_callback(
Z3_theory t, Z3_reduce_distinct_callback_fptr f);

All simplification (reduction) callbacks return a Booleaalwe, it isZ3_TRUE if callback managed
to simplify the input, and the result is stored in the lastuangnt. If the callback returng3_FALSE,
then the result is ignored, and Z3 uses its default procefburbandling the application. Aeduce
applicationcallback is set using the functid@8_set reduce_app_callback(t, f),the callbacks is
invoked whenever the Z3 simplifier tries to simplify a termtloé formg(ty, .. .,t,), whereg is a theory
function/predicate. The equality and distinct callback mwoked whenever the simplifier finds a term
of the formt; =t or distinct(ts, ... ,ty) respectively, where the sort @ifis a theory sort. In our example,
we only need to define threduce applicatiorcallback. We define the following C function:

/*
This callback whenever the Z3 simplifier is trying to create
an expression d(args[0], ..., args[n-1]), and d is a theory symbol.
*/
Z3_bool Th_reduce_app(Z3_theory t,
Z3_func_decl d,
unsigned n,
Z3_ast const argsl[],
Z3_ast * result) {
SimpleTheoryData * td = (SimpleTheoryData*)Z3_theory_get_ext_data(t);
if (d == td->f) {
if (args[0] == td->u) {
xresult = args[1];
return Z3_TRUE;
}
else if (args[1] == td->u) {
*xresult = args[0];
return Z3_TRUE;

}
else if (d == td->p) {
if (args[0] == args[1]) {
*result = Z3_mk_true(Z3_theory_get_context(t));
return Z3_TRUE;

}
return Z3_FALSE; // failed to simplify
}

In the callback above, the functiat®_theory_get_context is used to retrieve the logical context that
ownsthe theoryt. The implementation of simplification/reduction functiois optional. That is, we can
implement a complete external theory solver without ushregsé callbacks. Of course, in practice, it is
useful to reduce the size of the input formula using as manplei/cheap simplifications as possible.

The full theory implementation contains several otherbzalks that are set. The online documenta-
tion for Z3 contains the full source code for this example.

54

Z3 - a Tutorial de Moura and Bjgrner

20 Some Applications

We have covered a number of ways to directly interact withT8 bigger picture, how can Z3 be used,
is perhaps not obvious from the detached examples. Thi®seoh the other hand, summarizes a set of
applications of Z3 that might help inspire additional usefoplications.

20.1 Dynamic Symbolic Execution

SMT solvers play a central role idynamicsymbolic execution, also callesmart white-box fuzzing
There are a number of tools used in industry that are basegranmdc symbolic execution, including
CUTE, Exe, DART, SAGE, Pex, and Yodi [20]. These tools cdlkxplored program paths as formulas
and use solvers to identify new test inputs that can steeuéive into new branches. SMT solvers are a
good fit for symbolic execution because the semantics of progfram statements can be easily modeled
using theories supported by the solvers. We will later ohiie the various theories that are used, but
here let us first focus on connecting feasibility constsainith a solver. To illustrate the basic idea of
dynamic symbolic execution, consider the greatest commasod progranf 20.J1. It takes the inputs
andy and produces the greatest common divisax ahdy.

int GCD(int x,int y) {
while (true) {
int m=x%y,;

if (m== 0) return vy;
X =Y,
y = m;

}
}

Program 20.1: GCD Program

Prograni 20.2 represents the static single assignmentdimjotorresponding to the case where the
loop is exited in the second iteration. Assertions are usetforce that the condition of the if-statement
is not satisfied in the first iteration, and it is in the secohble sequence of instructions is equivalently
represented as a formula where the assignment statemeetbden turned into equations.

int GCD(int xp,int yp) {

int my = X % Yo, (Mo =% %Yyo) A
assert (mp '= 0); —(mg =0) A
int x; = yo; (X1 =Yo) A
int y1 = mo; (Y1 =mo) A
int m = x; % yi; (M =x3%y1) A
assert (my == 0); (mp =0)

Program 20.2: GCD Path Formula
The resulting path formula is satisfiable. One satisfyirgiggsnent that can be found using an SMT

55

Z3 - a Tutorial de Moura and Bjgrner

solver is of the form:
X0:27 YO:4> rrb:za X1:47 Y1:2> m]_:O.

It can be used as input to the original program. In the cashisfeixample, the caltCD(2,4) causes
the loop to be entered twice, as expected. Smart white-bzeirfg is actively used at Microsoft. It
complements traditional black-box fuzzing, where the paiogbeing fuzzed is opaque, and fuzzing is
performed by pertubing input vectors using random walklsastbeen instrumental in uncovering several
subtle security critical bugs that black-box methods ha@ntunable to find.

20.2 Program Model Checking

Dynamic symbolic execution finds some input that can guidecetion into bugs. This method alone
does not produce any guarantee that programs are free dttlaé errors being checked for. The goal of
program model checkintpols is to automatically check for freedom from selectegaries of errors.
The basic idea of program model-checking is to explore adlsfiie executions using a finite and suf-
ficiently small abstraction of the program state space. ohistBLAST [22], SDV [1] and SMV from
Cadenc@, perform such program model checking. Both SDV and SMV aesl @s part of commercial
tool offerings. We will use the program fragment in Progiadi3’as an example of finite state abstrac-
tion. It accesses requests usterNextRequest. The call is protected by a lock. A question is whether
it is possible to exit the loop without having a lock. The g has an infinite (or very large) number
of states, since the value efunt can grow arbitrarily.

do {
lock ();
old_count = count;
request = GetNextRequest ();
if (request != NULL) {
unlock ();
ProcessRequest(request);
count = count + 1,
}
}
while (old_count != count);
unlock ();

Program 20.3: Processing requests using locks

Yet, from the point of view of locking, the actual values @funt and old_count are not really
interesting. On the other hand, tieationshipbetween these contains useful information. Prodram 20.4
shows a finite state abstraction of the same locking progréine Boolean variabl®é encodes the re-
lation count == old_count. We use the symbot to represent a Boolean expression that can non-
deterministically evaluate ttrue or false We can now explore the finite number of branches of the
abstract program to verify that the lock is always held whdtirey the loop.

4http://www.kenmcmil. com/

56

http://www.kenmcmil.com/

Z3 - a Tutorial de Moura and Bjgrner

do {
lock ();
b = true;
request = GetNextRequest ();
if (request != NULL) {
unlock ();
ProcessRequest(request);
if (b) b = false; else b = x;
}
}
while (!'b);
unlock ();

Program 20.4: Processing requests using locks, abstracted

SMT solvers are used for constructing finite state abstnastlike the one provided. There are to
date several approaches for creating these abstractionsnel of these approaches each statement in
the program is individually abstracted. For example, letassider the statemenbunt = count +
1. The abstraction of this statement is essentially a reldiigtween the current and new values of the
Boolean variablé. SMT solvers are used to compute this relation by provingrémas such as

count == old_count — count+1 != old_count
which is dual to checking unsatisfiability of the negation:
count == old_count A count+l == old_count

The theorem says that if the current valué @f true, then after executing the statementint = count
+ 1 it will be false Note that ifb is false then neither of the following conjectures is valid.

count != old_count — count+l == old_count
count != old_count — count+1l != old_count

In both cases, an SMT solver will producecaunter-examplethat is, a model for the negation of the
conjecture. Therefore, when the current valu® @ false nothing can be said about its value after the
execution of the statement. The result of these three pitterhats is then used to replace the statement
count = count + 1; by if (b) b = false; else b = *;. A finite state model checker can
now be used on the Boolean program. It will establish thit alwaystrue when control reaches this
statement, verifying that calls twck () are balanced with calls tmlock () in the original program.

20.3 Static Program Analysis

Static program analysis tools work in a similar way as dymasyimbolic execution tools. They also

check feasibility of program paths. On the other hand thexeneequire executing programs and they
can analyze software libraries and utilities indepengenithow they are used. One advantage of using
modern SMT solvers in static program analysis is that SMVessInowadays accurately capture the se-
mantics of most basic operations used by commonly usedgmoging languages. We use the program

57

Z3 - a Tutorial de Moura and Bjgrner

in Figure 20.5 to illustrate the need for static program ysialto use bit-precise reasoning. The program
searches for an index in a sorted arsay that contains a key.

int binary_search(
int[] arr, int low, int high, int key) {
assert (low > high || 0 <= low < high);
while (low <= high) {
/I Find middle value
int mid = (low + high) / 2;
assert (0 <= mid < high);

int val = arr[mid];
/! Refine range
if (key == val) return mid;

if (val > key) low = mid+1;
else high = mid-1;
¥

return -1;

Program 20.5: Binary search

The assert statement is @re-condition for the procedure. It restricts the input to fall within the
bounds of the arrayrr. The program performs several operations involving aréticn so a theory and
corresponding solver that understands arithmetic appedrs a good match. It is important, however,
to take into account that languages, such as Java, C# and+GICuse fixed-width bit-vectors as the
representation for values of tyget. This means that the accurate theory fat is two-complements
modular arithmetic. Assuming a bit-width of 32 bits, the rmaal positive 32-bit integer is% — 1 and
the smallest negative 32-bit integer-i€3L. If both 1ow andhigh are 20, 1ow + high evaluates to ¥,
which is treated as the negative numbe2®l. The presumed assertion<Omid < high therefore does
not hold. Fortunately, several modern SMT solvers supp@rtheory ofbit-vectors which accurately
captures the semantics of modular arithmetic. The bug doesstape an analysis based on the theory
of bit-vectors. Such an analysis would check that the arag4rr [mid] is within bounds during the
first iteration by checking the formula:

low > highVv 0 < low < high < arr.length
A low < high
— 0< (low+ high) /2 < arr.length

As we saw, the formula is not valid. The valubsw = high = 2%, arr.1ength = 230+ 1 provide a
counter-example. The use of SMT solvers for bit-precisgcstamalysis tools is an active area of current
development and research. An integration with the solvej9¥and the static analysis tool PREfix led
to the automatic discovery of several overflow-related badgicrosoft's rather large code-base.

20.4 Program Verification

The ideal of verified software has been a long-running quesed-loyd and Hoare introduced program
verification by assigning logical assertions to prograni&tended static checkingses the methods

58

Z3 - a Tutorial de Moura and Bjgrner

developed for program verification, but in the more limitethiext of checking absence of run-time
errors. The SMT solver Simplify [14] was developed in the teah of the extended static checking
systems ESC/Modula 3 and ESC/Java [19]. This work has beeimspiration for several subsequent
extended static program checkers, including Why [17] anddB®[2]. These systems are actively used
as bridges from several different front-ends to SMT sohaxkends. Boogie, for instance, is used as a
backend for systems that verify code from languages, sueh agtended version of C# (called Spec#),
as well as low level systems code written in C. Current pcadtidicates that one person can drive these
tools to verify selected extended static properties odargde bases with several hundreds of thousands
of lines. A more ambitious project is the Verifying C-Congpilsystem[[16], which targets functional
correctness properties of Microsoft’s Viridian Hyper-dlisThe Hyper-Visor is a relatively small (100K
lines) operating system layer, yet correctness propeaatie€hallenging to formulate and establish. The
entire verification effort is estimated to be around 60 meary.

20.5 Modeling

SMT solvers present an interesting opportunity for higrelesoftware modeling tools. In some contexts
these tools use domains inspired from mathematics, sudgetsraic data-types, arrays, sets and maps.
These domains have also been the subject of long-runniregnasin the context of SMT solvers. Let
us first introduce the array domain. Software modeling airedsde:

Model-based testingses high-level models of software systems, including agtvprotocols, to
derive test oracles. SMT solvers have been used in thisxidoteexploring the models using a symbolic
execution and search. Model-based testing is used on adagje at Microsoft in the context of the
disclosure and documentation of Microsoft network prot®d@1]. The model-based tools use SMT
solvers for generating combinations of test inputs as veefiyanbolic exploration of models.

Model programsare behavioral specifications that can be described sulycara at a high-level of
abstraction. These descriptions are state machines thahstract domains. SMT solvers are used to
performbounded model-checkingf such descriptions. The main idea of bounded model-chgcis
to explore a bounded symbolic execution of a program or motelis, given a bound, such as 17, the
transitions of the state machines are unrolled into a légicenula that describes all possible executions
using 17 steps.

Model-based designgse high-level languages for describing software systelmmplementations
are derived by refinements. Modeling languages present\amtagje as they allow exploring a design
space without committing all design decisions up front. Sédlvers play various roles in model-based
designs. They are used for type-checking designs and teaysaful in the search for different consistent
choices in a design space.

20.6 Qex

Qeﬁ implements automatic data generation methods for paraeeétSQL queries. Data generation
involves both parameter data, as well as, concrete takdegdateration. The data generation is driven by
test conditions that represent various coverage critéex works directly on top of SQL queries and
retains the semantics at the level of SQL. An advantage okingrat the level of SQL, in contrast to
the main workings of Pex and SAGE that rely on instructiorsulteng from a compiler, is that several
high-level SQL constructs can be mapped almost directty &

Shttp://research.microsoft.com/projects/qex

59

http://research.microsoft.com/projects/qex

Z3 - a Tutorial de Moura and Bjgrner

20.7 VS3

Sumit Gulwani uses Z3 in several research projects relatpdogram analysis and program syntt@sis
In particular, the VS3 project uses Z3 to automatically oN&er inductive invariants for proving given
safety properties of systems. The project also explordmigaes for using SMT solvers to synthesize
systems in the first place given enough specifications. Qtt@ects involving Z3 aim to determine
the precise asymptotic run-time bounds of programs. Fomele& he has analyzed the .NET base
class library routines and extracted asymptotic boundgh@formO(n), O(nlog(n)) etc.), for the vast
majority of routines.

20.8 Program Termination

A nice blog on of one of the core algorithms used for finding<nag functions in programs uses Z3 and
F# is accessible fronttp: //www.foment .net/byron/fsharp.shtmll

References

[1] T. Ball and S. K. Rajamani. The SLAM project: debuggingt®m software via static analysiSIGPLAN
Not, 37(1):1-3, 2002.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Pemgming System: An Overview. IGASSIS
2004 LNCS 3362, pages 49-69. Springer, 2005.

[3] Nikolaj Bjgrner. Linear Quantifier-Elimination as an sbact Decision Procedure. ICAR 2010.

[4] Aaron R. Bradley and Zoha Mann@he calculus of computatiospringer, 2007. BRA a7 2007:1 1.EXx.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Wha'sidable about arrays? In E. Allen Emerson
and Kedar S. Namjoshi, editoddMCAI, volume 3855 of NCS pages 427-442. Springer, 2006.

[6] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, anc&&kadeer. Unifying type checking and property

checking for low-level code. In Zhong Shao and Benjamin @rd&, editorsPOPL, pages 302-314. ACM,
2009.

[7] S. A. Cook. The complexity of theorem-proving procedurl STOC pages 151-158. ACM, 1971.

[8] M. Davis, G. Logemann, , and D. Loveland. A machine progfar theorem provingCommunications of
the ACM 1962.

[9] L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In B. Ramakrishnan and J. Rehof, editors,
TACAS 08volume 4963 o NCS Springer, 2008.

[10] L. de Moura and N. Bjgrner. Efficient, Generalized Ari2gcision Procedures. EMCAD. IEEE, 2009.

[11] Leonardo de Moura and Nikolaj Bjgrner. Efficient E-ntatmg for SMT Solvers. INCADE’07. Springer-
Verlag, 2007.

[12] Leonardo de Moura and Nikolaj Bjgrner. Proofs and Ratfons, and Z3 . IfWIL, 2008.

[13] Leonardode Moura and Nikolaj Bjgrner. Engineering RPL) + saturation. In A. Armando, P. Baumgartner,
and G. Dowek, editord®roc. 4th IJCARvolume 5195, pages 475-490, 2008.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theoprover for program checking. ACM 52(3):365—
473, 2005.

[15] B. Dutertre and L. de Moura. A Fast Linear-Arithmetich&s for DPLL(T). In CAV, 2006.

[16] E. Cohen and M. Dahlweid and M. Hillebrand and D. Leinaciioand M. Moskal and T. Santen and W.
Schulte and S. Tobies. VCC: A Practical System for Verify@ancurrent C. INTPHOL, 2009.

[17] J.-C. Filliatre. Why: a multi-language multi-provegrification tool. Technical Report 1366, LRI, Université
Paris Sud, 2003.

[18] Melvin Fitting. First-order logic and automated theorem provirgpringer, 1996. FIT m 1996:1 1.EX.

8http://research.microsoft.com/~ {Fsumitg/pubs/vs3.html

60

http://www.foment.net/byron/fsharp.shtml
http://research.microsoft.com/~{}sumitg/pubs/vs3.html

Z3 - a Tutorial de Moura and Bjgrner

[19] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,B. Saxe, and R. Stata. Extended Static Checking
for Java. InPLDI, pages 234-245, 2002.

[20] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, 8¢hulte, N. Tillmann, and M. Y. Levin. Automat-
ing Software Testing Using Program AnalysiEEE Software25(5):30-37, 2008.

[21] W. Grieskamp, N. Kicillof, D. MacDonald, A. Nandan, Ktdbie, and F. L. Wurden. Model-Based Quality
Assurance of Windows Protocol Documentationl@$T, pages 502-506. IEEE Computer Society, 2008.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. t@arfe verification with blast. I'SPIN pages
235-239, 2003.

[23] Daniel Kroening and Ofer Strichmabecision proceduresSpringer, 2008. KRO d2 2008:1 1.Ex.

[24] S. Malik and L. Zhang. Boolean satisfiability from thetical hardness to practical succeSemmun. ACM
52(8):76—-82, 2009.

[25] J. McCarthy. Towards a mathematical science of contfmrtaln IFIP Congresspages 21-28, 1962.

[26] Michat Moskal. Programming with Triggers. BMT'09 2009.

61

	Introduction
	What is logic?
	What is SMT?
	What is Z3?
	Obtaining Z3
	Installing Z3
	What is Z3 not?

	Satisfiability Modulo Theories - An Appetizer
	A Scheduling Application
	A Solver for Difference Arithmetic
	Scheduling in SMT-LIB v1
	Scheduling in SMT-LIB v2
	Scheduling using the C API
	Scheduling in C#
	Scheduling using F# quotations
	Scheduling in other formats

	Configuring Z3
	Auto Configuration
	Displaying Configuration
	Updating Configuration

	Propositional Solving
	A Propositional Example

	Relations, Functions and Constants
	All functions are total
	Uninterpreted functions and constants
	Recursive functions

	Arithmetic
	Real linear arithmetic
	Integer linear arithmetic
	Mixed linear arithmetic
	Non-linear arithmetic
	Quantifier Elimination for Linear Arithmetic

	Data-types
	Records
	Scalars (enumeration types)
	Recursive data-types
	Mutually recursive data-types
	You will not get Z3 to prove Inductive facts

	Bit-vectors
	Basic Bit-vector Arithmetic
	Bit-wise Operations
	Predicates over Bit-vectors
	Comparison
	Overflow Checks
	Bit-wise operations

	Conversions between Bit-vectors and Integers

	Arrays
	Select and Store
	Constant Arrays
	Array models
	Mapping Functions on Arrays
	Default array values
	Bags as Arrays
	Summary of Array operations

	Quantifiers
	Modeling with Quantifiers
	Patterns
	An operational context of pattern-based instantiation
	Pattern and multi-pattern annotations
	Injective functions
	No-patterns
	Programming with Triggers

	The Axiom Profiler
	Saturation
	Model-based Quantifier Instantiation
	The Array Property Fragment

	Simplification
	Invoking the Simplifier
	Configuring Simplification
	ELIM_QUANTIFIERS
	CONTEXT_SIMPLIFIER
	STRONG_CONTEXT_SIMPLIFIER

	Implied Equalities
	Unsatisfiable Cores
	Parallel Z3
	Portfolio Setup

	Proofs
	External Theory Solvers
	Some Applications
	Dynamic Symbolic Execution
	Program Model Checking
	Static Program Analysis
	Program Verification
	Modeling
	Qex
	VS3
	Program Termination

