
CS453 Lecture Predictive Parsers with Error Handling 1

Plan for Today

Recall Predictive Parsing
–  when it works and when it doesn’t
–  necessary to remove left-recursion
–  might have to left-factor

Error recovery for predictive parsers

  Predictive parsing as a specific subclass of recursive descent parsing
–  complexity comparisons with general parsing

  Studying for the midterm

Predictive Parsing

   Predictive parsing, such as recursive descent parsing, creates the parse
tree TOP DOWN, starting at the start symbol.

   For each non-terminal N there is a method recognizing the strings that can
be produced by N, with one (case) clause for each production.

   This workes great for the below grammar:

 because each production could be uniquely identified by looking ahead
   one token. Let’s predictively build the parse tree for
   while t { if b { x = 6 }} $!

CS453 Lecture Top-Down Predictive Parsers 2

start -> stmts EOF	
stmts -> ε | stmt stmts	
stmt -> ifStmt | whileStmt | ID = NUM 	
ifStmt -> IF id { stmts }	
whileStmt -> WHILE id { stmts }	

When Predictive Parsing works, when it does not

What about our expression grammar:

 E  E + T | E-T | T
 T  T * F | F
 F  (E) | ID | NUM

 The E method cannot decide looking one token ahead whether to predict
 E+T, E-T, or T. Same problem for T.

Predictive parsing works for grammars where the first terminal symbol of
each sub expression provides enough information to decide which
production to use.

CS453 Lecture Top-Down Predictive Parsers 3

First

Given a phrase γ of terminals and non-terminals (a rhs of a production),
FIRST(γ) is the set of all terminals that can begin a string derived from γ.

FIRST(T*F) = ?
FIRST(F)= ?

FIRST(XYZ) = FIRST(X) ?

CS453 Lecture Top-Down Predictive Parsers 4

NO! X could produce ε and then FIRST(Y) comes into play

we must keep track of which non terminals are NULLABLE

 E  E + T | E-T | T
 T  T * F | F
 F  (E) | ID | NUM

Follow

   It also turns out to be useful to determine which terminals can directly
follow a non terminal X (to decide parsing X is finished).

   terminal t is in FOLLOW(X) if there is any derivation containing Xt.

   This can occur if the derivation contains XYZt and Y and Z are
nullable

CS453 Lecture Top-Down Predictive Parsers 5

CS453 Lecture Top-Down Predictive Parsers 6

FIRST and FOLLOW sets

  NULLABLE
–  X is a nonterminal
–  nullable(X) is true if X can derive the empty string

  FIRST
–  FIRST(z) = {z}, where z is a terminal

–  FIRST(X) = union of all FIRST(rhsi), where X is a nonterminal and X

-> rhsi

–  FIRST(rhsi) = union all of FIRST(sym) on rhs up to and including first

nonnullable

  FOLLOW(Y), only relevant when Y is a nonterminal
–  look for Y in rhs of rules (lhs -> rhs) and union all FIRST sets for

symbols after Y up to and including first nonnullable

–  if all symbols after Y are nullable then also union in FOLLOW(lhs)

Constructive Definition of nullable, first and follow

   for each terminal t FIRST(t)={t}

   Another Transitive Closure algorithm:
   keep doing STEP until nothing changes

   STEP:
   for each production X  Y1 Y2 … Yk

   if Y1to Yk nullable (or k = 0) nullable(X) = true
   for each i from 1 to k, each j from i+1 to k
   1: if Y1…Yi-1 nullable (or i=1) FIRST(X) += FIRST(Yi) //+: union
   2: if Yi+1…Yk nullable (or i=k) FOLLOW(Yi) += FOLLOW(X)
   3: if Yi+1…Yj-1 nullable (or i+1=j) FOLLOW(Yi) += FIRST(Yj)

   We can compute nullable, then FIRST, and then FOLLOW

CS453 Lecture Top-Down Predictive Parsers 7

Class Exercise
   Compute nullable, FIRST and FOLLOW for

   Z  d | X Y Z
   X  a | Y
   Y  c | ε

CS453 Lecture Top-Down Predictive Parsers 8

for each terminal t FIRST(t)={t}

Another Transitive Closure algorithm:
 keep doing STEP until nothing changes

STEP:
for each production X  Y1 Y2 … Yk

 if Y1to Yk nullable (or k = 0) nullable(X) = true
 for each i from 1 to k, each j from i+1 to k
 1: if Y1…Yi-1 nullable (or i=1) FIRST(X) += FIRST(Yi) //+: union
 2: if Yi+1…Yk nullable (or i=k) FOLLOW(Yi) += FOLLOW(X)
 3: if Yi+1…Yj-1 nullable (or i+1=j) FOLLOW(Yi) += FIRST(Yj)

We can compute nullable, then FIRST, and then FOLLOW

CS453 Lecture Top-Down Predictive Parsers 9

Constructing the Predictive Parser Table
  A predictive parse table has a row for each non-terminal X, and a column
  for each input token t. Entries table[X,t] contain productions:
for each X -> gamma	

for each t in FIRST(gamma)	
table[X,t] = X->gamma	

if gamma is nullable	
for each t in FOLLOW(X)	

table[X,t] = X->gamma	

Compute the predictive
parse table for
Z  d | X Y Z
X  a | Y
Y  c | ε

 a c d
X Xa XY XY
 XY
Y Y ε Y ε Y ε
 Yc
Z ZXYZ ZXYZ ZXYZ
 Zd

Multiple entries in the Predictive parse table: Ambiguity

An ambiguous grammar will lead to multiple entries in the parse table.

Our grammar IS ambiguous, e.g. Z  d
 but also ZXYZYZd

For grammars with no multiple entries in the table, we can use the table
to produce one parse tree for each valid sentence. We call these grammars
LL(1): Left to right parse, Left-most derivation, 1 symbol lookahead.

A recursive descent parser examines input left to right. The order it
expands non-terminals is leftmost first, and it looks ahead 1 token.

CS453 Lecture Top-Down Predictive Parsers 10

Left recursion and Predictive parsing

   What happens to the recursive descent parser if we have a left
   recursive production rule, e.g. E  E+T|T
 E calls E calls E forever
 To eliminate left recursion we rewrite the grammar:
 from: to:
 E  E + T | E-T | T E T E’
 T  T * F | F E’  + T E’ | - T E’ | ε
 F  (E) | ID | NUM T  F T’
 T’  * T E’ | ε
 F  (E) | ID | NUM
 replacing left recursion XXγ | α (where α does not start with X)
 by right recursion, as X produces α γ* that can be produced right
 recursively. Now we can augment the grammar (SE$), compute
 nullable, FIRST and FOLLOW, and produce an LL(1) predictive
 parse table, see Section 3.13 in Basics of Compiler Design.

CS453 Lecture Top-Down Predictive Parsers 11

Left Factoring

Left recursion does not work for predictive parsing. Neither does a
grammar that has a non-terminal with two productions that start with a
common phrase, so we left factor the grammar:

E.g.: if statement:
 S  IF t THEN S ELSE S | IF t THEN S | o
  becomes
 S  IF t THEN S X | o
 X ELSE S | ε

When building the predictive parse table, there will still be a multiple
entries. WHY?
CS453 Lecture Top-Down Predictive Parsers 12

€

S→αβ1
S→αβ2

Left refactor
S→αS '
S '→ β1 | β2

Dangling else problem: ambiguity

   Given construct two parse trees for
   S  IF t THEN S X | o IF t THEN IF t THEN o ELSE o
   X ELSE S | ε

CS453 Lecture Top-Down Predictive Parsers 13

 S

IF t THEN S X

IF t THEN S X

ε

ELSE o S

o

 S

IF t THEN S X

IF t THEN S X

ε

ELSE

o

 S

o

Which is the correct parse tree? (C, Java rules)

Dangling else disambiguation

   The correct parse tree is:

We can get this parse tree by removing the Xε rule in the multiple
entry slot in the parse tree. See written homework 2.

CS453 Lecture Top-Down Predictive Parsers 14

 S

IF t THEN S X

IF t THEN S X

ε

ELSE o S

o

CS453 Lecture Predictive Parsers with Error Handling 15

General Error Recovery

  Goals
–  Provide program with a list of as many errors as possible
–  Provide USEFUL error messages

–  appropriate line and position information
–  guidance for fixing the error

–  Avoid infinite loops or recursion
–  Add minimal overhead to the processing of correct programs

  Approaches
–  Stop after first error
 very simple, but unfriendly
–  Panic mode
 skip tokens until a “synchronizing” token is encountere

Panic mode error recovery

The function for nonterminal X has one clause for each possible
production rule for X. A clause includes a case for every character in the
FIRST set for the rhs of the production, each character in the FOLLOW set if
the rhs is nullable, and calls to match tokens and other nonterminals to process
the rhs of the production.

For panic mode, skip tokens until a follow of the nonterminal encountered

   // panic method for nonterminal N
   panic_N() {
   print error;
   while (scan() not in (FOLLOW(N) union {EOF})) {
   }
   }

CS453 Lecture Predictive Parsers with Error Handling 16

Example: simple assignment grammar

 S  StmtList EOF
   Stm  id ASSIGN float
   StmList  Stm StmList | ε

What is nullable, FIRST,
FOLLOW for each nonterminal?

What is the predictive parser table?

CS453 Lecture Predictive Parsers with Error Handling 17

CS453 Lecture Predictive Parsers with Error Handling 18

Predictive parser with panic mode error recovery
// Float assignment grammar.	
void S() { switch (m_lookahead) {	
 case ID:	
 case EOF:// the 2 characters in the FIRST(StmList EOF)	

	try { StmList(); match(EOF); } catch { panic_S(); } break;	
 default: panic_S(); break; 	
}}	
void StmList() { switch (m_lookahead) {	
 case ID: // FIRST(Stm StmList) = { ID }	
 Stm(); StmList(); break;	
 case EOF: // FOLLOW(StmList) = { EOF }	
 break;	
 default: panic_StmList(); break;	
}}	
void Stm() { switch (m_lookahead) {	
 case ID: try { match(ID); match(ASSIGN); match(FLOAT); 	
 } catch { panic_Stm(); } break;	
 default: panic_Stm(); break;	
}}	

CS453 Lecture Predictive Parsers with Error Handling 19

Predictive Parsing Complexity
  LL(k) grammar classes

–  Left-to-right scan
–  Left-most derivation
–  k tokens of lookahead

  Comparing complexity
–  O(N3) for general case context free grammars, where N is the number of

tokens in the stream (Earley parsing algorithm)
–  O(N) for predictive parsing

  Requirements for LL(1), for all productions of nonterminal A
–  None of the FIRST(rhs) for A production rules can overlap
–  If nullable(A) then FOLLOW(A) must not overlap with FIRST(rhs) for

any A rhs

CS453 Lecture Predictive Parsers with Error Handling 20

Studying for the Midterm

  Start Now
–  Example midterms have been posted on the schedule.
–  There is a set of concepts you are expected to know that have been posted

on the Midterm in class link on the schedule.
–  Thursday will be an interactive review session for the midterm. Example

problems are already posted.

  Practice Problems while studying!!
–  The exam will be mostly multiple choice; however, you will have to work

through problems by hand to select the correct answer.
–  While doing examples, feel free to post examples and what answer you

think it is on the midterm and final forum. Give each other feedback.

