CS453
Abstract Syntax tree (AST)
Visitor patterns

Plan for Today

Abstract Syntax Tree
— Example and main idea
— construction with a bottom up parser
— AST for Meggy Java

Visitor Design Pattern
— main idea and example
— example reprise using visitor that does traversal
— FAQ about visitors
— Dot visitor

— Other examples including integer and byte expression evaluation

Debugging Ideas

CS453 Lecture Building ASTs and Visitor Design Pattern

Structure of the MeggyJava Compiler

Analysis Synthesis
character stream l
v
lexical analysis code gen
tokens | “words” l

Atmel assembly code

syntactic analysis

PA1: Write test cases in C++ and

AST | “sentences’ MeggyJava, and Atmel warmup
.V . PA2: MeggyJava scanner and setPixel
semantic analysis PA3: add exps and control flow (AST)
PA4: add methods (symbol table)
AST and symbol }fable PAS: add variables and objects

CS453 Lecture Introduction

Example program

class Byte {
public static void main(String[] whatever){
Meggy.setPixel

(// Byte multiplication: Byte x Byte -> Int
(byte)((byte)1*(byte)2),
// Mixed type expression: Byte x Int -> Int
(byte)((byte)3 +4),
Meggy.Color. WHITE

);

CS453 Lecture Building ASTs and Visitor Design Pattern

AST of Example Program

How does the AST differ
from the parse tree?

Parentheses have been removed
their role -to shape the AST is finished
Some terminals have been pulled out
which?
Some have been pulled up
which?

BlockStatement

MeggySetPixel

Colortheral
Meggy .Color.WHITE

PlusE

ByteCast

CS453 Lecture Building ASTs and Visitor Design Pattern 5

Grammar Subset and AST Node Hierarchy

Statement ::= “if” “(“ Expression “)” Statement “else” Statement
| “Meggy.setPixel” “(“ Expression “,” Expression “,” Expression “)”
Expression ::=
Expression ("+" | "-" | "*") Expression

| “C" “byte” “)” Expression
| <INTEGER_LITERAL> | <COLOR_LITERAL> | “true” | “false”

. The node type hierarchy,
Whatis this: NOC;Q Ibla = bla abstract class
IStatement IEJTCP Token
| | |
IfStatement PlusExp MulExp IntegerExp TrueExp
MeggySetPixel MinusExp ByteCast ColorExp || FalseExp

CS453 Lecture Building ASTs and Visitor Design Pattern 6

Syntax-directed Construction of AST

The scanner provides line and position of each Symbol in SymbolValue
So the parser can put these in the appropriate nodes of the AST:

Expression ::=

| exp:a PLUS:op exp:b
{: RESULT = new PluskExp(a, b, op.line, op.pos); :}

statement_list ::=
statement_list:1list statement:s
{: 1f (s!=null) { list.add(s); }
RESULT = list; :}

| /* epsilon */
{: RESULT = new LinkedList<IStatement>(); :}

)

CS453 Lecture Building ASTs and Visitor Design Pattern

Building AST Bottom Up

class Byte {

MainClass

public static void main(String[] whatever)/{
Meggy.setPixel (

// Byte multiplication: Byte x Byte -> Int

(byte) ((byte)l*(byte)2), <::§§%§%%%E::>

// Mixed type expression: Byte x Int -> Int

(byte)((byte)3 + 4), Meggy.Color .WHITE);

ColorLiteral
Meggy.Color. WHITE

ByteCast

y Y
Mul@ @Exp

CS453 Lecture Building ASTs and Visitor Design Pattern 8

Visitor Design Pattern

Situation

— Want to perform some processing on all items 1n a data structure, e.g type
check or code generate

— Will be adding many different ways to process items depending on the type
(class)

— Will not be changing the classes of the data structure itself (much, or at all)
Possibilities
— OO: For each functionality and each class, add a method
— con: each new functionality 1s spread over multiple files
— con: sometimes can’ t add methods to existing class hierarchy
— Procedural: Use switch statement in one method traversing the data structure
— pro: keeps all the code for the feature in one place
— con: can be costly and involve lots of casting
— Visitor design pattern (best of all)

CS453 Lecture Building ASTs and Visitor Design Pattern 9

AST and visitors

We will generate an AST instead of directly generating code.
- Why is that a good idea? What can we now do better?
We can walk over this AST multiple times and perform different

functions, e.g. Create symbol table, Check types, Generate code
We will then traverse the AST for each particular need using visitors
cach node of the AST has an accept method, that calls an appropriate

visitor method, e.g. plusExp.accept() calls visitPlusExp()

Class hierarchy is USEFUL, because we only override a few methods:
the ones that differ from standard behavior

CS453 Lecture Building ASTs and Visitor Design Pattern

10

Visit, In , Out

When visiting the AST, we encounter a node for the first time (In encounter)
and we encounter the node for the last time (Out encounter). These
encounters are often associated with certain actions:
Visitor::visitXYZ (node) {
inXYZ (node);
for each child ¢ of node in left to right order
c.accept(this);
outXYZ (node);
}

inXYZ is called when the node is first encountered in the DFLR walk,
and outXYZ is called when the node is left behind in the DFLR walk.

This is often sufficient for code generation purposes (+,-,*,setPixel), but
not always: (if, while, &&). WHY NOT?

CS453 Lecture Building ASTs and Visitor Design Pattern 11

Example Use of the visitor design pattern

// 1in driver:
ast_root.accept(new AVRgenVisitor(outfilehandle));

// 1n AST class MulExp
public void accept(Visitor v) { v.visitMulExp(this); }

// 1n class DepthFirstVisitor
public void inMulExp(MulExp node) { defaultIn(node); }
public void outMulExp(MulExp node) { defaultOut(node); }
public void visitMulExp(MulExp node){
1nMulExp(node);
if(node.getLExp() '= null) node.getLExp().accept(this);
1f(node.getRExp() '= null) node.getRExp().accept(this);
outMulExp(node);

}

// 1n code generator € This 1s YOUR job

public void outMulExp(MulExp node) { // overrides default
// gen code to pop operands, do the *, push the result

3

CS453 Lecture Building ASTs and Visitor Design Pattern 12

FAQ, Debugging Ideas

Check out your recitation PA(Q Part3 example. It tells you a lot!!

How do I associate data with a node in the AST if I can’ t add fields to the
node classes?

What if I want to do the same thing on each node?
What if I only need to do something on certain nodes?

Debugging

System.out.println in parser actions

Break points in visitor methods

CS453 Lecture Building ASTs and Visitor Design Pattern 13

Code Structure

In driver, first call the parser to get an AST:
mj_ast parser parser = new mj_ast parser(lexer);
ast.node.Node ast root = (ast.node.Node)parser.parse().value;

Next create a dot file for the AST for debugging purposes:
java.i0.PrintStream astout = new java.io.PrintStream(...);

ast root.accept(new DotVisitor(new PrintWriter(astout)));

Finally, create Type-Checker and an AVRgenVisitor instances:
java.i0.PrintStream avrsout = new java.io.PrintStream(...);
ast_root.accept(new AVRgenVisitor(new PrintWriter(avrsout)));
System.out.println("Printing Atmel assembly to " + filename + ".s");

CS453 Lecture Building ASTs and Visitor Design Pattern

14

