
CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2020
URL: http://www.cs.colostate.edu/~cs455
Professor: Shrideep Pallickara

Page 1 of 5

Homework 2: Programming Component
SCALABLE SERVER DESIGN: USING THREAD POOLS & MICRO BATCHING TO MANAGE AND LOAD BALANCE

ACTIVE NETWORK CONNECTIONS
VERSION 1.0

DUE DATE: Wednesday March 11th, 2020 @ 5:00 pm

As part of this assignment you will be developing a server to handle network traffic by designing and
building your own thread pool. This thread pool will have a configurable number of threads that will be
used to perform tasks relating to network communications. Specifically, you will use this thread pool to
manage all tasks relating to network communications. This includes:

1. Managing incoming network connections
2. Receiving data over these network connections
3. Organizing data into batches to improve performance
4. Sending data over any of these links

Unlike the previous assignment where we had a receiver thread associated with each socket, we will be
managing a collection of connections using a fixed thread pool. A typical set up for this assignment
involves a server with a thread pool size of 10 and 100 active clients that send data over their
connections. Please note that you must use Java NIO for this assignment.

1 Components
There are two components that you will be building as part of this assignment: a server and a client.

1.1 Server Node:
There is exactly one server node in the system. The server node provides the following functions:

A. Accepts incoming network connections from the clients.
B. Accepts incoming traffic from these connections
C. Groups data from the clients together into batches
D. Replies to clients by sending back a hash code for each message received.
E. The server performs functions A, B, C, and D by relying on the thread pool.

1.2 The Clients
Unlike the server node, there are multiple Clients (minimum of 100) in the system. A client provides the
following functionalities:

(1) Connect and maintain an active connection to the server.
(2) Regularly send data packets to the server. The payloads for these data packets are 8 KB and

the values for these bytes are randomly generated. The rate at which each connection will
generate packets is R per-second; include a Thread.sleep(1000/ R) in the client which ensures
that you achieve the targeted production rate. The typical value of R is between 2-4.

(3) The client should track hashcodes of the data packets that it has sent to the server. A server
will acknowledge every packet that it has received by sending the computed hash code back to
the client.

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2020
URL: http://www.cs.colostate.edu/~cs455
Professor: Shrideep Pallickara

Page 2 of 5

2 Interactions between the components

The client is expected to send messages at the rate specified during start-up. The client sends a byte[]
to the server. The size of this array is 8 KB and the contents of this array are randomly generated. The
client generates a new byte array for every transmission and also tracks the hash codes associated with
the data that it transmits. Hashes will be generated with the SHA-1 algorithm. The following code
snippet computes the SHA-1 hash of a byte array, and returns its representation as a hex string:

public String SHA1FromBytes(byte[] data) {
 MessageDigest digest = MessageDigest.getInstance("SHA1");
 byte[] hash = digest.digest(data);
 BigInteger hashInt = new BigInteger(1, hash);

 return hashInt.toString(16);
}

A client maintains these hash codes in a linked list. For every data packet that is published, the client
adds the corresponding hashcode to the linked list. Upon receiving the data, the server will compute the
hash code for the data packet and send this back to the client. When an acknowledgement is received
from the server, the client checks the hashcode in the acknowledgement by scanning through the linked
list. Once the hashcode has been verified, it can be removed from the linked list.

The server relies on the thread pool to perform all tasks. The threads within the thread pool should be
created just once. Care must be taken to ensure that you are not inadvertently creating a new thread
every time a task needs to be performed. There is a steep deduction (see Section 4) if you are doing
so. The thread pool needs methods that allow: (1) a spare worker thread to be retrieved and
(2) a worker thread to return itself to the pool after it has finished it task.

The thread pool manager also maintains a list of the work that it needs to perform. It maintains these
work units in a FIFO queue implemented using the linked list data structure. Each unit of work is a list
of data packets with a maximum length of batch-size. Work units are added to the tail of the work
queue and when the work unit at the top of the queue has either: (1) reached a length of batch-size
or (2) batch-time has expired since the previous unit was removed, an available worker is assigned to
the work unit.

Every 20 seconds, the server should print its current throughput (number of messages processed per
second during last 20 seconds), the number of active client connections, and mean and standard
deviation of per-client throughput to the console. In order to calculate the per-client throughput statistics
(mean and standard deviation), you need to maintain the throughputs for individual clients for last 20
seconds (number of messages processed per second sent by a particular client during last 20 seconds)
and calculate the mean and the standard deviation of those throughput values. This message should
look like the following.

[timestamp] Server Throughput: x messages/s, Active Client Connections: y, Mean Per-
client Throughput: p messages/s, Std. Dev. Of Per-client Throughput: q messages/s

You can use these statistics to evaluate the correctness of your program.

If your server is functioning correctly (assuming it is adequately provisioned), the server throughput
should remain approximately constant throughout its operation. Note that it will take some time to
reach a stable value due to initialization overheads at both server and client ends. Mean per-client
throughput multiplied by the number of active connections should be approximately equal to the sever
throughput. Furthermore, if every client is sending messages at the same rate and the server’s
scheduling algorithm is fair, the standard deviation of the per-client throughput should be low.

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2020
URL: http://www.cs.colostate.edu/~cs455
Professor: Shrideep Pallickara

Page 3 of 5

Similarly, once every 20 seconds after starting up, every client should print the number of messages it
has sent and received during the last 20 seconds. This log message should look similar to the following.

[timestamp] Total Sent Count: x, Total Received Count: y

3 Command line arguments for the two components
Your classes should be organized in a package called cs455.scaling. The command-line arguments
and the order in which they should be specified for the Server and the Client are listed below

java cs455.scaling.server.Server portnum thread-pool-size batch-size batch-time

java cs455.scaling.client.Client server-host server-port message-rate

4 Deductions
There will be a 16-point deduction if any of the restrictions below are violated.

1. You cannot use the Executor interface or any of the thread pool classes that are part of the
java.util.concurrent package

2. You cannot use third-party implementations of the thread pool. This is something you must
implement all by yourself.

3. Threads should be pre-allocated when the server component starts and live the duration of
program execution. Do not create new Threads for each new message.

4. The stop, suspend, and resume Thread methods should not be used. These methods are
deprecated and can cause concurrency bugs.

5. The data that you will be sending will be byte[]. None of your classes can implement the
java.io.Serializable interface

6. No GUIs should be built under any circumstances. These are auxiliary paths and the deduction
is in place to ensure that none of you attempt to do this.

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2020
URL: http://www.cs.colostate.edu/~cs455
Professor: Shrideep Pallickara

Page 4 of 5

5 Grading
Homework 2 accounts for 20 points towards your final course grade. The programming component
accounts for 80% of these points with the written element (to be posted later) accounting for the
remaining 20%. This programming assignment will be graded for 16 points. The point distribution for
this assignment is listed below.

Server Node - 11 points
Client Node - 5 points

Server Node Breakdown:

3 points: Correct thread pool manager implementation
1 point: Abstracting different types of tasks as work units for worker threads
1 point: Receiving data from Clients
1 point: Sending hash codes back to Clients
1 point: Using the thread pool to manage connections
2 points: Supporting 100 concurrent client connections
1 point: Creating work units of configurable size
1 point: Processing work units within configurable time

Client Node Breakdown:

1 point Generation of random data.
2 points: Maintaining linked list data structure of pending hashes.
1 point: Sending data to the Server.
1 point: Receiving and verifying responses (hashes) from the Server.

6 Milestones:
You have 4 weeks to complete this assignment. The weekly milestones below correspond to what you
should be able to complete at the end of every week.

Milestone 1: Complete a partial implementation of the Thread Pool Manager. This should allocate a
given number of threads, maintain a queue of pending tasks, and assign tasks to be handled by the
threads. This component can be created and tested in isolation from the rest of the system.

Milestone 2: Use the java.nio.channels.Selector class to register and deregister incoming
SelectionKeys on the server side. You should also be able to create randomized data packets as byte
arrays.

Milestone 3: The server should be able to read incoming data from multiple clients, and clients should
be able to send data.

Milestone 4: Your server implementation should use the thread pool to handle clients and be able to
manage up to 100 concurrent connections, and send replies back to clients that send data to the server.

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2020
URL: http://www.cs.colostate.edu/~cs455
Professor: Shrideep Pallickara

Page 5 of 5

7 What to Submit
Use the CS455 checkin program to submit a single .tar file that contains:

• All the Java files related to the assignment (please document your code)
• The build.gradle file you use to build your assignment
• A README.txt file containing a description of each file and any information you feel the GTA

needs to grade your program.

The folder set aside for this assignment’s submission using checkin is HW2-PC

Filename Convention: The class names for your client and server should be as specified in Section 3.
You may call your support classes anything you like. All classes should reside in a package called
cs455.scaling. The archive file should be named as <FirstName>-<LastName>-HW2-PC.tar. For
example, if you are Cameron Doe then the tar file should be named Cameron-Doe-HW2-PC.tar.

8 Version Change History
This section will reflect the change history for the assignment. It will list the version number, the date
it was released, and the changes that were made to the preceding version. Changes to the first public
release are made to clarify the assignment; the spirit or the crux of the assignment will not change.

Version Date Comments
1.0 02/05/2020 First public release of the assignment.

