
 CS453
Abstract Syntax tree (AST)

Visitor patterns

CS453 Lecture Building ASTs and Visitor Design Pattern 2

Plan for Today

  Abstract Syntax Tree
–  Example and main idea
–  construction with a bottom up parser
–  AST for Meggy Java

Visitor Design Pattern
–  main idea and example
–  example reprise using visitor that does traversal
–  FAQ about visitors
–  Dot visitor
–  Other examples including integer and byte expression evaluation

Debugging Ideas

  

CS453 Lecture Introduction 3

Structure of the MeggyJava Compiler

“sentences”

Synthesis Analysis

character stream

lexical analysis

“words” tokens

semantic analysis

syntactic analysis

AST

AST and symbol table

code gen

Atmel assembly code

PA1: Write test cases in C++ and
 MeggyJava, and Atmel warmup
PA2: MeggyJava scanner and setPixel
PA3: add exps and control flow (AST)
PA4: add methods (symbol table)
PA5: add variables and objects

Example program

CS453 Lecture Building ASTs and Visitor Design Pattern 4

class Byte {
 public static void main(String[] whatever){
 Meggy.setPixel
 (// Byte multiplication: Byte x Byte -> Int
 (byte)((byte)1*(byte)2),
 // Mixed type expression: Byte x Int -> Int
 (byte)((byte)3 + 4),
 Meggy.Color.WHITE
);
 }
}

CS453 Lecture Building ASTs and Visitor Design Pattern 5

Program

MainClass

BlockStatement

MeggySetPixel

ByteCast ByteCast
ColorLiteral

Meggy.Color.WHITE

MulExp

ByteCast ByteCast

IntLiteral
1

IntLiteral
2

PlusExp

ByteCast
IntLiteral

4

IntLiteral
3

AST of Example Program

How does the AST differ
from the parse tree?

Parentheses have been removed
 their role -to shape the AST is finished
Some terminals have been pulled out
 which?
Some have been pulled up
 which?

CS453 Lecture Building ASTs and Visitor Design Pattern 6

Grammar Subset and AST Node Hierarchy
  Statement ::= “if” “(“ Expression “)” Statement “else” Statement	

  | “Meggy.setPixel” “(“ Expression “,” Expression “,” Expression “)”	

  Expression ::=	
   Expression ("+" | "-" | "*") Expression	
   | “(“ “byte” “)” Expression	
   | <INTEGER_LITERAL> | <COLOR_LITERAL> | “true” | “false”	

IfStatement

IExp

PlusExp

MinusExp

MulExp IntegerExp

Node

Token IStatement

ByteCast

TrueExp

FalseExp ColorExp MeggySetPixel

What is this?
The node type hierarchy,
 Ibla = bla abstract class

CS453 Lecture Building ASTs and Visitor Design Pattern 7

Syntax-directed Construction of AST
  The scanner provides line and position of each Symbol in SymbolValue
  So the parser can put these in the appropriate nodes of the AST:

 Expression ::=	
 … 	
 | exp:a PLUS:op exp:b 	
 {: RESULT = new PlusExp(a, b, op.line, op.pos); :}	

	
 statement_list ::= 	
 statement_list:list statement:s 	
 {: if (s!=null) { list.add(s); }	
 RESULT = list; :} 	
 	
| /* epsilon */	
 {: RESULT = new LinkedList<IStatement>(); :} 	
;

CS453 Lecture Building ASTs and Visitor Design Pattern 8

Program

MainClass

BlockStatement

MeggySetPixel

ByteCast ByteCast
ColorLiteral

Meggy.Color.WHITE

MulExp

ByteCast ByteCast

IntLiteral
1

IntLiteral
2

PlusExp

ByteCast
IntLiteral

4

IntLiteral
3

Building AST Bottom Up
class Byte {!
 public static void main(String[] whatever){!
 Meggy.setPixel(!
 // Byte multiplication: Byte x Byte -> Int !

 (byte)((byte)1*(byte)2),!
 // Mixed type expression: Byte x Int -> Int !
 (byte)((byte)3 + 4), Meggy.Color.WHITE);!

 }!
}!

CS453 Lecture Building ASTs and Visitor Design Pattern 9

Visitor Design Pattern

  Situation
–  Want to perform some processing on all items in a data structure, e.g type

check or code generate
–  Will be adding many different ways to process items depending on the type

(class)
–  Will not be changing the classes of the data structure itself (much, or at all)

  Possibilities
–  OO: For each functionality and each class, add a method

–  con: each new functionality is spread over multiple files
–  con: sometimes can’t add methods to existing class hierarchy

–  Procedural: Use switch statement in one method traversing the data structure
–  pro: keeps all the code for the feature in one place
–  con: can be costly and involve lots of casting

–  Visitor design pattern (best of all)

CS453 Lecture Building ASTs and Visitor Design Pattern 10

AST and visitors

  We will generate an AST instead of directly generating code.
   - Why is that a good idea? What can we now do better?
   We can walk over this AST multiple times and perform different
   functions, e.g. Create symbol table, Check types, Generate code

  We will then traverse the AST for each particular need using visitors
   each node of the AST has an accept method, that calls an appropriate
   visitor method, e.g. plusExp.accept() calls visitPlusExp()

  Class hierarchy is USEFUL, because we only override a few methods:
   the ones that differ from standard behavior

Visit, In , Out

When visiting the AST, we encounter a node for the first time (In encounter)
and we encounter the node for the last time (Out encounter). These
encounters are often associated with certain actions:
   Visitor::visitXYZ(node) {!
   inXYZ(node);!
   for each child c of node in left to right order !
   c.accept(this);!
   outXYZ(node);!
   }!

inXYZ is called when the node is first encountered in the DFLR walk,
  and outXYZ is called when the node is left behind in the DFLR walk.

  This is often sufficient for code generation purposes (+,-,*,setPixel), but
  not always: (if, while, &&). WHY NOT?

CS453 Lecture Building ASTs and Visitor Design Pattern 11

CS453 Lecture Building ASTs and Visitor Design Pattern 12

Example Use of the visitor design pattern
// in driver:	
ast_root.accept(new AVRgenVisitor(outfilehandle));	
	
// in AST class MulExp	
public void accept(Visitor v) { v.visitMulExp(this); }	
	
// in class DepthFirstVisitor	
public void inMulExp(MulExp node) { defaultIn(node); } 	
public void outMulExp(MulExp node) { defaultOut(node); } 	
public void visitMulExp(MulExp node){ 	
 inMulExp(node); 	
 if(node.getLExp() != null) node.getLExp().accept(this); 	
 if(node.getRExp() != null) node.getRExp().accept(this);	
 outMulExp(node);	
}	
	
// in code generator ç This is YOUR job	
public void outMulExp(MulExp node) { // overrides default	
 // gen code to pop operands, do the *, push the result 	
}	
	

CS453 Lecture Building ASTs and Visitor Design Pattern 13

FAQ, Debugging Ideas

  Check out your recitation PA0 Part3 example. It tells you a lot!!

  How do I associate data with a node in the AST if I can’t add fields to the
node classes?

What if I want to do the same thing on each node?
What if I only need to do something on certain nodes?

  Debugging
   System.out.println in parser actions

   Break points in visitor methods

Code Structure

In driver, first call the parser to get an AST:
 mj_ast_parser parser = new mj_ast_parser(lexer);
 ast.node.Node ast_root = (ast.node.Node)parser.parse().value;

Next create a dot file for the AST for debugging purposes:
 java.io.PrintStream astout = new java.io.PrintStream(…);
 ast_root.accept(new DotVisitor(new PrintWriter(astout)));

Finally, create Type-Checker and an AVRgenVisitor instances:
 java.io.PrintStream avrsout = new java.io.PrintStream(…);
 ast_root.accept(new AVRgenVisitor(new PrintWriter(avrsout)));
 System.out.println("Printing Atmel assembly to " + filename + ".s");

CS453 Lecture Building ASTs and Visitor Design Pattern 14

